
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Optimal Control over Networks with Long Random Delays

Lincoln, Bo; Bernhardsson, Bo

Published in:
Proceedings CD of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems

2000

Link to publication

Citation for published version (APA):
Lincoln, B., & Bernhardsson, B. (2000). Optimal Control over Networks with Long Random Delays. In
Proceedings CD of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems
Laboratoire de Théorie des Systèmes (LTS), University of Perpignan.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3f0c8f1c-22af-4fe0-ab45-453f99ef1340


Optimal Control over Networks with
Long Random Delays

Bo Lincoln, Bo Bernhardsson
Department of Automatic Control, LTH

Box 118, 221 00 Lund, Sweden
{ lincoln h bob } @ control.lth.se

Keywords: Stochastic control, time delays, optimal control, separation principle

Abstract

This paper studies the effects of stochastic time delays on automatic control
systems which uses communication networks. We assume a linear process to be
controlled and known delay probability distributions.

The contribution of this paper is to extend the theory in [6] to delays that may
be longer than one sample period. Using a quadratic cost we find the optimal
full-state-information controller. We also show that the standard Kalman filter
is an optimal observer, and that the separation principle holds.

1. Introduction

Measurement and control signals that are sent over a communication network or
a field bus are often subject to undeterministic time delays. The design of a high
performance control system demands that the effect of these delays are analyzed,
see for example [2, 3, 4, 5, 7, 8, 9, 10, 11]. An increased understanding of the
effects of stochastic time delays is also needed to compare different suggestions
for future network protocols for control, for example in next generation wireless
networks such as Bluetooth [1].

In this paper we study the effects of time delays that are longer than one
sampling period on a single loop linear system. This continues the work in [6].
We find the optimal time-stamped controller under a linear quadratic criterion,
and show that the separation property holds between control and estimation
even under the more complicated information structure present here.
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Figure 1 The control system setup. The sensor node is assumed to sample regularly
at a rate of h. The controller node and actuator nodes are event driven. The time delays
τ sc and τ ca are stochastic with known probability distributions. It is assumed that older
values of time delays are known when the control signal is calculated in the controller
node.

2. Problem Formulation

The controlled plant studied is assumed to be linear with m states and p inputs,

ẋ(t) = Ax(t) + Bu(t) + v(t)
y(t) = Cx(t) +w(t), (1)

where v(t) and w(t) are independent gaussian random processes. The cost-to-go
function at time tn, denoted Vn, is defined by

Vn =

E





∫ t f

tn

[
x(t)
u(t)

]T

Q

[
x(t)
u(t)

]
dt+ x(t f )T Q f x(t f )



 (2)

The control system studied (see Figure 1) has the following properties:

• The actuator is event-driven, and outputs the latest control signal until a
new is received.

• The sensor is periodic, and samples the process output at intervals of h
seconds. The sample times are ti = ih.

• The controller calculates the control signal at the time the sample packet
arrives from the sensor.

• The time for sample n to go from sensor to controller is denoted τ sc
n , and

the time for control signal n from controller to actuator is denoted τ ca
n . The

time delays are stochastically independent of the state of the process (this
enables a quadratic-form description of the cost Vn).

• The probability distributions of the delays are known by the designer of
the controller. The delays are mutually independent.

• The controller gets sample and actuation time information from the sensor.
Thus τ sc

i and {τ ca
i h ui has been actuated at tn}, are known by the controller

when control signal un is calculated (see the example in Figure 2).
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Figure 2 Illustration of packet arrivals when long delays are present. At point A, the
controller receives the process sample yn. It also receives information that the last control
signal un−1 had not been actuated at time tn. Therefore, the sending time of un−1 is also
sent. The latter is used to calculate the conditional probability that un−1 will be actuated
at a certain time instant (possibilities are represented by the shaded area in the figure).
At point B, yn+2 arrives before yn+1. The state estimate is calculated using the available
information (i.e. without yn+1), and a new control signal is sent. When yn+1 arrives at
point C, the state estimate is updated but no new control sample is sent.

All assumptions except the last one are natural and describe how many con-
trol systems work. The last requirement about time-stamped signals can be sat-
isfied by attaching timing information to all signals. In many applications this
can be achieved with neglectable overhead cost. Synchronized clocks must be im-
plemented at the different nodes, but this is becoming more and more common.
For a discussion of implementation aspects see [6]. The information on actuation
and sample times is crucial for the separation property to hold.

