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Abstract 
Based on a neuroscientific hypothesis, this paper 
explores the possibility of an ‘inner world’ based on 
internal simulation of perception. We present three sets 
of experiments with a possible minimal model, using a 
simulated Khepera robot controlled by a simple 
recurrent connectionist network. Using an evolutionary 
algorithm the robots are trained on increasingly 
complex tasks. In the first experiment, serving as a 
baseline, robots are simply trained to map sensory input 
to motor output such that they move around in an 
environment without collisions. In the second 
experiment robots are additionally trained on predicting 
the next time step’s sensory input. In the third 
experiment, finally, the robot’s own prediction replaces 
the actual sensory input in order to investigate its 
capability to act ‘blindly’, i.e. in the temporary absence 
of external stimuli. Although only the first two 
experiments give positive results, we conclude that the 
experimental framework presented here should turn out 
useful in the investigation of more complex artificial 
neural models. 
 
 

1. Introduction and Background 
Introspective observation seems to tell us that we are 
able to have sensory experiences in absence of external 
stimuli. This has further been illustrated by 
experimental results of, e.g., Lee and Thompson [1]. In 
a series of experiments they demonstrated the accuracy 
with which humans can guide their behaviour based 
solely on internally generated sensory experiences. A 
group of subjects were first allowed to look at their 
surrounding environment and direct specific attention to 
certain objects, such as marks on the floor and different 

obstacles. They were then asked to perform different 
tasks such as walking to the marked locations, avoiding 
the obstacles and throwing objects at different targets in 
the room. All tasks were performed with eyes closed. 
The subjects performed these tasks almost as accurately 
with eyes closed as when they were free to look. It thus 
seems reasonable to assume the existence of an ‘inner 
world’ where sensory experiences and consequences of 
different behaviours may be anticipated.  
Evidence from experiments with rats seem to imply a 
similar interpretation. When rats are allowed to move 
freely in a maze environment on several trials without 
receiving food reward, presumably no navigational 
behaviours are reinforced and thus not learnt. Later, 
when food is placed at one location for a number of 
trials, these rats will soon find that location and avoid 
dead ends just as reliably as a group of continually 
rewarded rats (a phenomenon known as “latent 
learning”). The evidence implies that maze topography 
is actually learnt while moving around although no 
rewards are given. It has been argued by, e.g., Tolman 
[2] that such observations should be understood as the 
result of an internal cognitive map being built up in the 
rat nervous system from sensory experiences. The ‘map’ 
is then consulted when navigating to the food location. 
The traditional cognitive scientific explanation for how 
an ‘inner world’ might be organised, based on symbolic 
world models, internal maps and planning mechanisms, 
has been questioned since the mid-1980s by many 
researchers (e.g. Brooks [3,4]; Suchman [5]) who de-
emphasise the role of internal world models in the 
traditional sense, and instead emphasise the situated 
nature of intelligence as well as the reactive nature of 
many of the mechanisms underlying the interaction 
between agents and their environments (see, e.g., 
Ziemke [6] for a detailed discussion). Purely reactive 



mechanisms, however, seem ill suited to explain the 
above capacity to simulate/anticipate sensory 
experience and to behave appropriately in the absence 
of external stimuli. Hence, robots or other autonomous 
agents, controlled by connectionist networks or similar 
mechanisms, have in many cases exhibited good 
performance in tasks that could be solved in a more or 
less reactive fashion. But, it is unclear how such 
systems could handle tasks that might require planning 
and action in the absence of sufficient external input. 
However, Meeden, McGraw and Blank [7] presented 
experiments with a simple toy-car-like robot controlled 
by a Simple Recurrent Network or SRN [8] depicted in 
Figure 1. The robot’s task was to alternate between 
approach and avoidance of a light source in one corner 
of its rectangular environment while avoiding obstacles. 
They showed that through the use of internal feedback 
(short-term memory) the robot could exhibit behaviour 
that was “plan-like” in the sense that (a) it associated 
abstract behavioural goals with sequences of primitive 
actions, (b) the behaviour could be described in 
hierarchical terms (e.g., light seeking was comprised of 
the sub-behaviors orient towards light and go to light 
which in turn were realised as primitive actions of 
moving and turning), (c) the robot maintained its overall 
strategy even when reacting flexibly to the 
environmental conditions. On the other hand, the 
behaviour was clearly not plan-like in the traditional 
sense that the robot would actually ever explicitly 
anticipate or plan future situations (more than one time 
step ahead).  

