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Abstract

In color-based detection methods, varying illumination

often causes problems, since an object may be perceived

to have different colors under different lighting conditions.

In the field of color constancy this is usually handled by

estimating the illumination spectrum and accounting for its

effect on the perceived color.

In this paper a method for designing a robust classifier

is presented, i.e., instead of estimating and adapting to

different lighting conditions, the classifier is made wider

to detect a colored object for a given range of lighting

conditions. This strategy also naturally handles the case

where different parts of an object are illuminated by

different light sources at the same time. Only one set of

training data per light source has to be collected, and

then the detector can handle any combination of the light

sources for a large range of illumination intensities.

Index Terms–Color-based detection, Color constancy,

Robust classifier, Robot vision, Ball catcher

1. Introduction

This paper presents a method for finding objects based

on their color. As an example we will use a robot catching

green balls that are thrown toward it. As a first step the color

of each individual pixel is used to calculate the probability

of that pixel being foreground (green ball) or background.

When color is used for object detection, varying illumi-

nation conditions may cause problems, since they change

the observed color of the object. This is a well known prob-

lem, treated in the field of color constancy [4], which tries
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to estimate the ’true’ color of an object irrespective of the

illumination. Humans usually do this very well without re-

alizing it, but there are also numerous examples [9] of how

the human vision system can be fooled. Land’s retinex al-

gorithm [6] attempts to imitate the human vision system,

and does so by finding large color gradients and looking at

the relative color between nearby areas.

Another way to achieve color constancy is to look at the

observed color of a reference object of known color and ad-

just the color of all observed images, as done in, e.g., [1].

If the illumination changes, a reference object has to be ob-

served again to adjust the color correction. In [11] the posi-

tion and color of a face are tracked simultaneously to update

the color range of the face as the illumination changes.

The methods described in the previous paragraphs de-

pend on the environment (colors in the background or the

availability of a reference color) and are adaptive in the

sense that they can adjust their color correction if the il-

lumination varies. The classifier presented in this paper,

however, is of the robust type in the sense that a single

classifier works for a large range of illumination conditions.

The method is illustrated by an example that can handle any

combination of daylight and fluorescent light, which covers

a large set of the conditions encountered in common indoor

environments. The cost of having a single classifier for all

lighting conditions is that the color range that is classified

as foreground gets bigger, and hence there is an increased

risk of false positives, but if the range is chosen wisely the

amount of false positives can be made small.

A number of different approaches to detecting balls for

ball-catching robots have been presented. In [7, 8] color

images were used and the balls were detected by defining

ranges in the HSV color space [5] and using the centroid of

the detected blobs as ball centers, but none of them men-

tioned any handling of varying illumination. In [2] gray-

scale images were used and motion was detected by sub-

tracting a background image from all images. The ball was

then detected with the Hough transform. In [3] the cameras

were not stationary, so no background subtractions could be

used. The balls were detected in high-resolution gray-scale

images by using a generalization of the Hough transform.



2. Chromaticity representation

In this paper chromaticity will be represented by the red

and green channels in the normalized RGB space [5]. Given

a color (R, G, B), where the three components are the in-

tensities of red, green and blue, the chromaticity is given

by

r =
R

R + G + B
, g =

G

R + G + B
(1)

Now assume that you have two colors (R1, G1, B1) and
(R2, G2, B2)with the corresponding chromaticities (r1, g1)
and (r2, g2), and you make a linear combination of the two

colors to form a third color:

(R3, G3, B3) = λ1(R1, G1, B1) + λ2(R2, G2, B2) (2)

with λ1, λ2 ≥ 0. The resulting chromaticity is

(r3, g3) =
(R3, G3)

R3 + G3 + B3

=
λ1(R1, G1)

R3 + G3 + B3
+

λ2(R2, G2)

R3 + G3 + B3

=
λ1(R1 + G1 + B1)

R3 + G3 + B3
︸ ︷︷ ︸

θ1

(R1, G1)

R1 + G1 + B1
︸ ︷︷ ︸

(r1,g1)

+
λ2(R2 + G2 + B2)

R3 + G3 + B3
︸ ︷︷ ︸

θ2

(R2, G2)

R2 + G2 + B2
︸ ︷︷ ︸

(r2,g2)

= θ1 · (r1, g1) + θ2 · (r2, g2)

(3)

It can easily be verified that θ1, θ2 ≥ 0 and θ1+θ2 = 1, i. e.,
(r3, g3) is a convex combination of (r1, g1) and (r2, g2).
This means that for all possible values of λ1 and λ2 in (2),

(r3, g3) is on the straight line between (r1, g1) and (r2, g2).
This property will be used in the design of the classifier

proposed in this paper.