Earlier work in [6] has described the optimal linear quadratic time-stamp
controller when the total delay τ sc

n + τ ca
n was smaller than the sampling period,

h. We will now describe how to extend this work to longer time delays.

3. Optimal Controller

For this problem the maximum delay is restricted to

τ sc
n +τ ca

n < Nh, N ∈Z+. (3)

The linear process with the zero-order-hold actuator on the input, periodically
sampled, defines a discrete-time time-varying linear system parameterized by
the time delays.

xn+1 = Φxn + Γ(τ n)




un−N
...

un


 =

= [Φ Γ1(τ n)]zn + Γ2(τ n)un (4)

where
zn =

[
xT

n uT
n−N . . . uT

n−1

]T

and
τ n =

[
τ sc

n−N τ ca
n−N . . . τ sc

n τ ca
n

]
.
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Figure 3 An example of arrivals in [tn, tn+1]. In this case, K(τ n) = {n − 1, n}. As un−2

arrives later than un (and un−1) it is ignored. Kstart = n− 3 in this case, as un−3 is active
in the beginning.

Thus zn is the process state at sample n augmented with the control signals
which may not yet have arrived to the actuator. The vector τ n contains the delay
data for each control signal. If one control signal has already been actuated, the
corresponding τ sc and τ ca are set to 0.

For the calculations in this paper, it useful to have a transition matrix X (t,τ n)
implicitly defined as 



x(t)
un−N

...
un



= X (t,τ n)

[
zn

un

]
(5)

To be able to define X (t,τ n) explicitly, we have to specify some policies (due to
the long delays):

• Control signal packets and sample packets can switch places in time. If
the control signal ui arrives after u j , and i < j, ui should be ignored by
the actuator. In the same way, the controller should not send a new control
signal if process sample yi arrives after y j, and i < j, although the state
estimate is updated (see point C in Figure 2).

• When the controller receives sample yn, it only has information on the
process up to time tn = nh. Old control signals may not have arrived at
the actuator when the process is sampled. Thus, the controller will have to
estimate the state of the process at the control decision using information on
when the not-yet-arrived control signals was sent. This timing information
creates a parameterized cost function Vn(zn,τ sc

n−1, . . . ,τ sc
n−N+1).

A formal definition of X (t,τ n) requires some help variables. First, we need the
actuation times of control signals explicitly

tact
i = τ sc

i +τ ca
i + ti, (6)

where tact
i is the actuation time of the control signal sent at sample i. Then

define an ordered index set K(τ n) of the control signals which will be actuated
in [tn, tn+1] in sorted order, i.e. such that

tact
Ki
≤ tact

K j
< tn+1, ∀ j > i

Ki > K j , ∀i > j (ignore old samples).

Also, let Kstart be the index of the control signal which is active at the start of
the sample period. Figure 3 illustrates the idea.
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We can now write the transition matrix X (t,τ n) which brings the state from
tn to t as

X (t,τ n) =



Φ(t− tn, Kstart+ N − n) tn ≤ t ≤ tact
K1

Φ(t− tact
K1

, K1 + N − n) � X (tact
K1

,τ n) tact
K1
< t ≤ tact

K2

Φ(t− tact
K2

, K2 + N − n) � X (tact
K2

,τ n) tact
K2
< t ≤ tact

K3
...

(7)

where

Φ(∆, i) =[
eA∆ 0m�ip

∫ ∆
0 eA(∆−s)Bds 0m�(N−i)p

0 Ip(N+1)�p(N+1)

]

We also define Q(t,τ n) as the positive definite cost matrix from tn to t

Q(t,τ n) =



Ω(t− tn, Kstart+ N − n) tn ≤ t ≤ tact
K1

Ω(t− tact
K1

, K1 + N − n) ⋅ X (tact
K1

,τ n)+
Q(tact

K1
,τ n) tact

K1
< t ≤ tact

K2

Ω(t− tact
K2

, K2 + N − n) ⋅ X (tact
K2

,τ n)+
Q(tact

K2
,τ n) tact

K2
< t ≤ tact

K3
...