 
Figure 1: Basic robot control architecture used by 

Meeden et al. [7]. Solid arrows indicate fully connected 
layers of weights between layers of units (indicated by 
dotted lines). The dashed arrow represents a 1:1 copy 

connection. 
 
Meeden et al. [7] also conducted experiments in which 
the robot was additionally trained on predicting the next 
time step’s sensory input. The results showed that this 
additional training did have a positive effect on the 
behaviour learning. However, no analysis was presented 
regarding (a) the quality of the robot’s sensor 
predictions, or (b) the robot’s capacity to actually make 
use of its own prediction instead of external input.  
Other investigations of sensor prediction have also been 
made. Tani and Nolfi [9] investigated how a 
connectionist robot controller could acquire an internal 

‘model’ of the world through training on sensor 
prediction while moving around in a two-room 
environment. After learning, the controller had 
developed internal dynamics corresponding to 
environmental features (or concepts) such as ‘corner’ 
and ‘corridor’ and specific sequences of such low-level 
concepts were also used to form higher-level concepts 
such as ‘room A’ and ‘room B’. 
By drawing on psychological, physiological and 
neuroanatomical data on the properties of the cerebral 
cortex Gross, Heinze, Seiler and Stephan [10] presented 
a computational neural model of perception (called 
MASIM) in which sensor anticipation/prediction played 
a central role. In a series of  robot experiments the 
MASIM architecture was used to guide the selection of 
motor responses based on anticipated sensor flow. Their 
results showed that anticipating robots displayed far 
better navigation abilities, with higher speeds and fewer 
collisions when compared to reactive robots. Most 
significantly, evasive manoeuvres in order to avoid 
obstacles could be initiated much sooner. 
This paper shares features with the work of Tani and 
Nolfi [9] and Gross et al. [10] and aims to investigate 
exactly those points ‘missing’ in Meeden et al. [7]. The 
basic idea is that, if the robot’s sensory predictions are 
sufficiently accurate, then it should be able to use them 
instead of actual sensory input and thus behave 
appropriately, at least for some time, in the absence of 
external stimuli, just as Lee and Thompson’s [1] 
subjects did (cf. above). 
This working hypothesis is supported by, among others, 
Hesslow’s [11, 12] account of the ‘inner world’ in terms 
of internal simulation of perception and behaviour. 
Neurophysiological findings indicate that the neural 
structures involved in perception and initiation of overt 
behaviour could also be responsible for mental imagery 
and covert behaviour. As illustrated in Figure 2, an 
agent’s overt behaviour when interacting with its 
environment, could be described, somewhat simplified, 
as a sequence of stimulus-response pairs. In the initial 
situation a stimulus, (S) triggers a response (R), which 
changes the environment from the agent’s perspective 
into a new situation (S´) which functions as a stimulus 
triggering another response (R´), which in turn causes 
S´´ and R´´ and so on. All these steps go via internal 
processes where sensory states (s) cause motor response 
preparations (r).  

 
Figure 2: A stimulus-response sequence during overt 

behaviour. 
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Let us assume the existence of covert behaviour, i.e. an 
ability to generate neural motor responses which do not 
become observable bodily actions but only neural 
activation patterns which stay internal. Further assume 
the existence of a sensor reactivation or imagery 
mechanism, which allows for internally generated 
activation of sensor areas in the brain, so as to produce 
the simulated experience of a stimulus, but without the 
presence of the external stimulus. Finally, assume the 
existence of an anticipation mechanism, i.e. an ability to 
predict the sensory consequences of a motor response (a 
bodily movement). Support for each of these 
assumptions can be found in the neuroscience literature. 
Covert behaviour and imagery (sensor reactivation) are 
discussed by, e.g., Jeannerod [13], and imagery further 
by Kosslyn, Behrmann and Jeannerod [14]. Finally, 
several neuroscientists consider the cerebellum a prime 
candidate module involved in sensory prediction and 
anticipation (e.g. Miall [15]; Miall and Wolpert [16]; 
Wolpert, Miall and Kawato [17]; Thach [18]). 
With these three mechanisms in place (covert 
behaviour, sensor reactivation and anticipation), it 
would be possible, to internally simulate the above 
overt behaviour sequence (cf. Figure 2) as illustrated in 
Figure 3.  

 
Figure 3: A sequence of internal simulation of 

perception and behaviour. 
 
