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ABSTRACT: Understanding spatial and temporal variability in the distribution of seabirds is 

fundamental for the conservation and management of marine ecosystems. In the absence of 

large-scale systematic survey data, the application of standard habitat modelling techniques to 

predict the at-sea distributions of seabirds at large spatial scales has been limited. In this 

study, we examine the utility of relative environmental suitability (RES) modelling to predict 

large-scale distributions and habitat suitability for 6 seabirds in the North Atlantic. An index 

of habitat suitability was derived by relating niche characteristics to environmental attributes. 

Predictive performance of models was evaluated with receiver-operating characteristic plots, 

using independent survey data from the Bay of Biscay. RES models performed significantly 

better than null models at predicting relative likelihood of occurrence for 5 out of 6 species. 

Qualitative assessment showed that model outputs corresponded well with published range 

maps, though a common discrepancy was the inclusion of enclosed seas in which species are 

not known to regularly occur. This study demonstrates that RES modelling can be used to 

predict large-scale habitat suitability for wide-ranging marine animals for which occurrence 

data are limited and biased in geographical extent. RES predictions represent simple, testable 

hypotheses concerning a species’ potential niche in respect of a few environmental 
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predictors. RES modelling can help to identify biodiversity hotspots, predict effects of 

climate change and develop criteria for designating marine protected areas. 

KEY WORDS: Ecological niche modelling · Habitat suitability · Seabird · Relative 

environmental suitability · Geographic range · Distribution · AquaMaps · Species 

distribution model · SDM 

INTRODUCTION 

The ability to accurately describe and understand processes that determine the distribution of 

species is central to the development and implementation of effective measures for 

conservation and management. Increasing the availability of biogeographic data and 

knowledge of species’ ecological requirements can facilitate the identification of biodiversity 

hotspots (Nur et al. 2011), assessment of the impacts of climate change (Olivier & 

Wotherspoon 2006), establishment of conservation priorities (Maxwell et al. 2009) and 

design of reserve networks at large spatial scales (Airamé et al. 2003). 

Predictive habitat modelling offers a range of tools to quantitatively delineate range extents 

based on species–environment relationships (for reviews, see Guisan & Zimmermann 2000, 

Guisan et al. 2002, Redfern et al. 2006, Zimmermann et al. 2010). Standard techniques 

typically employ records of species occurrence and associated environmental factors, which 

may determine – directly or indirectly – a species’ distribution within an area. Species 

distribution models (SDMs) have been widely applied in terrestrial systems, yet their 

application for predicting occurrences of marine organisms remained limited until the last 10 

yr (Elith & Leathwick 2009, Robinson et al. 2011). Many SDMs in marine systems have been 

applied in conservation planning (e.g. Guinotte et al. 2006, Oppel et al. 2012) and are 

typically biased towards commercially harvested animals (e.g. Maxwell et al. 2009, Hardy et 

al. 2011) and mammals (e.g. Redfern et al. 2006, Gregr & Trites 2008, Ready et al. 2010). 

The most widely used models require large presence–absence data sets (Guisan et al. 2002) 

and are therefore unsuitable for generating accurate predictions about species for which 

occurrence data are limited in spatial and temporal extent, which characterises the situation 

for many marine animals (Ready et al. 2010, Robinson et al. 2011). While occurrence data of 

marine animals are becoming increasingly available through online databases, such as the 

Ocean Biogeographic Information System (OBIS; www.iobis.org) and the Global 

Biodiversity Information Facility (GBIF; www.gbif.org), there is little published quantitative 
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information concerning large-scale patterns of diversity and distribution in the marine 

environment. 

In the absence of point data spanning large spatial and temporal scales, Kaschner et al. (2006) 

proposed that the synthesis of available knowledge concerning species–habitat relationships 

could approximate a large-scale representative sampling scheme. They developed a novel 

rule-based envelope model to map global distributions of marine mammals and generate 

large-scale predictions of relative environmental suitability (RES) without the need for a huge 

input of presence–absence data – the limiting factor of standard modelling techniques. RES 

underlies the AquaMaps modelling system, which, compared with traditional methods of 

presence-only distribution modelling, was found to perform very well for a suite of marine 

taxa (Ready et al. 2010). AquaMaps is now used extensively for generating distribution maps 

in FishBase (www.fishbase.org). Gregr & Trites (2008) also demonstrated that species–

habitat relationships can be accurately defined for wide-ranging marine top predators when 

limited observation data prevent the use of more common correlative approaches. 

The behaviour and ecology of marine birds at sea is poorly understood, largely due to the 

practical and logistical difficulties associated with studying seabirds (Tasker & Reid 1997). 

Most data come from opportunistic sampling and sparse non-systematic records of 

occurrence (e.g. Huettmann & Diamond 2001). Sampling typically covers only a fraction of a 

species’ range (e.g. Hobbs et al. 2003), and transects at sea can underestimate seabird 

distribution and abundance due to low detection rates and vast geographic ranges (Ostrand et 

al. 1998). Traditional range maps are generated subjectively, on the basis of limited 

occurrence records and expert opinion (Cramp & Simmons 1980, del Hoyo et al. 1992), and 

they do not provide quantitative information on the relative suitability of different areas. 

Predictive modelling of seabird distributions has been largely restricted to studies of waters 

within 200 km of the coast (e.g. Yen et al. 2004, Louzao et al. 2006, Oppel et al. 2012) and 

nesting habitat (e.g. Olivier & Wotherspoon 2006). A few larger-scale studies, however, have 

encompassed extensive areas of pelagic waters, such as the Southern Indian Ocean (Raymond 

& Woehler 2003) and the Arctic Circle (Huettmann et al. 2011). 

