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Abstract Definition of symbols
In this paper simplified models of the xenon spatial instabil- ) Normal
. i . ) . . Symbol Explanation l
ity, especially axial oscillations, are derived. The nature of va;ue
the oscillations makes it possible to represent the axis of the B[z, 1) Material buckling
core with only two points. This simple model gives a good c(z, 1) Absorption term
physical insight into the problem and is shown to be rather M Migration area ) 440 cm?
accurate, compared with other models ulz 4 Control term in buckling
’ P LAl FHOAEiSs o(z) Temperature coefficient, expressed as re-
Both unstable and stable periodic solutions have been pred- activity bounded in fuel temperature increase
icted with the non-linear model. They have later been veri- above the moderator at mean flux and in-
fied by digital simulati finite gitter —0,226 %
ted by digital simuiation. Normalization to mean flux density
The linear stability is shown to be independent of the control ;12=5,6§ S0, MP=440 cm® i a=—0514
rod, which maintains the criticality. The rod will, however, # encn influence onychangss i Bugtiing
. . N (—3,2% on reactivity) at saturation —0,73
influence the non-linear behaviour very much. - Fraction of xenon yield (relative fo xenon
+iodine yield) 0,05
Zusammenfassung 7 Fraction of iodine yield (relative io xenon
Vereinfachte Modelle der réumlichen X, hwingung sedodinesyicld) . . 0,95
B(z, t) Neutron flux density, normalized to mean
In dieser Arbeit werden vereinfachte Modelle der rdumlichen Xenoninsta- flux density &
bilitdt (in groBen Leistungsreaktoren) speziell der axialen Schwingungen B =5,65- 1015 cm-2 51 1
hergeleitet. Die Natur der Xenonschwingungen macht es méglich, den 1 Xenon disintegration constant 0,0756 h-t
Reaktor nur mit zwei Punkten darzustellen. Dieses einfache Zweipunkt- 14 lodine disintegration constant 0,1058 h-t
modell gibt eine gute physikalische Einsicht in das Problem; es hat sich im oy Microscopic xenon cross section 2,29 - 1078 cm?
Vergleich zu anderen Modellen als genaver erwiesen.
Sowohl die stabilen als auch die instabilen periodischen Lésungen sind Introduction

mit dem Modell vorausgesagt worden; sie wurden spéter durch eine digi-
tale Simulierung bestdtigt.

Es wird gezeigt, daf} die lineare Stabilitét uvnabhdngig von dem Kontroll-
stab ist, welcher die Kritikalitdt aufrechterhdlt. Der Kontrollstab hat aller-
dings eine groBe Bedeutung fir die nichtlinearen Losungen.
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STABILITY DIFFERENTIAL EQUATIONS
REACTOR CORE TRANSIENTS

REACTOR KINETICS
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The xenon instability problem has been extensively analysed,
after spatial oscillations originally were demonstrated in
Savannah River in 1955 and in Shippingport in 1958. Since
Ward made the first analysis in 1956, a large number of
papers on the subject have been published. Most of the an-
alysis is based on linearized models [1-4], but non-linear
approaches, especially point reactor models, have received
attention [5-8]. Digital simulation is an extensively used tool
in the studies [9-12]. The behaviour of the oscillations has
been described at the same time.

During the very last years, the xenon spatial instability prob-
l[em has gained new attention [13-15]. This depends on the
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fact, that the reactors, which are presently being built, will
have geometrical dimensions close to the xenon stability limits.
The purpose of this paper is to present some simple models,
based on finite differences, that have been successfully used
in the study of xenon oscillations. These models have given
physical insight into the influence of different parameters
and non-linearities on the stability. The behaviour of the
solutions have been compared with more complex models,
using transient studies and eigenvalue calculations. The re-
sults are very encouraging, since it has been possible fo
explain all the different types of linear and non-linear solu-
tions by means of the simple models. The study has been con-
centrated upon the xenon propagation along the axis of o
cylindrical core.