In the initial situation, a stimulus (S) causes a sensory 
activation (s) which triggers a motor response 
preparation (r). But instead of causing the overt 
response (R), the motor response preparation could, by 
influence of other neural activations inhibiting the 
motor response, cause a new sensory activation (s´) via 
a mechanism for anticipation of the sensory 
consequences and, in turn, a sensor reactivation 
mechanism. This new (internal) sensor activation 
triggers another motor response preparation (r´), which 
in turn causes a new sensory activation (s´´) which 
triggers a motor response preparation (r´´) and so on. 
Instead of overtly interacting with the environment, the 
agent internally simulates this interaction. 
The rest of this paper is concerned with robot 
experiments investigating the question to what degree 
the relatively simple connectionist robot control 
architecture used in [7] (cf. Figure 1) can serve as the 
basis for internal simulation of perception. 

 

2. Experiments 
 
Robot and Environment 
The experiments documented here have been carried out 
with a Khepera robot [19] depicted in Figure 4, or to be 
exact, with a simulator [20] based on sensor and motor 
measurements obtained from a real Khepera robot. 

 
Figure 4: (a) Khepera robot built by K-Team SA 

(www.k-team.com). (b) Schematic drawing of the robot 
with infrared proximity sensors (1-8), left and right 

wheel (controlled by independent motors) . The robot’s 
diameter and sensor range are about 55 mm. The 

direction of forward motion in the reported experiments 
is indicated by the arrow. 

 
The experiments have been carried out in the two 
environments shown in Figure 5, hereafter referred to as 
the ‘h-world’ and the ‘T-world’. 

 
Figure 5: ‘h-world’ (left) and ‘T-world’ (right), each 
containing a simulated Khepera robot inside whose 

heading is indicated by the line inside the circle. 
 
Experiment 1: Obstacle avoidance 
The first experiment served as a simple test to ensure 
that Meeden’s control architecture could be transferred 
to the robot and experimental conditions used here. In 
further experiments with the control architecture 
illustrated in Figure 1, Meeden [21] found that in 
experiments where only delayed reinforcement was 
available training was more successful with an 
evolutionary algorithm than with a backpropagation 
algorithm modified for reinforcement learning. Hence, 
in all experiments documented in this paper robot 
controllers were trained using a simple genetic 
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algorithm, similar to the one used by Nolfi [22] or Nolfi 
and Floreano [23]. A population of 150 individuals 
(‘genotypes’) was evolved over 500 generations and the 
30 fittest individuals of each generation were selected 
for reproduction (using mutation only, no crossover) 
into the next generation. Each artificial 
genotype/chromosome encoded all connection weights 
in a recurrent connectionist network of a fixed topology. 
Each connection weight, ranging between –10.0 and 
+10.0, was encoded by 8 bits. The control architecture 
used was very similar to the one shown in Figure 1, 
except that it had eight input units for the eight infrared 
proximity sensors, three hidden (and context) units, and 
two outputs directly controlling the two motors.  The 
fitness function used in experiment 1, similar to the one 
used in [24], rewarded robots for moving forward as 
straight and as quickly as possible while avoiding 
obstacles.  
As exemplified in Figure 6, robot controllers evolved 
collision-free obstacle avoidance behaviour in both 
environments (in less than 100 generations). This 
confirms that Meeden’s basic architecture (Figure 1) is 
also suitable for the domain at hand. 
 

 
Figure 6: Example trajectories of robots with successful 
behaviour in the h-world (left; moving forward counter-

clockwise) and the T-world (right; moving forward 
clockwise). Each circle depicts the Khepera robot’s 
position in one time step, with the robot’s heading 

indicated by the line inside each circle. 
 
Experiment 2: Prediction 
In experiment 2 the robot controllers were, in addition 
to the behavioural task of experiment 1, also trained on 
predicting the activation of their own sensory input units 
(i.e. the infrared proximity sensors) at the next time 
step. The robots were thus trained to anticipate the 
sensory consequences of their actions one time step 
ahead. The network architecture used here, illustrated in 
Figure 7, was similar to the one used by Meeden et al. 
[7] in a similar experiment (cf. above). Prediction ability 
was determined using a prediction fitness function 
which compared the predicted sensor activation vector 
with the actual activation vector (at the following time 
step) and produced a fitness value (reward) according to 
similarity. Two prediction fitness functions with slightly 
different scoring procedures were tested, but with no 
significant differences in the performance achieved. In 

order to facilitate the evolution of both behavioural 
ability and prediction capacity, a two-stage selection 
routine was introduced into the above genetic algorithm. 
Using the same behavioural fitness function as in 
experiment 1, the 60 best-behaving individuals were 
selected in the first step. Then, from these pre-selected 
individuals the 30 best predictors were selected for 
reproduction into the next generation.  