The aims of the present study are to (1) predict the RES and geographic range extent for 6 

seabirds in the North Atlantic, and (2) evaluate these models using independent point data. 

Using published information on species’ distributions, foraging behaviour and life histories, 

species were assigned to broad-scale niche categories, defined by environmental parameters 

known to be key predictors of distribution. We build upon the approach developed by 
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Kaschner et al. (2006, 2010), incorporating temporal variability in environmental variables 

and species–habitat relationships – pertinent to wide-ranging migratory marine animals – into 

models. Model performance was evaluated using observation data collected by MARINElife 

in the English Channel and Bay of Biscay. The approach is designed to inform our 

understanding of seabird distributions and the development and evaluation of predictive 

habitat models relevant to the at-sea distribution of seabirds. 

MATERIALS AND METHODS 

Study species 

RES modelling was applied to 6 species of seabirds, belonging to the order Procellariiformes, 

that are all abundant and widely distributed in the North Atlantic during part, or all, of their 

annual life cycle: northern fulmar Fulmarus glacialis (hereafter fulmar), Cory’s shearwater 

Calonectris diomedea, great shearwater Puffinus gravis, sooty shearwater P. griseus, Manx 

shearwater P. puffinus and European storm petrel Hydrobates pelagicus (hereafter storm 

petrel). The selection of species was determined by the availability of data concerning 

species–habitat relationships and the availability of test data for model evaluation. The fulmar 

is restricted to the Northern Hemisphere during its breeding and non-breeding seasons and 

has a circumpolar distribution (del Hoyo et al. 1992). Cory’s shearwater, Manx shearwater 

and storm petrel breed in the North Atlantic during the boreal summer, dispersing into the 

southern Atlantic during migration and the non-breeding season (del Hoyo et al. 1992). Great 

shearwater and sooty shearwater breed in the Southern Hemisphere during the austral 

summer and disperse into the Northern Hemisphere during their non-breeding season – the 

boreal summer (del Hoyo et al. 1992). 

Quantifying species’ ecological niches 

Qualitative and quantitative data concerning species’ habitat preferences were gathered from 

an extensive range of primary and secondary literature sources. A total of 35 sources of 

literature informed the quantification of species’ ecological niches (see Table S1 

inSupplement 1 at www.int-res.com/articles/suppl/mXXXpXXX_supp.pdf). Of these, 26 

represented primary sources and 9 were secondary sources of literature. Not all species were 

represented equally in the literature, with the number of relevant data sources ranging from 4 

(Cory’s shearwater) to 17 (fulmar). There was high reliance on 8 sources of literature (5 

primary, 3 secondary) for informing parameterisation of models. These sources, however, 
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represent comprehensive pieces of literature based on substantial quantities of data collected 

over large temporal and spatial scales. 

This information was used to assign each species to an ecological niche defined by 4 

ecogeographical variables (EGVs): depth, sea-surface temperature (SST), chlorophyll a (chl 

a) concentration (indicating phytoplankton biomass, a proxy for ocean productivity) and 

distance to land. Most available data were qualitative and habitat categories were 

consequently developed to facilitate quantification of a species’ niche (Table 1). EGVs were 

selected on the basis of wide evidence in the literature of their significance in determining the 

distribution and abundance of seabirds at sea (Schneider 1997, Huettmann & Diamond 2001, 

Oedekoven et al. 2001, Louzao et al. 2006, Wakefield et al. 2009) and the availability of 

environmental data at appropriate scales. 

Ecological niches were described by resource selection functions (RSFs) describing the 

relative suitability of an environment (Fig. 1). While true RSFs express the probability of use 

of a resource or area by an organism (Boyce et al. 2002), the RSFs applied here express the 

relative likelihood of use of an area; predicting probability of presence requires the 

incorporation of reliable information on prevalence (Elith et al. 2006). After Kaschner et al. 

(2006), it was assumed that the relative suitability of the environment is uniformly highest 

throughout a preferred parameter range, bounded by a minimum (MinP) and maximum 

(MaxP) value. Outside of this preferred range, suitability was assumed to decrease linearly 

towards an absolute minimum (MinA) and maximum (MaxA), being equal to 0 outside of 

those thresholds. 

The availability of information concerning species’ associations with chl a concentration was 

limited (see Table S1) and largely restricted to qualitative statements such as ‘aggregates in 

productive waters’ or ‘attracted to fronts’. Procellariiformes occur in waters of all 

productivity but prefer eutrophic and enriched waters (Warham 1990, Louzao et al. 2006, 

Hedd et al. 2012). Insufficient information was available at the species level to distinguish 

different relationships; consequently, all species were assigned to identical niches with 

respect to chl a concentration. 

Distinct niches were defined for a species’ breeding and/or non-breeding season, as opposed 

to characterising an annual average niche. This accounted for the variability in species–

habitat associations that is a typical feature within the annual life cycle of migratory marine 

birds. Breeding niches were quantified for fulmar, Cory’s shearwater, Manx shearwater and 
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storm petrel, and non-breeding niches were quantified for fulmar, great shearwater and sooty 

shearwater in the North Atlantic. The breeding niche (and subsequent modelled range) 

describes the habitat associations of breeding adults while occupying nest sites; the non-

breeding niche is that occupied by non-breeding adults, and the subsequent modelled range 

comprises both ‘wintering’ areas and migratory range. Note that non-breeding birds may be 

present within the non-breeding range throughout the year. 

Environmental data 

The study area covered the North Atlantic, bounded by the coordinates 68.0°N 85.0°W, 0.0°S 

12.0°E. A regular grid with the cell dimensions 0.25 × 0.25° was constructed in ArcGIS 9.2 

(Environmental Systems Research Institute) and displayed using the WGS-1984 coordinate 

system. A landmask was applied using ArcWorld Supplement’s ‘continents’ layer. 