(8)

where

Ω(∆, i) =
∫ ∆

0
[. . .]T Q

[
eAs 0m�ip

∫ s
0 eA(s−σ )Bdσ 0m�(N−i)p

0 0p�ip Ip�p 0p�(N−i)p

]
ds

Optimal Full-State-Information Controller
Assume we have full state information, i.e. yn = xn. Also assume the cost from
sample tn+1 to t f can be written as

Vn+1(zn+1,τ sc
n , . . . ,τ sc

n−N+2) =
zT

n+1Sn+1(τ sc
n , . . . ,τ sc

n−N+2)zn+1 (9)

where Sn+1(τ sc
n , . . . ,τ sc

n−N+2) is a symmetric, positive-definite cost-matrix. We then
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move one step backwards in time

Vn(zn,τ sc
n−1, . . . ,τ sc

n−N+1) =

E
τ sc

n


min

un
E

τ ca
n ,...,τ ca

n−N+1





[
zn

un

]T

Q(tn+1,τ n)
[

zn

un

]
+

[
zn

un

]T

X (tn+1,τ n)T DT Sn+1(τ sc
n , . . . ,τ sc

n−N+2) ⋅

D X (tn+1,τ n)
[

zn

un

] ∣∣∣ τ sc
n , . . . ,τ sc

n−N+1

})
=

E
τ sc

n




min
un

E
τ ca

n ,...,τ ca
n−N+1





[
zn

un

]T

Q(tn+1,τ n)
[

zn

un

]

︸ ︷︷ ︸
Cost during this period

+

[
zn

un

]T

S̃(τ n)
[

zn

un

]

︸ ︷︷ ︸
Remaining cost

∣∣∣ τ sc
n , . . . ,τ sc

n−N+1







=

E
τ sc

n


min

u

[
zn

un

]T

Fn(τ sc
n , . . . ,τ sc

n−N+1)
[

zn

un

]
 =

E
τ sc

n

zT
n
(
Fzzn − (F−1

uun
FT

zun
)T FT

zun

)
zn =

zT
n Sn(τ sc

n−1, . . . ,τ sc
n−N+1)zn. (10)

where

D =




I 0 0 ⋅ ⋅ ⋅ 0
0 0 I ⋅ ⋅ ⋅ 0

0 0 0
. . . 0

0 0 0 I
0 0 0 ⋅ ⋅ ⋅ 0




(11)

is a matrix which translates the control signals ui one step back in time. At
the third equality, the expectation over τ n, . . . ,τ n−N+1 is moved inside the state
since τ i is conditionally independent of x j and u j for i, j ∈ [n − N + 1, n] given
information on τ sc

n ,τ sc
n−1, . . . ,τ sc

n−N+1. As τ sc
n is known by the controller at the

control decision, the expectation over it is done outside the un optimization. The
quadratic form is minimized by

un = −Ln(τ sc
n , . . . ,τ sc

n−N+1)zn =
−Fuu

n (τ sc
n , . . . ,τ sc

n−N+1)−1 Fzu
n (τ sc

n , . . . ,τ sc
n−N+1)T zn. (12)

Thus, the optimal control is a linear feedback, where the feedback gain has N
parameters.

Optimal State Estimate
If the full state is not available at the sampling instant, the state vector has to

6



be estimated. Assume the system can be described by (4) plus noise

xn+1 = Φxn + Γ(τ n)




un−N
...

un


+ vn

yn = Cxn +wn, (13)

where E(vivT
j ) = R1δ (i− j), E(eieT

j ) = R2δ (i− j), and E(vieT
j ) = 0. Then, since

all actions in the actuator are immediately reported to the sensor, there is full
information on all control actions which have been actuated so far. Thus the
standard Kalman filter is optimal. The gains K and K̄ will not depend on the
delays, since only Φ is involved in the calculations.