 
Figure 7: The connectionist controller network 

architecture used in experiment 2. Solid arrows indicate 
fully connected layers of weights. The dashed arrow 

represents a 1:1 copy connection. 
 
Figures 8 and 9 illustrate the performance of 
representative individuals, hereafter referred to as 
individuals 1 and 2 (I1 and I2), as they evolved in T-
world and h-world respectively. Both figures illustrate 
that the robots still manage to solve the behavioural 
task, although not necessarily as problem-free as in 
experiment 1 (cf. Figures 8a and 9a). Logged sensor 
activations were used to create activation plots, thus 
giving a description of the world as seen from the 
perspective of the robot (cf. Figure 8b and 9b). The 
magnitude of sensor activation at each time step is 
reflected by the width of the black line in the plot. High 
sensor activation in a time step is depicted as a wide 
black line. Plots describing the sensor predictions were 
also created using the same method (cf. Figure 8c and 
9c).  
An analysis of I1 (cf. Figure 8a and 8b) shows that it 
follows the corridor by approximately more or less 
‘balancing’ the activation values of left- and rightmost 
sensors 1 and 6 (cf. Figure 4). Figure 8c further 
illustrates that it also does relatively well at predicting 
these two sensors (and sensor 2 as well), whereas it 
basically ‘ignores’ or fails to predict the other sensors  
most of the time. I2, on the other hand, uses a right-hand 
wall-following strategy (cf. Figure 9), i.e. it keeps right-
hand sensors 5 and 6 at an almost constantly high 
activation level, apparently by turning right when these 
activation levels drop and turning left as soon as the 
other sensors get activated more than usual (indicating 
an obstacle ahead). Not surprisingly, it does relatively 
well at predicting the usually high activation of sensors 
5 and 6 (in the latter case it does in fact predict constant 
full activation, which is right most of the time). 

motor output 

context units sensor inputs 

1:1 copy 

predicted sensor input 



 
Figure 8: (a) Individual 1’s trajectory over 200 time 
steps in the T-world (starting at S, finishing at F). (b) 
The robot’s sensor state development over time while 

navigating. (c) The sensor state predictions made by the 
robot. 

 
However, something that turned out to become 
problematic in experiment 3 can be pointed out already 
here: Perhaps due to its ‘pre-occupation’ with sensors 5 
and 6, I2 completely fails to predict the less frequently 
active sensors 1-3, although these clearly play a role in 
controlling its turning behaviour (cf. above). The same 
applies to I1 which also failed to predict some of its 
sensors. 

 
Figure 9: (a) Individual 2’s trajectory over 250 time 
steps in the h-world (starting at S, finishing at F). (b) 
The robot’s sensor state development over time while 

navigating. (c) The sensor state predictions made by the 
robot. 

 
 

Experiment 3: Internal Simulation 
Experiment 3 involved no further evolutionary runs. 
Instead the 20 best predicting individuals from each 
environment were chosen, from different stages of the 
evolutionary training  processes, and their capacity for 
internal simulation, i.e. the capacity to temporarily rely 
on their own predictions rather than external stimuli, 
was tested as follows: (I) Starting from a random 
position in their ‘home’ environment the robots were 
allowed to move around for 200 (T-world) or 250 time 
steps (h-world) with external sensory input in order to 
be able to build up some internal context reflecting their 
position. (II) After the context building phase (I), the 
robots were ‘cut off’ from external sensory input and 
instead had to use their own sensory predictions for 10 
time steps. During this internal simulation phase, they 
got no input from the environment (cf. Figure 10), but 
still their motor output was used to steer the robot in the 
real environment (this is supposed to roughly 
correspond to temporarily moving blindly in a 
previously seen environment, cf. above).  (III) A 
context-rebuilding phase of another 40 time steps with 
external input. 

 
Figure 10: Internal simulation of perception. Instead of 

real sensor readings the previously predicted sensor 
activation vector was used as input in each time step. 