Bathymetric data were obtained from GEBCO (IOC et al. 2003), providing elevation in 1 min 

(0.016°) intervals, and interpolated using inverse distance weighting at a scale of 0.25°. SST 

and chl a data were provided by the NERC Earth Observation Data Acquisition and Analysis 

Service. SST data were collected by the Advanced Very High Resolution Radiometer 

(AVHRR) and have a resolution of 4 km (0.036°). Chl a data were collected by the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) and have a resolution of 9 km (0.081°). 

Seasonal averages were derived for dynamic parameters (i.e. SST and chl a) from data 

collected between 1995 and 2005, corresponding with the period over which the test data 

were collected. ‘Summer’ (April–September) and ‘winter’ (October–March) seasons were 

defined to correspond with species’ phenology. ‘Summer’ corresponds closely with the 

breeding season of fulmar, Cory’s shearwater, Manx shearwater and storm petrel and the 

non-breeding season of great shearwater and sooty shearwater, which breed in the Southern 

Hemisphere. ‘Winter’ corresponds with the non-breeding season of fulmar. Seasonal 

averages of SST and chl a were subsequently imported and averaged across grid cells within 

the raster using bilinear interpolation. The shortest distance to land was calculated for each 

grid cell using the Euclidean Distance function in ArcGIS. 

Model structure 

An index of RES was derived for each grid cell depending on how the environmental 

attributes of a cell corresponded with the parameters quantitatively defining a species’ 

ecological niche. After Kaschner et al. (2006), RES was measured on a scale from 0 to 1 and 
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was based on a product of the suitability of the environment in relation to each individual 

EGV. Each EGV was afforded equal weighting in models. The overall RES for each cell was 

calculated using the formula: 

RESoverall = RESdepth × RESSST × RESdistance × RESchl  (1) 

The multiplicative approach means that if any one variable within a cell fell outside of a 

species’ absolute range, the overall suitability was equal to 0. This is based on the assumption 

that an animal would not be expected to occur within an environment that is unsuitable in 

respect of one or more variables that are key determinants of distribution. RES values were 

imported into the GIS grid and displayed using a continuous colour scale. Model outputs 

delineate a species’ predicted geographic range and illustrate the relative suitability of the 

environment (equating to likelihood of occurrence) throughout that range. 

Observation data 

MARINElife provided point data collected from monthly seabird surveys carried out in the 

English Channel and Bay of Biscay (Fig. 2) between 1995 and 2005 (though data from 2003 

and 2004 were not available). Surveys were carried out aboard a commercial ferry liner 

within a restricted transect route involving repeated sampling of grid cells. A total of 2696 h 

of observations, collected across 156 grid cells, provided data for the model evaluation. The 

data set comprises a large number of observations, representing a high diversity of species, 

collected over a decade and employing consistent methodology across space and time. The 

sampling area covers a wide spectrum of environmental strata. Observations were binned 

within grid cells (0.25 × 0.25°) to match the spatial resolution of environmental data. Cells 

were assigned a binary value of 1 or 0, indicating ‘presence’ and ‘background’, respectively. 

Species occurrence data typically exhibit spatial autocorrelation, which arises when the 

probability of occurrence in one sampling unit is not independent of the probability of 

occurrence in neighbouring units (Legendre 1993, Dormann et al. 2007). If unaccounted for, 

spatial autocorrelation can increase the frequency of Type I errors (i.e. identifying a non-

significant relationship as significant; Dormann et al. 2007). We checked for spatial 

autocorrelation in species’ observations data and residuals of generalised linear models (with 

Poisson error structures) fitted to data on the number of observations as a function of RES. 

Clustering of observations may be driven by spatially autocorrelated environmental variables; 

if predictors (here, RES) explain most of the variation in species occurrences (i.e. a model is 

correctly specified), there should be minimal spatial autocorrelation in the residuals 
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(Dormann et al. 2007, Elith & Leathwick 2009). We calculated Moran’s I values for the 50 

nearest neighbouring grid cells using the function moran.test in the spdep package in R. 

Moran’s I values range from –1 (negative autocorrelation) to +1 (positive autocorrelation), 

with values around 0 indicative of a completely random spatial pattern. Small positive values 

of Moran’s I were yielded from species observation data (range: 0.004–0.254) and model 

residuals (range: 0.012–0.024), indicating weak spatial clustering at the spatial scale of 

models (0.25 × 0.25°). Analysis of correlograms showed no significant spatial autocorrelation 

in either observations data or residuals and revealed irregular patchiness. Subsequently, we 

did not incorporate measures to account for spatial autocorrelation into models. 

Model evaluation 

Using independent point data collected by MARINElife in a subset of the model area (Fig. 2), 

we tested the predictive performance of models using receiver-operating characteristic (ROC) 

plots and comparing the resulting area under the curve (AUC) against that of a null model 

(see Olden et al. 2002, Raes & ter Steege 2007). ROC analyses offer a method of assessing 

model accuracy that is threshold-independent, by evaluating the proportion of correctly and 

incorrectly classified predictions across a continuous range of threshold values (Fielding & 

Bell 1997). The ROC plot is obtained by plotting sensitivity (the true positive rate) as a 

function of 1-specificity (the false positive rate) at every possible threshold value. The 

resulting AUC provides a measure of predictive ability; the higher the AUC, the greater the 

predictive accuracy of a model. An AUC value of 1.0 indicates a perfect model, while a value 

of 0.5 is usually considered to be equivalent to performing no better than random (Fielding & 

Bell 1997). 