As criticality must be maintained by a conirol rod or by
homogeneous absorption in the core, it is interesting to
know how stability is affected by this absorption. It is shown,
that the critical height is independent of absorption con-
figuration or rod motion for symmetric, fiat, neutron fluxes.
For large perturbations, as shown previously [11, 14], the rod
motion may induce coupled oscillations, which may amplify
the flux tilt, caused by xenon. Both stable and unstable
periodic solutions have been found by the approximate mod-
els, and they are later verified by digital simulation of more
complex models.

Basic equations

Here the neutron balance in the core is described by one
group diffusion theory. As the xenon oscillations are very
slow, compared with neutron life time, we neglect the de-
layed neutrons, and assume further, that the changes in neu-
tron flux density and temperature distribution occur instan-
taneously. The neutron flux density along the core axis then
satisfies the following equation:

2

3z?

&(z,t) + B¥z,t) H(z,t) = 0 m

where we have assumed o space independent diffusion con-
stant.

The xenon and iodine concentrations X and I respectively
satisfy:

= A X+ 4TI+ y0,P—0, XD 2
31
e = " Altvied 3
The state variables are normalized to the saturation equilib-

rium value of xenon for an infinite neutron flux density.

We include the top and bottom reflectors in the core and
assume that the thermal flux density is zero on the core
boundary.

The total power P
P(t) = [ k(z) D(z, t)dz (4)

is assumed to be controlled by a stable control system. The
variables are written in incremental form:

B(z,1) = D%z) + o(z, 1)
XYz} + &(z, t) {5)
I(Z,t) . IO(Z) +’I](Z, t)

l

X(z,1)

where the superscripts mean equilibrium values.
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The equations (2) and (3) are rewritten in the form:

3¢ +
5 = hREFhntviog-aXe+ P+ e ) (6)
Ay )

The buckling term B2 can be expanded info two parts, one
equilibrium part B* and one perturbation part,

Bz, 1) = B*(z) + «(2) @(z, 1) + f£(z, 1) + ofz, 1) + u(z, 1) (8)

ft is assumed that the temperature effecis on buckling are
proportional to flux variations.

The spatial derivative in (1) is approximated by finite differ-
ences, which transforms (1) to N algebraic conditions. The
xenon and iodine dynamics (6;7) is then valid in N space
points.

Finite difference axial models

A digital program, called TRAXEN, has been written for the
computer CDC 3600 in order o simulate the xenon oscilla-
tions. The program is based on the non-linear equations (1;
4; 6; 7; 8). It has been used as a check of the simple models
and has also been applied in the Swedish Marviken heavy
water reactor study.

It is shown [11], that the rod motion may induce xenon os-
cillations as a result of large disturbances. The influence of
several non-linear parameters, such as flux disturbance, con-
trol configuration and temperature feedback, has been
studied.

The model is easily linearized. Since the nonlinearities in
the model are polynomials, the system equations can be
written

x = Ax +g(x)

where the vector function g(x) is continuous at the origin and
has the properties

20) = 0 lg(x)l

fim :
ixl—o lxll

Hence if x=0 is an asymptotically stable solution to the
linearized equation, it is also a stable solution to the non-
linear equation.

For the linear equations it is easy to show, that one rod is
not sufficient for the control of the oscillations. It is also
proven, that stability of a flat flux is the same with rod con-
trol as with homogeneous control for small disturbances.
The statement is verified by digital simulation also for other
flux shapes.

The linearized xenon and iodine equations are derived from
(6) and (7), where the products of the variable increments are
neglected:

dé
Ttk- = — L &p+ g + 20 9™
— o (XR ot L&) (9)
~d
% = — g +rioge, k=1,..,N (10)

The subscript k stands for space point.