Overt behaviour during a simulation phase (II) was thus 
solely based on the robot’s predictions about sensor 

states. Solid arrows indicate fully connected layers of 
weights, dashed arrows indicate 1:1 copy connections. 

 
Phases (II) and (III) were repeated five times, such that 
altogether the robot was tested for five internal 
simulation phases of 10 time steps each. Figures 11 and 
12 illustrate the behaviour of representative individuals 
I1 and I2  (cf. experiment 2), during the whole process of 
context building phase (of 200/250 time steps), followed 
by five repetitions of internal simulation phase (10 time 
steps, depicted in even numbered frames) plus context 
re-building phase (40 time steps, depicted in odd 
numbered frames). The figures also show the hidden 
and output unit activation levels during each time step.  
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Figure 11: I1 during context building phase (frame 1; 
200 time steps), internal simulation phases (even 

numbered frames; 10 steps each) and context-rebuilding 
phases (odd numbered frames; 40 steps each). 

 

 
Figure 12: I2 during context building phase (frame 1; 

250 time steps), internal simulation phases (even 
numbered frames; 10 steps each) and context-rebuilding 

phases (odd numbered frames; 40 steps each). 
 

These figures illustrate quite clearly that both I1 and I2, 
although they do not actually collide more than once (cf. 
frame 6 in Figure 11), come quite close to the walls 
during internal simulation phases. More significantly, 
both of them in most of the cases do not correctly 
initiate turns when they should have. 
A look at the hidden and output unit values (cf. Figures 
11 and 12) shows that it is not the case that the robot 
controllers simply lack internal dynamics and just keep 
doing the same thing over and over again. In fact, both 
of them do exhibit varying behaviour and internal 
dynamics, but nevertheless they obviously fail to 
correctly predict, during internal simulation, the 
significant sensory dynamics/changes that help to 
control their behaviour while using external sensory 
input. I2, for example, as already pointed out in the 
discussion of experiment 2 (cf. Figure 9), simply fails to 
predict the crucial changes in the activation of sensors 
1-3, and thus cannot predict when it will need to initiate 
a turn.  
 
 

3. Summary and Conclusion 
Inspired by a neuroscientific hypothesis about internal 
simulation of perception (and behaviour) as the basis of 
an ‘inner world’ that allows humans to behave and 
anticipate the future even in the (temporary) absence of 
external sensory stimuli, we have presented a series of 
robot experiments with the aim to investigate a possible 
minimal artificial neural model. 

These experiments and the recurrent connectionist robot 
control mechanisms used here can be considered a 
further development of the work of Meeden (et al. ) [7, 
21], inspired by the work of Tani & Nolfi [9] and Gross 
et al. [10], in the sense that predictions are used to 
realise a minimal ‘inner world’ and also to control overt 
behaviour. 
The results, however, show that although robots evolve 
to solve the behavioural task (experiment 1 and 2) and 
also seem to be able to roughly capture some of the 
relevant sensory dynamics (experiment 2), their 
prediction capacity is not sufficiently developed to rely 
on during extended periods of time (experiment 3). Of 
course, this can neither be interpreted as evidence for or 
against the internal simulation hypothesis as such. 
However, the somewhat minimalistic architecture and 
training regime used in the experiments presented here 
obviously have their limitations, nevertheless they 
might serve as a useful starting point for experiments 
with other architectures.  
For future investigations it might be useful to give the 
controller network more freedom to develop suitable 
internal dynamics by adding hidden nodes, since the 
low number of hidden units in the experiments reported 
here may have contributed to the negative results for 
internal simulation. Another possible cause may have 
been the robot’s limited sensor range. In the reported 
experiments the robots did not have much of a chance to 
anticipate obstacles since they could not detect them 
until they were quite close. Nothing beyond a distance 
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of 55 mm could be sensed. That means, the robot’s task 
was not at all comparable to that of the human subjects 
in Lee and Thompson’s experiments who had seen a 
complete view of the room they had to navigate blindly. 
Using a robot equipped with long-range sensors and/or a 
camera would allow for richer and more continuous 
sensor activation and smoother changes in the perceived 
world while behaving. This may have a positive effect 
on prediction learning and internal simulation of 
perception. 
In conclusion, although the results presented here are 
not as good and as conclusive as one might have hoped 
for, we believe that the general approach and 
experimental framework presented in this paper will 
turn out useful for later investigations of the internal 
simulation hypothesis, using more complex artificial 
neural models. 
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