For the estimation of x̂n, almost all yk, k ≤ n are known. Since sensor-to-
controller packets can switch places in time, it is possible that x̂n has to be
estimated without e.g. yn−1. This can be handled by letting R−1

2 → 0 when
estimating x̂n−1 (i.e. no new information on the state). The estimate x̂n can
then be calculated as usual. When (if) yn−1 eventually arrives, the estimation is
redone for future control samples.

x̂nhn = x̂nhn−1 + K̄n(yn − Cx̂nhn−1) (14)

x̂n+1hn = Φxn + Γ(τ n)




un−N
...

un


+

Kn(yn − Cx̂nhn−1) (15)

K̄n = Pnhn−1CT
(

CPnhn−1CT + R2

)−1
(16)

Kn = ΦPnhn−1CT
(

CPnhn−1CT + R2

)−1
(17)

Pnhn = Pnhn−1 −

Pnhn−1CT
(

CPnhn−1CT + R2

)−1
CPnhn−1 (18)

Pn+1hn = ΦPnhn−1ΦT + R1 −

Kn

(
CPnhn−1CT + R2

)
KT

n (19)
x̂0h−1 = E(x0) (20)
P0h−1 = E(x0xT

0 ) (21)

Optimal State Feedback
The optimal state feedback is the standard combination of optimal full-state-
information controller and optimal observer. This is stated in the following the-
orem:

THEOREM 1—SEPARATION PROPERTY

Given the system in (13), and the measurements
Yn = {yn}∪{yi h yi received at controller before yn}. The optimal controller with

7



respect to the cost function in (2) is

un = −Ln(τ sc
n , . . . ,τ sc

n−N+1)ẑnhn = −Ln(. . .)




x̂nhn
un−N

...
un−1




, (22)

i.e. the optimal controller gain in (12) applied on the optimal state estimate in
(14).
The proof is following the lines of the similar proof in [6]. First, we present a
lemma (5.2 in [6]) which simplifies the proof:

LEMMA 1—ESTIMATE RECURSION

E
τ ca

n ,...,τ ca
n−N+1 ,vn,wn+1

{
ẑT

n+1hn+1Sn+1(. . .)ẑn+1hn+1

∣∣∣ Yn

}
=

[. . .]T E
τ sc

n ,...,τ sc
n−N+1

{
[. . .]T Sn+1(. . .)D X (. . .)

}

︸ ︷︷ ︸
S̃n+1()

[
ẑnhn

un

]
+

E
vn,wn+1




[. . .]T Sn+1(. . .)

[
Hn+1

0

]


x̃n

vn

wn+1



∣∣∣ Yn




=

E
τ ca

n ,...,τ sc
n−N+1





[
ẑnhn

un

]T

S̃n+1(. . .)
[

ẑnhn

un

]
+

tr(PnhnΦT CT K̄ T
n+1Sxxn+1 ()K̄n+1CΦ)︸ ︷︷ ︸

Cost from x̃n

+

tr(R1CT K̄ T
n+1Sxxn+1 (. . .)K̄n+1C)︸ ︷︷ ︸
Cost from vn

+

tr(R2 K̄ T
n+1Sxxn+1 ()K̄n+1)︸ ︷︷ ︸

Cost from wn+1

, (23)

where
Hn+1 =

[
K̄n+1CΦ K̄n+1C K̄n+1

]
(24)
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PROOF OF LEMMA 1
The proof is built on the fact that x̂n+1hn+1 can be calculated as

x̂n+1hn+1 = (I − K̄n+1C)x̂n+1hn + K̄n+1 yn+1 =

(I − K̄n+1C)


Φ x̂nhn + Γ(τ n)




un−N
...

un





+

K̄n+1

(
C
(

Φxn + Γ(τ n)
[ ...

]
+ vn

)
+wn+1

)
=

Φ x̂nhn + Γ(τ n)




un−N
...

un


+ Hn+1




x̃n

vn

wn+1


 (25)

The optimal state estimate gives that x̂nhn and x̃n are orthogonal, and causality
gives independence of wn+1, vn and x̂n. Thus the expectation in (23) can be split.

PROOF OF THEOREM 1
For the optimal estimate defined in (14), it holds that

E





[
zn

un

]T

Q

[
zn

un

] ∣∣∣ Yn



 =

E





[
ẑnhn + z̃

un

]T

Q

[
ẑnhn + z̃

un

] ∣∣∣ Yn



 =

E





[
ẑnhn
un

]T

Q

[
ẑnhn
un

] ∣∣∣ Yn



 + tr(PnhnQxx()) =

E





[
ẑnhn
un

]T

Q

[
ẑnhn
un

] ∣∣∣ Yn



 + cn, (26)

i.e. the expected value of the cost is the cost function evaluated on the optimal
estimates plus a constant (noise) term.