The use of null models has been demonstrated for improving testing for statistical 

significance in AUC values (Raes & ter Steege 2007) and addressing the issue of spatial 

sorting bias (Hijmans 2012). Spatial sorting bias can inflate AUC values of both empirical 

and null models, meaning an AUC of 0.5 might not necessarily be indicative of random 

performance (Hijmans 2012). Predictions of RES models were tested by comparing the AUC 

value of actual models against a null distribution (a ‘null model’) of AUC values derived 

from randomised data. This tested whether model predictive performance was significantly 

different from what would be expected by chance alone. We generated a null distribution of 

AUC values, corresponding with each RES model, by randomly distributing the species’ 

observations (presence/background) amongst the grid cells covered by survey effort. By 
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generating random data only from the survey area, we aim to minimise spatial sorting bias by 

ensuring that the null model only reflects the environmental conditions where sampling was 

carried out (Hijmans 2012). The resulting ROC plot was generated and the AUC was 

calculated using the ROCR package in R 2.14.0. This procedure was repeated 10,000 times to 

generate a random frequency distribution of AUC values that would be expected if the RES 

model did not perform better than expected due to chance. If the AUC of the empirical model 

exceeded the 95% quantile of the ranked AUC values of the corresponding null model, the 

model was considered to perform significantly better than chance would dictate (Olden et al. 

2002) and the relationship between RES and species’ presence can be considered to be 

stronger than would be expected by chance. We used 1-sided testing, since it was only of 

interest whether models performed significantly better than expected by chance, not whether 

they performed significantly worse. The significance level was calculated as the proportion of 

random AUCs that were equal to or greater than the observed AUC. 

The model evaluation has 2 main assumptions: (1) there are sufficient records within the test 

data set to accurately describe a species’ distribution within the survey area; and (2) the range 

of possible RES values is represented within the survey area (i.e. there is heterogeneity of 

habitat suitability). To assess these assumptions, we calculated and considered the total 

number of species’ observations, number of ‘presence’ cells, and percentiles of the ranked 

RES values within the survey area for each model. 

Model outputs were also visually compared with published range maps (del Hoyo et al. 1992, 

Onley & Schofield 2007), allowing detection of any large-scale geographical discrepancies in 

the predictions of models. While qualitative in nature, this comparison provides a useful 

additional evaluation of the models at a much larger geographical scale than the more 

quantitative evaluation described above. 

RESULTS 

Quantifying and modelling species’ ecological niches 

Ecological niches of 6 seabird species – fulmar, Cory’s shearwater, great shearwater, sooty 

shearwater, Manx shearwater and storm petrel – were quantified in relation to 4 EGVs – 

depth, SST, chl a concentration and distance to land – and are described in Table 2. The 6 

species all occupy different ecological niches, with varying degrees of overlap. Niches were 

subsequently modelled using the RES approach, which resulted in a spatial visualisation of 
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niches into potential distributions (Fig. 3) and illustrated the relative suitability of the 

environment throughout ranges. Manx shearwater and storm petrel share similar niches 

during their concurrent breeding seasons; both species occur in cold temperate to subtropical 

waters (5–25°C) and primarily range within a few hundred kilometres of land. However, 

while the Manx shearwater prefers depths of less than 200 m – from coastal waters to the 

edge of the continental shelf – the storm petrel prefers deeper waters between 100 and 1000 

m. Breeding seabirds occur closer to land (all MinP = 0 km) than non-breeding birds (MinP 

ranges from 6 to 50 km). 

The fulmar occupies a similar niche in the breeding and non-breeding seasons; the absolute 

minimum and maximum values of each EGV do not change between the 2 seasons, but the 

preferred range of all environmental variables (except chl a) differs. During the non-breeding 

season, the fulmar’s preferred niche encompasses cooler deeper waters further from land, 

compared with when breeding. Non-breeding great shearwater and sooty shearwater occupy 

the widest niches with respect to SST, spanning a range of 37 and 30°C, respectively. The 

preferred niche of great shearwater extends further offshore (<2000 km) than that of sooty 

shearwater, which tends to range closer to land (<200 km). 

Qualitative comparison with published range maps 

From visual qualitative assessment, it can be seen that model outputs (Fig. 3) illustrate 

variability in predicted range extents of the 6 seabird species in the North Atlantic. Relative 

environmental suitability varies throughout ranges, reflecting niche segregation between 

species. Predicted range extents vary in total surface area and geographical coverage. 

Comparing between species, non-breeding birds (with the exception of fulmar) occupy a 

larger range and latitudinal extent than breeding birds. 

Predicted range extents closely corresponded with published distribution maps for all species. 

However, all ranges comprised a wider extent than maps in the literature. A common 

discrepancy was the prediction of suitable habitat in enclosed seas, when such areas are 

excluded from published ranges for several species, for example, the inclusion of the 

Mediterranean Sea in model outputs for great shearwater and Manx shearwater, the 

Caribbean Sea and Gulf of Mexico for great shearwater and sooty shearwater, and Hudson 

Bay for great shearwater. Elsewhere, models captured areas of known absence well, for 

example, the absence of breeding Manx shearwater from the western central Atlantic and 
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Caribbean Sea, the absence of sooty shearwater from Hudson Bay, and the low habitat 

suitability in the central Atlantic for the sooty shearwater. 

The model output for storm petrel predicted a much wider range across the North Atlantic 

than published range maps; the latter define the species’ range as restricted to the northeast 

Atlantic, extending no further west than 30°W. Areas of high environmental suitability were 

separated by a large area of low RES in the central Atlantic. Similarly, a small area of 

suitable habitat was predicted for fulmar in the north Mediterranean Sea but separated from 

the core range by a large area of unsuitable habitat. 