3. Method

3.1. Outline of method

3.1.1 Steps to be done off-line

1. Collect training data with a single light source at a

time. Collect many images from each scene and cal-

culate the average to reduce the effect of noise.

2. Subtract bias from the images (the intensity recorded

by the camera in complete darkness).

3. Make a histogram over the colors. For each pixel, draw

a line between the colors at the different illuminations.

The resulting histogramwill be interpreted as a relative

probability density function for the different colors.

4. Make a 3-dimensional look-up table, where the inputs

are the intensities of red, green and blue in a pixel, and

the output is the probability density from the histogram

in the previous bullet. Add back the bias subtracted in

the second bullet.

5. Blur the look-up table to account for sensor noise.

6. Choose the probability density of the background.

7. Compare the probability densities for foreground and

background and compute a new look-up table with the

probability of a color belonging to the foreground.

8. Calculate (P (foreground) − 0.5) to get a score for

each element in the look-up table.

3.1.2 Steps to be done on-line

1. Retrieve the score from the look-up table for each pixel

in the image.

2. Find circles that locally maximize the sum of the

scores of the enclosed pixels in the probability image.

3.2. Training data collection

One set of images should be collected for each type of

light source. For the example described in the introduc-

tion this means that two sets of images of the green balls

should be collected; one with daylight only, and one with

fluorescent light only. If possible, several images should be

captured for each light source, to form the average image.

The light intensity returned by an image sensor is the

sum of a bias and the actual light intensity. When the

histogram is created, it is assumed that all intensities will

be linear combinations of the illuminations when only one

light source is present. For this to be true, the bias has to be

subtracted from the images.

The averaging over many images and bias correction at-

tempt to estimate the actual color distributions of the fore-

ground object (green ball) for the different light sources.

The variations stem mainly from differences in color on

different parts of the training objects and from varying re-

flectance in different directions. Measurement artifacts,

such as bias and noise, will be handled separately.

3.3. Histogram

A histogram over the colors in the training data is cre-

ated to estimate the probability density (up to a scale) for

different colors. For this histogram a grid of bins is created

in the chromaticity plane.

For each pixel in the training data, let the bias-corrected

intensities be (R1, G1, B1) and (R2, G2, B2) for the two

light sources respectively, and the corresponding chromatic-

ities be (r1, g1) and (r2, g2). According to the last para-

graph in Sec. 2, the observed chromaticity will then be on

the straight line between (r1, g1) and (r2, g2) for all com-

binations of the two light sources. Hence, all bins in the



histogram that are intersected by the line between (r1, g1)
and (r2, g2) are increased by 1.

3.4. Look­up table

In order to minimize the amount of calculations at classi-

fication time, as much as possible is calculated off-line and

stored in a look-up table. The table takes the intensities of

red, green and blue in an image as inputs and returns the

probability of that pixel belonging to the foreground.

As a first step in creating the look-up table, the bias is

subtracted from the (R, G, B)-intensities of each element

and the corresponding probability density is retrieved from

the (r, g)-histogram. In this process the probabilities are

assumed to be independent of the total intensities (R+G+
B). The result will be a look-up table where most elements

are close to zero, and the elements with a high probability

of belonging to the foreground will form a cone with its tip

a the point corresponding to the bias, and the cone gets a

larger cross-section area as the total intensity increases.

We now have a table with the probability densities for

the actual colors of the foreground objects, but the captured

images will be corrupted by noise. Hence, the look-up table

is convoluted with a Gaussian kernel that corresponds to the

noise variance of the image sensor. This smoothing opera-

tion in a neat way handles the fact that the chromaticity is

affectedmore by noise in dark areas than in well illuminated

areas. In the parts of the look-up table where the intensities

are high, the cone of foreground colors is wide compared to

the smoothing kernel and the probability densities will not

be affected much by the smoothing operation. However, in

the darker parts of the table, near the tip of the cone, the

smoothing operation will spread out the probability mass

over a much larger volume than before and will result in a

lower peak probability density. This reflects the reality well

and results in more uncertain classifications in dark areas.