The linearized neutron flux diffusion equation in space point
k is derived directly from (1), (5) and (8) with u(z,t) = 0,

Prot T g1+ @[~ 2HHBY + & BY| -+ k2 BRlo,+ f &) = 0

k=1,...,N )

Atomkernenergie (ATKE) Bd. 16 (1970) Lfg. 2
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The power condition (4) is simplified to:
N
2w =0 n2)
i=1

The terms ¢, in (11) represent the lumped action of the con-
trol rod in each space point. With one control rod the C's
are related through

filer,ooeren) = 0;  i=1,. . N 13)
Now, to express the N variables ¢y, in the state variables &
and % we have 2N equations (11-13) for the 2N unknown
parameters ¢, and @z, . This simple discussion shows directly
that the rod insertion is uniquely defermined at each moment,
if the total power is separately controlled. Thus the xenon
process is not controllable by only one rod.

For a flat equilibrium flux, a suitable state variable repre-
sentation is achieved by adding all the xenon and iodine
equations,

d (% o d
EE(ZEI:) N (‘lx_ax@)(ZEk)‘HiZﬂk (14)
1
) B 1 y 1
dT(Zm) - —%(an) (15)
1

1
The state vector is chosen

xT = (51 N1 82tz SN My (; 5k> (; ’Yk)) (16)

The dynamics is represented by a 2N order system,

dx

—-— = Ax

dt

We can partition the 2N - 2N order matrix A,
L
A= 0 : a; Qe (17)

|
1 0 Qg

The scalars a, and a, are always negative (14), (15), and the
matrix A’ is of order (2N-2) - (2N-2).

The flat flux has a simple equilibrium buckling:
H \? 0 2 <k <N-1
B® — =T=
(N+1> k {1 k=1;k=N (18

We assume two different kinds of absorption terms. In the
first case one control rod is inserted from space point 1 to
k-1 in equilibrium, and we get:

Ci==Cy=...=Cpy=0
Cp,=¢ (19)
C];+1=...=CN=0 ‘

as the rod absorption in the (k—1) first points is included in
the equilibrium buckling. The rod oscillation occurs in point k.

In the second case homogeneous control we get
..=cCy=c¢C (20)

ft is proven [16], that the eigenvalues of matrix A° (17} are
independent of the control method. We get also the same
eigenvalues of A’ by neglecting ¢ and one state variable,

&g Xayg = Z &
k

can be removed.

C; = Cp =

Simulations have verified, that this statement also holds for
other flux shapes.

Atomkernenergie (ATKE) Bd. 16 {1970) Lig. 2

Two point axial models
Non-linear equations

In order to get a simple model of the xenon instability we
make an approximation of the stationary diffussion equation,
using only two finite space points. The neutron equations
then are no more than two algebraic conditions. These con-
ditions are combined with the four xenon and iodine differ-
ential equations.

The flux equations (1; 8; 11; 12) are simplified to:
a @ + Pl oy +uy—g) +

+D,%c; +uy, + pE) =0 (21)
o @.F + py(— B —c —up + g) +
+ Bo’cs + u, + fE) =0 (22)
where
27
& = fp —(Bi*ta BY)
o7 (23)
& = (B3°+ o, )

and H is the core height.
Condition (13) has the simple form
C;=2C; C,=10 (24)

for rod control, and
Ci=Cy=¢C (25}

for homogeneous control.

If the state vector, defined in (14), is used, the xenon and
iodine equations are transformed to:

% = (A — 0 BY) x, + Az, +
i

it Gx(Yx e Xg) Y1 — Oy @1 X1 (26)
dx.
&~ ChRtrae (27)
d
;‘: — (B3 — B9 x,+ (— 1, —0, BY) x, -

+2’i X4 {'Ux(Xg_Xg) @1+ o, @ilxs —2x] (28)
dx
Fral t0 (29)

The xenon process is thus described by (21; 22; 26-29 and 24
or 25).

Linearization of the model

A symmetric two space point model is a special case of the
flat flux (18). The dynamic equations are very atiractive, be-
cause the fourth order system can be easily partitioned into
two second order systems {17) and two eigenvalues are al-
ways negative, independent of the core parameters.

The system is described by the state equations.

X _ Ax 1 Bu

dt
y=Cx+ Du
where the measurement variable
Vy=o

and the control vector u is found from (21; 22). Here the
model is used first to study the stability conditions, then to
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find out the transient response to a reactivity input. The input
is assumed to be symmetric, i.e.