Statistical model evaluation 

RES models for 5 out of 6 species performed significantly better than expected by chance 

when tested with independent observation data from the Bay of Biscay (p < 0.05; Table 3). 

The AUC of empirical models was significantly higher than that of corresponding null 

models, revealing a significant relationship between RES and species’ occurrences for 6 out 

of 7 models. In the case of 4 out of a total of 7 models, less than 0.1% of random samples had 

a higher AUC than the actual model (p < 0.001). The model for sooty shearwater did not 

perform significantly better than random (p = 0.260), with 26% of random AUCs exceeding 

the observed AUC. While the model for great shearwater performed significantly better than 

expected by chance (p = 0.041), the model AUC was only very slightly higher than the 95% 

quantile of the ranked null AUC values, indicating that the model did not perform much 

better than random. 

The number of species’ encounters ranged from 115 to 590 (mean 353.1 ± 65.3; Table 4). 

The range and frequency distribution of habitat suitability across the model evaluation area 

for each species is illustrated by percentiles of ranked RES values (Table 4). The distribution 

of RES in the survey area varies between species and is strongly skewed – indicating reduced 

heterogeneity of habitat suitability – for 3 models: fulmar (breeding), sooty shearwater and 

Manx shearwater. The majority of habitat within the sampling area is of low suitability for 

breeding fulmars but of homogenously high suitability for sooty and Manx shearwaters. 

DISCUSSION 

RES predictions 
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When compared with simulated random data, RES models performed significantly better for 

5 out of 6 seabird species (and 6 out of 7 models) at predicting relative likelihood of 

occurrence in a subset of the study area. Model outputs provide more information on species’ 

distributions than published range maps since they provide indices of relative environmental 

suitability throughout a species’ range. RES predictions represent simple, testable hypotheses 

concerning a species’ potential niche in respect of a few environmental predictors. 

Visualisation of hypotheses in a spatial context facilitates our understanding of species–

habitat relationships, inference of areas of potentially high seabird abundance and 

identification of regions to be targeted for future research and conservation planning. 

Observed versus predicted distributions 

RES modelling of the potential niche resulted in predictions of occurrence outside of known 

(or observed) ranges for several species, when compared with published range maps, 

indicating that distributions are influenced by additional biological and/or physical 

parameters, besides those included in models. Indeed, modelling of the realised niche – the 

part of the potential niche that a species actually uses – requires the incorporation of biotic 

interactions (Soberón & Nakamura 2009) and physiological constraints (Kearney & Porter 

2009). Qualitative comparison of RES model outputs with observed distributions thus allows 

the assessment of the importance of other factors that may influence the at-sea distribution of 

seabirds. 

Distributions of pelagic animals are ultimately constrained by the abundance and distribution 

of prey (Pahl-Wostl 1997), but scales of association between mobile predators and prey are 

highly variable (Schneider & Piatt 1986) and prey indices are considered inappropriate for 

predicting global distributions of many highly mobile marine organisms (Torres et al. 2008). 

Karpouzi et al. (2007) incorporated information on prey distributions in mapping at-sea 

foraging distributions of seabirds; however, they found little or no information concerning the 

diet of many seabirds and detected high spatial variability in associations between seabirds 

and prey. Habitat modelling is, therefore, largely reliant on predictor variables that indirectly 

affect species distribution. 

Evidence from energetic and physiological studies highlights the significance of wind speed 

(Furness & Bryant 1996) and area of available ocean extent (Davies et al. 2010) in 

influencing the foraging behaviour and life-history strategies of procellariiform seabirds. The 

Strait of Gibraltar (Friesen et al. 2007) and the Almeria-Oran Oceanographic Front (Gómez-
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Díaz et al. 2006) have both been proposed as barriers limiting dispersal of, and genetic 

exchange between, seabirds in the Atlantic Ocean and the Mediterranean Sea. Such physical 

and geographical factors may explain why, despite the prediction of suitable habitat, the 

observed distributions of some species do not extend into enclosed seas, e.g. the absence of 

great shearwater from the Mediterranean Sea and Hudson Bay. 

Biotic interactions may play a significant role in determining distribution across smaller 

spatial and temporal scales (Furness & Birkhead 1984), and their incorporation into SDMs is 

widely recognised as a key challenge in both terrestrial (Araújo & Guisan 2006) and marine 

environments (Robinson et al. 2011). Shearwaters do not typically form mixed-species 

colonies (Warham 1990), suggesting that interspecific competition and niche segregation 

may influence the breeding distributions of some procellariiform seabirds. While the 

observed range of Manx shearwater does not extend into the Mediterranean Sea, the breeding 

ranges of the Balearic shearwater Puffinus mauretanicus and the Yelkoaun shearwater P. 

yelkoauni, which occupy similar ecological niches to the Manx shearwater (and were, until 

recently, considered to be subspecies of Manx shearwater; Sangster et al. 2002), are restricted 

to the Mediterranean Sea (Onley & Schofield 2007). A combination of evolutionary history 

and biotic interactions may explain the reduced niche overlap that is observed (compared 

with predicted overlap) between these 3 ecologically similar species. Depending on the 

objectives, it may be a more useful approach to apply niche modelling to a species complex 

when there are several closely related species. 