Now let Vn(ẑnhn,τ n, Pnhn) denote the optimal cost from xn at time tn to t f , and
the state estimation error has variance Pnhn. Also assume Vn+1(ẑn+1hn+1,τ n, Pn+1hn+1) =
ẑT

n+1hn+1Sn+1(τ n)ẑn+1hn+1 for some n. Then (26) and Lemma 1 allows us to do a
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cost recursion step when only optimal estimates x̂ of x are known

Vn(ẑnhn,τ n, Pnhn) =

E
τ sc

n

min
un

E

{[
zn

un

]T

Q(tn,τ n)
[

zn

un

]
+

Vn+1(ẑn+1hn+1,τ n, Pn+1hn+1)
∣∣∣ Yn

}
=

E
τ sc

n

min
un

E

{[
ẑnhn
un

]T

Q(tn,τ n)
[

ẑnhn
un

]
+ cn+

ẑT
n+1hn+1Sn+1(τ n)ẑn+1hn+1

∣∣∣ Yn

}
=

E
τ sc

n

min
un

E

{[
ẑnhn
un

]T

Q(tn,τ n)
[

ẑnhn
un

]
+

[
ẑnhn
un

]T

S̃n+1(τ n)
[

ẑnhn
un

]
+ sn

∣∣∣ Yn

}
(27)

Minimizing this quadratic form with respect to un leads to the same feedback
gain as in the full-information case (12). Thus the separation property holds.

4. Examples

The computation of the optimal controller has been implemented in Matlab. To
show the properties of the optimal controller, two systems have been simulated.
The first is taken from [6], Example 5.5 p. 72. It is a stable system.

ẋ =
[

0 1
−3 −4

]
x +

[
0
1

]
u+

[
35
−61

]
ξ

y =
[

2 1
]

x +η

Q = 80




35
√

35 0√
35 1 0
0 0 1/80




h = 0.05

To simplify, the variances of the sampled noise, ξ n and ηn, were set to unity. The
second example is an unstable system (in fact, a linearized inverted pendulum).

ẋ =
[

0 1
0.2 −0.1

]
x +

[
0
1

]
u+

[
0
10

]
ξ

y =
[

1 0
]

x +η

Q = I
h = 0.5
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The total time delay τ = τ sc + τ ca is uniformly distributed between 0 and τ max.
This may seem unintuitive, but it forces all aspects of packet-switching to ap-
pear even when N = 2. Monte-Carlo simulations of 20000 samples were run with
varying τ max. The resulting cost is plotted in Figure 4a, where τ max has been var-
ied between 0 and 2h. Using the same network parameters, an unstable system
was also simulated (a linearized inverted pendulum). The results can be seen in
Figure 4b. Both simulations have been run with three different controllers:

• The optimal controller presented in this paper.

• A fixed LQ controller was calculated assuming a deterministic system based
on the average delay. The resulting feedback gain was applied on the opti-
mal state estimate (i.e. for the real, stochastic system) described in Section
3.

• Again, a fixed LQ controller was calculated assuming a deterministic sys-
tem based on the average delay. Also, a fixed Kalman filter based on the
deterministic system was calculated (a suboptimal estimator). The con-
troller was based on the LQ feedback gain applied on the suboptimal state
estimate.

Notice the difference between the results as seen in Figure 4. In Example a)
the main advantage of the optimal controller seems to be the correct state es-
timation, whereas in Example b) the main performance improvement comes
from better linear feedback gains. The code for the two examples is available at
http://www.control.lth.se/~lincoln/mtns2000/

5. Conclusions

The optimal controller has been found for a stochastic optimal control problem
where communication delays are varying. A separation property holds so that
the optimal controller consists of a linear gain scheduled feedback combined with
the optimal state estimate. The complexity of the presented controller grows,
however, rapidly when the maximal controller time delay τ sc+τ ca is larger than
h. It is assumed that previous values of the time delays are known at the time
of computation of the control signal, something which can be obtained by letting
the actuator send timestamps to the controller (possibly in the process sample
packet). The theory was illustrated with two simulated examples, showing the
advantages of the optimal controller.
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