We now have a table with scaled probability densities

for observing different colors from a foreground object. To

determine the probability Pfg of the pixel belonging to the

foreground, the probability density pfg of the foreground

has to be compared to the probability density pbg of the

background:

Pfg =
pfg

pfg + pbg

(4)

For simplicity, the probability density of the background is

assumed to be the same for all colors, and its value is the

only tuning parameter of the algorithm.

For the elements in the look-up table where any of the

colors is saturated, the probability is set to Pfg = 0.5, indi-
cating that nothing can be said about that pixel.

Finally, all elements in the look-up table are subtracted

by 0.5 to generate scores. This results in a table where posi-

tive scores indicate that the color is most likely to belong to
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Figure 1. A sample training image with fluorescent light.

the foreground and negative scores indicate that the color is

most likely to belong to the background.

3.5. Probability image

The operations described so far can be done off-line dur-

ing the training phase. The remaining operations have to

be done in real-time on the images that should be analyzed.

The first operation on the image is to replace the RGB-value

of every pixel with the corresponding score from the look-

up table.

3.6. Object localization

To find balls in the image, it is searched for circles that

locally maximize the sum of the scores for all pixels en-

closed by the circle. If the circle is made larger than the

optimum, negative scores will be included and reduce the

sum. If the circle is made smaller than the optimum, fewer

pixels with positive score will be included, and the sum will

be reduced.

4. Experimental results

4.1. Cameras

The algorithm described in this paper was experimen-

tally verified on images captured by a Basler A602fc cam-

era. All images used for the experimentswere capturedwith

integer intensities in the range [0, 255].

4.2. Training

The bias of the camera was measured to (5.5, 5.7, 41.4)
and the noise standard deviation was (2.1, 1.5, 3.8), for the
red, green and blue channels respectively. Three green balls

were illuminated by fluorescent light only, and 100 im-

ages were captured. By calculating the average image the

colors could then be calculated with a standard deviation

of (0.21, 0.15, 0.38). Similarly 100 images were captured

when the balls were illuminated by daylight only. An exam-

ple image with fluorescent light is shown in Fig. 1. Three

green balls, marked by white circles in the figure, were man-

ually picked out and the 1323 pixels enclosed by those cir-

cles were used for training. Note that the remaining green

balls in the image had a slightly more bluish green color.

Figure 2 shows a scatter plot of the chromaticity for all

the pixels in the training data. The sets of points from the

different light sources are almost disjoint, which means that

if a classifier was trained for only one of the light sources, it
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Figure 2. Scatter plot of the chromaticity

for the pixels in the training data.
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Figure 3. Histogram of foreground colors in the

chromaticity space.
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Figure 4. The same histogram as in

Fig. 3, zoomed in on the area with the

observed colors.
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Figure 5. Scatter plot of the elements in the look-up table that had

higher probability density than the background, after smoothing.

would work very poorly for the other light source. For the

histogram 750×750 bins were used and the result is shown
in Figs. 3 and 4. The probability density of the background

was chosen so the total probability of the background was 6

times larger than that of the foreground.

In the look-up table 64 intensity levels were used for

each color channel, giving a table size of 643 = 262144
elements. Figure 5 shows a scatter plot of the elements that

had probability densities higher than the background. The

probability densities were transformed to probabilities and

subtracted by 0.5 to get the scores. The scores were scaled

from the range [−0.5, 0.5] to [−127, 127] and stored in 8-

bit signed integers in the look-up table. The resulting size

of the look-up table was hence 256 kB, which easily fits

inside the L2 cache of modern processors, allowing fast ac-

cess when the pixels of an image are classified.

4.3. Classification

Images were collected under different illumination con-

ditions to test the performance of the classifier. In Fig. 6

you can see three images captured with fluorescent light,

daylight or a combination of both. In the upper part of each

image you can see a number of green balls placed on a bar.

Three of the balls (those that were used for training) have a

slightly more yellowish color than the others. In every im-

age you can also see a ball (of the kind that was used for

training) thrown toward the area below the camera. In all

images the yellowish green balls have a probability (of be-

longing to the foreground) that is greater than 0.5 and most

other objects have a probability less than 0.5, as intended.