Despite their ability to traverse large sections of ocean, many procellariiform seabirds show 

limited dispersal (the ‘seabird paradox’ proposed by Milot et al. 2008). Their philopatric 

habits are expected to limit colonisation by long-distance dispersal and subsequent range 

expansion (Matthiopoulos et al. 2005, Brown et al. 2010). Despite the prediction of high RES 

in the northwest Atlantic for the storm petrel, high breeding-site fidelity and the large area of 

predicted low habitat suitability in the central Atlantic may explain why the species’ observed 

distribution (from published range maps) is restricted to the northeast Atlantic (del Hoyo et 

al. 1992). Additionally, the niche is already filled by another pelagic seabird, Leach’s petrel 

Oceanodroma leucorhoa, in the northwest Atlantic (del Hoyo et al. 1992). In the 

interpretation of RES model outputs, consideration should thus be afforded to a species’ 

evolutionary history as well as areas of low RES separating areas of high environmental 

suitability, both of which may act to restrict ranges. 
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The availability of suitable nest sites is a fundamental constraint on the current breeding 

distribution of seabirds (Brown et al. 2010). Procellariiform seabirds are largely restricted to 

remote islands, free of mammalian predators, which are within range of suitable foraging 

areas (Warham 1990). If all occupied breeding colonies could be accurately identified and 

niche envelopes constrained by maximum foraging range from colonies, models could yield 

more accurate predictions of range extent during the breeding season. However, given the 

difficulties of surveying and monitoring remote locations, our knowledge of breeding sites is 

likely to be incomplete, particularly for less well-studied species. Restricting distribution to 

within species-specific foraging range of all land, therefore, represents a more conservative 

approach. 

Where suitable habitat is predicted outside of current observed distributions, this may 

indicate areas that are used by a species, but for which there are no data, or areas that could 

be suitable for colonisation. Future colonisation or range shifts could be driven by changes in 

environmental suitability as a result of natural changes (e.g. Gaston & Woo 2008) and/or 

anthropogenic-induced changes, such as by means of active conservation management 

(Miskelly et al. 2009). By identifying areas of potentially suitable at-sea habitat, the RES 

modelling approach may thus offer insight into the effects of future changes in climate and 

anthropogenic activities on species’ distributions. Further model development could be based 

on different scenarios for climate or nest-site availability to generate predictions of future 

changes in distributions. 

Model evaluation 

Statistical evaluation demonstrates that the generic approach of RES modelling can 

accurately describe habitat suitability for wide-ranging seabirds. RES predictions were more 

strongly related to species’ presence for 6 out of 7 models than expected due to chance. 

While qualitative assessment of the model output for non-breeding sooty shearwater 

suggested reasonable consistency with published distribution data, the model did not perform 

significantly better than a null model. Poor model performance could be explained by the low 

quality of data used for model parameterisation (see Table S1), resulting in an inaccurate 

description of a species’ ecological niche. It is well established that species–environment 

relationships can change with scale (Manly et al. 2002), and there is evidence for intraspecific 

spatial variation in species–habitat relationships in seabirds (Huettmann & Diamond 2001). 

Most information on the at-sea habitat associations of the sooty shearwater comes from 
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studies in the Pacific Ocean (Briggs & Chu 1986, Vermeer et al. 1989, but see Hedd et al. 

2012). Therefore, we cannot be certain of the spatial stability of the species’ niche across 

distinct ocean basins. The availability and quality of ecological data may limit the wider 

application of RES modelling to other species of seabird, if insufficient data are available to 

accurately quantify species’ ecological niches. 

Rigorous evaluation of models requires that the test data set accurately reflects the 

distribution and occurrence of a species within the evaluation area. The test data comprised 

far fewer observations of sooty shearwater than the other study species and the sampling area 

was characterised by low variation in RES, i.e. highly homogeneous habitat suitability (Table 

4). However, despite highly skewed distributions of RES, the models for fulmar (breeding) 

and Manx shearwater showed highly significant predictive accuracy, when compared to null-

models. This indicates these models must be performing very well, if they can perform 

significantly better than random, even under less favourable conditions for the evaluation. 

Rigorous model evaluation relies on representative observation data collected across broad 

spatial and temporal scales to compliment the macro-scale modelling approach. While 

‘regular’ and ‘equal-stratified’ sampling strategies are the most accurate and robust (Hirzel & 

Guisan 2002), these are not typically features of opportunistically collected data – the source 

of most at-sea seabird observations. The increasing availability of large-scale point data (e.g. 

OBIS, GBIF) and range maps, such as those available through the IUCN Red List 

(www.iucnredlist.org), presents opportunities for further testing of RES models. However, 

the availability of representative test data may limit the application of RES modelling for 

scarcer and under-recorded species. 

Biases in model parameters 

A frequent obstacle encountered in predictive distribution modelling of marine animals is the 

lack of reliable and comprehensive occurrence data from which to define species-habitat 

relationships (Robinson et al. 2011). The issue of environmental bias – spatial and/or 

temporal bias in collection of occurrence data – is widely recognised in species distribution 

modelling (Araújo & Guisan 2006, Phillips et al. 2009, Ready et al. 2010). It mainly arises 

from limitations in data accessibility and sampling strategies, preventing representative 

coverage of the entire environmental range of species (Phillips et al. 2009). The biases 

inherent to most observation data can easily lead to incorrect interpretation of habitat 

preferences of wide-ranging species (Hirzel & Guisan 2002). 
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RES modelling provides a technique for predicting large-scale distributions which does not 

rely on point data. The niche hypotheses underlying RES models still ultimately depend on 

the quality and amount of available ecological information. Quantitative data on the 

relationships between seabirds and ocean productivity are lacking and large areas of the 

oceans remain under-studied, e.g. the central Atlantic (but see Skov et al. 1994). However, 

the ability for RES modelling to incorporate a range of qualitative and quantitative data, 

collected from different parts of species’ ranges at different times of year, broadens the scope 

of environmental coverage. Consequently, the outputs may represent more balanced and 

robust predictions, for many marine animals, than the more commonly used predictive 

modelling techniques. When previously tested against a range of marine taxa, RES modelling 

was shown to perform very well compared with traditional presence-only modelling methods 

(Ready et al. 2010). 