If you look at different areas in the images, you can see

that dark areas tend to have probabilities close to 0.5, since
the sensor noise makes it hard to determine the chromaticity

of the object, while bright areas tend to have probabilities

close to 1 if they are green balls and close to 0 otherwise.

The pixels where any of the color channels was saturated

have the probability 0.5.

Figure 7 illustrates how the range of colors classified as

foreground varies with the lighting conditions. In the yel-

lowish fluorescent light the small bluish green ball and the

cyan color in the color scale are classified as foreground,

since their observed colors are close to that of the yellowish

green ball in daylight. In the bluish daylight, however, they

are too blue to be classified as foreground.

Balls in the images were detected by finding the maxi-

mum of the function described in Sec. 3.6. The circles were

here approximated by squares. Only the global maximum

is shown in each image, but multiple balls can be detected

by looking for several local maxima.

4.4. Ball­catching robot

The algorithm described in this paper was successfully

used to catch balls with the robotic ball-catcher described

in [7, 10]. The execution time for the entire image analysis

process was approximately 5 ms per 656×480-pixel image

on a desktop computer with 2.4 GHz processor.

4.5. Validation of assumptions

The method described in this paper assumes that all il-

luminations are linear combinations of two colors. To in-

vestigate whether this well describes the illumination con-

ditions commonly encountered in real life, images of the
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Figure 6. Top row: Images that were used to test the classification performance. Bottom row: Images showing the probability

of a pixel belonging to the foreground. Left column: Fluorescent light only. Middle column: Fluorescent light and daylight.

Right column: Daylight only. The ball that maximizes the criterion described in Sec. 3.6 is marked by a magenta/black square

in each image.
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Figure 7. Images of color scales, illustrating the width of the classifier in different illumination conditions. Left column:

Fluorescent light only. Middle column: Fluorescent light and daylight. Right column: Daylight only.
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Figure 8. Observed colors of the green balls for different illumina-

tions.

green balls were captured under a number of different illu-

mination conditions. The resulting distributions of the chro-

maticities are shown in Fig. 8. The images were captured

in a lab with windows, but no direct sunlight could hit the

balls. The daylight data used in Sec. 4.2 (green in Fig. 8)

was captured when the sky was blue but the sun itself was

behind clouds. The fluorescent light data used in Sec. 4.2

(blue in Fig. 8) was captured at night with fluorescent ceil-

ing lamps pointing upwards, so most of the light hitting the

balls was reflected off the white ceiling.

The additional data sets were capturedwhen it was sunny

(red), cloudy (cyan), with a fluorescent desktop lamp shin-

ing directly onto the balls (magenta), and with a light bulb

shining directly onto the balls (black).

It can be seen that the different kinds of daylight and

fluorescent light lie close to a line, as desired, but the light

bulb gave colors that are quite different. Hence, Figure 8 in-

dicates that the illuminations encountered in practice really

can be described as combinations of sunlight and fluores-

cent light, as long as light bulbs are not used.

5. Discussion

In this paper the probability density was assumed to be

uniform for all colors in the background, which is quite un-

realistic. The uniform background distribution was used to

show that the method works with such simple assumptions

and should work even better with a properly modeled back-

ground.

Only a combination of two light sources was considered

in this paper. The method could easily be generalized to

more light sources. Instead of drawing a line between the

data points from the two light sources, one should then draw

the polygon forming the convex hull of the data points.

In this paper it is assumed that nothing is known about a

pixel if any color channel is saturated, but if, e.g., only the

red and blue channels are saturated, you can say with high

confidence that the object is not green.

Many different machine learning strategies could have

been considered for training the classifier, but if they are ap-

plied without a good understanding of the problem it may

be hard to collect data that cover all illumination condi-

tions that can be encountered at classification time. With

the method described in this paper it was enough to cap-

ture data under two different illumination conditions to be

able to classify images from a large range of illumination

spectrums and a range of illumination intensities that is only

limited by the dynamic range of the camera.

6. Conclusions

A method for designing a color classifier that works

over a large range of illumination conditions was presented.

Only two different illumination conditions were required

during the training phase and there is only one tuning pa-

rameter. The method was experimentally verified on real

data and used to detect balls for a ball-catching robot.
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