Accounting for temporal variability 

Temporal variability in ecological niches and environmental parameters is frequently 

overlooked in species distribution modelling (Dambach & Rödder 2011). Previous 

applications of RES modelling to marine top predators did not account for temporal 

variability in species–habitat relationships or EGVs (Kaschner et al. 2006, Ready et al. 2010). 

In this study, we have accounted for the seasonal shifts in habitat associations that occur 

within the annual life cycle by distinguishing between a species’ breeding and non-breeding 

niche and subsequently relating niches to seasonally averaged data for dynamic EGVs. 

Accounting for temporal variation in both species–environment relationships and dynamic 

environmental variables is expected to increase the reliability of RES predictions, particularly 

in areas where environmental conditions fluctuate greatly between seasons. Consequently, 

our seasonal RES predictions can provide greater insight into species’ behaviour and ecology 

than those based on an annual average niche envelope. 

Applications and recommendations for future research 

RES modelling could prove a valuable tool for informing the development and 

implementation of effective conservation and management practices. In the absence of 

comprehensive occurrence data for wide-ranging species, RES models can identify critically 

important areas and biodiversity hotspots in pelagic marine ecosystems. This is of direct 

relevance to the development of quantifiable criteria for the designation of marine Important 
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Bird Areas (IBAs; BirdLife International 2004). The modelling approach could be used to 

direct observation effort to areas where under-recorded seabirds are predicted to occur and 

inform sampling strategies to incorporate a range of environmental suitability. Matching data 

on seabird distribution, as revealed by RES model outputs, with data on fishing effort could 

inform the responsibilities of Regional Fisheries Management Organisations (RFMOs) and 

the development of suitable monitoring and mitigation measures to reduce negative 

interactions between seabirds and fisheries (e.g. Le Corre et al. 2012). 

Application of RES modelling to a greater variety of species, demonstrating variable niche 

characteristics, will allow further examination of the broad-scale applicability of the 

approach. Expanding the RES approach to wider geographic areas, incorporating all of a 

species’ range, would offer greater insight into understanding distribution, dispersal and 

migratory behaviour. An iterative approach to the development of models (as recommended 

by Elith et al. 2006) will improve the robustness of predictions, by considering the effects of 

a wider range of predictor variables on model performance. Additional factors that have been 

shown to influence the at-sea distribution of seabirds, and could be incorporated into future 

models, include sea-surface salinity (e.g. Huettmann & Diamond 2001), horizontal (e.g. 

Louzao et al. 2009) and vertical gradients in SST (e.g. Spear et al. 2001), and fishing effort 

(e.g. Karpouzi et al. 2007). 

Wider application of RES modelling requires simultaneous developments in at-sea sampling 

and large-scale studies of species–habitat relationships, which inform one another and offer 

direction for future research. The increasing use of tracking devices for recording movements 

of seabirds provides opportunities for quantification of habitat use and preference (Wakefield 

et al. 2009, Le Corre et al. 2012). Increasing the public availability of tracking data will 

facilitate further development of SDMs (Skov et al. 2008). Further studies are required to 

improve quantitative understanding of species–habitat relationships across a variety of spatio-

temporal scales and integration of data across scales is necessary to enhance the predictive 

ability of RES models. Having demonstrated RES is a robust modelling approach, predictions 

could be improved by the use of ensemble model averaging (Araújo & New 2007). 

CONCLUSIONS 

Based on quantitative definitions of species’ ecological requirements, RES maps offer a 

robust alternative to subjectively generated traditional range maps. We have shown that RES 

modelling can adequately describe habitat suitability across large scales for wide-ranging 
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pelagic seabirds. RES modelling presents a generic and objective approach for predicting 

distributions of wide-ranging marine animals across large spatial scales, when the absence of 

representative point data precludes the application of traditional modelling techniques. Model 

outputs represent an alternative to the conventional and subjective approach of delineating 

range extents based on limited records of occurrence. The approach is based on clear 

assumptions concerning species’ habitat preferences, which can be easily modified and 

tested. 

RES predictions are limited by the extent of published data and the subsequent ability to 

accurately quantify species’ ecological niches. While some gaps in the literature are evident, 

the synthesis of knowledge concerning species–habitat relationships can adequately describe 

ecological niches for the purposes of building predictive distribution models. This offers a 

more robust approach for answering broad-scale questions about species’ distributions than 

deriving niches from limited and biased sampling data. Of greater significance is the limited 

availability of representative at-sea observations data to rigorously evaluate models, which 

may prove to be the key limiting factor in the wider application of RES modelling for wide-

ranging marine animals. 
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Table 1. Quantitative and qualitative definitions of habitat categories in respect of 4 

ecogeographical variables (depth, sea-surface temperature, distance to land and chlorophyll a 

concentration) used to quantify species’ ecological niches 

 

Variable Habitat category 

Depth (m) (after Ross 1988) 

0–10 Coastal waters 

11–200 Coastal waters to edge of continental shelf 

201–1000 Edge of continental shelf to upper continental slope 

1001–2000 Continental slope 

2001–6000 Abyssal plains 

6001–8000 Very deep waters 

Sea-surface temperature (°C) (adapted from Sverdrup et al. 1942, Ashmole 1971) 

–2–5 Polar 

0–10 Sub-polar 

5–15 Cold temperate 

10–20 Warm temperate 

15–25 Subtropical 

25–35 Tropical 

Distance to land (km) (after Ashmole 1971) 

0–6 Inshore waters 

6–50 Offshore 

50+ Pelagic 

Chlorophyll a (mg m–3) (after Louzao et al. 2006) 

<0.1 Oligotrophic 

0.1–0.3 Mesotrophic 

0.3–1 Eutrophic 

>1 Enriched waters 
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Table 2. Quantitative descriptions of species’ ecological niches in respect of 4 

ecogeographical variables: depth, sea-surface temperature (SST), distance to land and 

chlorophyll a concentration. Niches were defined for 6 procellariiform seabirds during the 

breeding and/or non-breeding season. MinA and MaxA refer to absolute minimum and 

maximum values of the resource selection function; MinP and MaxP: preferred minimum and 

maximum values (see Fig. 1). Chl a (mg m–3; identical for each species and status): MinA, 

MinP = 0, 0.3; Max P, MaxA = 60, 60. Status: B = breeding, N = non-breeding. See Table S1 

in Supplement 1 (www.int-res.com/articles/suppl/mXXXpXXX_suppl.pdf) for data sources 

 

Species Status Depth (m) SST (°C) Distance (m) 

  MinA, 

MinP 

MaxP, 

MaxA 

MinA, 

MinP 

MaxP, 

MaxA 

MinA, 

MinP 

Max P, 

MaxA 

Northern fulmar B 0, 100 1000, 8000 –2, 0 15, 15 0, 0 320, 2364 

 N 0, 100 2000, 8000 –2, 0 10, 15 0, 50 2364, 2364 

Cory's shearwater B 0, 100 1000, 8000 10, 20 20, 25 0, 0 200, 2364 

Great shearwater N 0,100 200, 8000 –2, 0 20, 35 0, 6 2000, 2364 

Sooty shearwater N 0, 10 1000, 8000 5, 10 20, 35 0, 15 200, 2364 

Manx shearwater B 0, 10 200, 8000 5, 10 20, 25 0, 0 360, 2364 

European storm petrel B 0, 100 2000, 8000 5, 10 20, 25 0, 0 200, 2364 

 

http://www.int-res.com/articles/suppl/mXXXpXXX_suppl.pdf
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Table 3. Evaluation of predictive performance of relative environmental suitability (RES) 

models for 6 procellariiform seabirds. A model was considered to perform significantly better 

than chance if the area under the curve of the empirical model (AUCm) exceeded the 95% 

quantile of the ranked AUC values of a null model (AUCn). p-values indicate the proportion 

of random AUCs that were equal to or greater than AUCm 

 AUCm AUCn p 

Northern fulmar    

Breeding 0.735 0.568 <0.001 

Non-breeding 0.774 0.583 <0.001 

Cory’s shearwater    

Breeding 0.712 0.580 <0.001 

Great shearwater    

Non-breeding 0.587 0.583 0.041 

Sooty shearwater    

Non-breeding 0.530 0.575 0.260 

Manx shearwater    

Breeding 0.614 0.572 0.004 

European storm petrel    

Breeding 0.704 0.582 <0.001 
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Table 4. Summary of test data used for evaluating the predictive performance of relative 

environmental suitability (RES) models. Independent observation data were collected from 

repeated sampling of 156 grid cells (0.25 × 0.25°) by MARINElife in the Bay of Biscay (Fig. 

2). The number of species’ records, number of ‘presence’ cells and variation in RES within 

the model evaluation area (percentiles of ranked RES) are presented 

Species No. of 

records 

No. of 

‘presence’ 

cells 

Percentiles of ranked RES 

in survey area 

   10% 50% 90% 

Northern fulmar     

Breeding 590 71 0.0 0.0 1.0 

Non-breeding 248 45 0.12 0.36 0.56 

Cory’s shearwater     

Breeding 527 51 0.15 0.43 0.62 

Great shearwater     

Non-breeding 452 48 0.37 0.69 1.0 

Sooty shearwater     

Non-breeding 115 46 0.55 1.0 1.0 

Manx shearwater     

Breeding 245 60 0.50 1.0 1.0 

European storm petrel     

Breeding 295 46 0.45 0.86 1.0 
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Fig. 1. Resource selection function describing a species’ ecological niche as a function of 

likelihood of relative environmental suitability throughout the range of an ecogeographical 

variable. MinA and MaxA: absolute minimum and maximum values; MinP and MaxP: 

preferred minimum and maximum values of individual niche parameters 
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Fig. 2. Area where MARINElife conducted monthly seabird surveys between 1995 and 2005 

in the English Channel and Bay of Biscay. Data collected served as independent observation 

data for evaluation of relative environmental suitability (RES) models. Blue squares delineate 

grid cells (0.25 × 0.25°) covered by sampling effort 
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(a) Northern fulmar Fulmarus glacialis, breeding 

 
 

(B)
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(C) 

 

(D)
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(E)

 

(F) 
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(G) 

 

 

Fig. 3. Model outputs illustrating predicted geographic range and relative environmental 

suitability (RES) for 6 procellariiform seabirds in the North Atlantic during their breeding 

(yellow–brown) and/or non-breeding seasons (blue): (A) northern fulmar Fulmarus glacialis, 

breeding; (B) northern fulmar, non-breeding; (C) Cory’s shearwater Calonectris diomedea, 

breeding; (D) great shearwater Puffinus gravis, non-breeding; (E) sooty shearwater P. 

griseus, non-breeding; (F) Manx shearwater P. puffinus, breeding; and (G) European storm 

petrel Hydrobates pelagicus, breeding. Predicted RES is on a scale from 0 (least suitable, 

white) to 1 (highly suitable, dark).  