Uy=—U=1u

in (21;22).

Then we easily find the expressions for the matrices A, B, C
and D for the symmetric case, i.e. %, g @ and X’ are space
independent in (21-23). Assuming homogeneous control (25)
we find:

— o l?l!
— A oy, ¢°l1 +(xX°— yx)—Z—] X ‘—'283—- (Xo—74) O
fP° B &°
— . — A — 0
A=|7% b Trox,
0 0 —i,—0,® K
[ o 0o 0 i
0
B— "*f b= X° 5 0 o
¢0
. (2 0o -1 0)
2g
p--Z2 (30)
8

Only two states, x; and x,, are both controllable and ob-
servable, and the fransfer function
Y(s)

Gls) = gy = CT— Af'B+D (31)

is consequently of second order.

In the rod control case (24) we get some minor changes of
the system equations.

We get this new A matrix by multiplying the elements a4
and a5 of the matrix in (30) by two. The B and D matrices are
unchanged, while the element —1 in C is changed to —2.

We can simply check, that the eigenvalues of the A matrices
are equal in the two cases, as we proved previously. Thus the
stability of the xenon process can be analysed by means of
a second order submatrix, which is independent of the con-
trol configuration.

As only two states are both controllable and observable, the
transter function (31) is also independent of control configu-
ration. Thus, the fransient amplitudes are equal in the two
cases.

Linear analysis
The two point model

The eigenvalues of the second order A submatrix (30) deter-
mine the stability of the xenon process. Since such parameters
as core height, temperature coefficient and mean flux are
included in the eigenvalues it is easy to study the influence
on stability or on transient response amplitude. We get two
stability conditions

ay + a <0 or

o (32)
Ag + 05 D° +—g"— (X0 —p )P B+ 4,>0
and
Qyy Gzp — 032 G5 > 0 OF (33)
@0
11{—1; oy @0_% (X0—y,) & B+7;0 gﬁ} <0

where a;; are coefficients of the matrix A (30).

924

As y; + 7. = 1 by definition and # < 0 and X® < 1, condition
(33) is always satisfied, and stability is determined only by
(32).

Condition (33) also implies, that the two eigenvalues are
always situated on the same side of the imaginary axis.

From (33) we also find, that the eigenvalues are complex at
the stability limit. The period is:

T — 2n - 2n
Vay 03 — 012 G5 [li<lx+ 0, OO+ o, (X°—1) @° ﬁ)]l-'a
g

(34)
It decreases asymptotically as
——
Ve
for increasing flux level.

The influence of core height on the two eigenvalues is shown
in Fig.1. For decreasing core dimension the eigenvalues
converge towards

5 = — Ay — 0, P°
Sy = — li
that is, they are coincident with the other two eigenvalues,

(14; 15). For increasing core height one eigenvalue diverges
towards infinity.

Fig. 1: The locus of the two most significant eigenvaluves of the linearized
symmetric two point mode! (30). The parameter is core height in m

With typical core data—from the Marviken reactor—the
period time (34) at the critical height H= 6,93 m is found to
be

T = 238h

As known previously a negative temperature coefficient has
a stabilizing effect on the xenon oscillations. This is illustrated
in Fig. 2.

If the eigenvalues are complex, the transients include a
damped sine component. The condition for complex aigen-
values is simply found (30),

(a1 + Gg5)® — 4 Q11 Gz + 4032 Oy <0
It is already known, that oscillating transient responses do

not occur for low flux density levels. In the reactor with
H = 6,93 m, oscillating convergent transients occur for

0,003<P*<1,0
or
1,6-108 < @ < 5,65-108% cm2 s

Atomkernenergie (ATKE) Bd. 16 (1970) Lfg. 2
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75
70 <
T &5
E
=
X
0
=010 -0.85 L] 005

o —>
Fig. 2: Critical height as function of the temperature coefficient « for the
linear symmetric two point model

Comparison between the linear models

The critical core height has been determined as a function of
the number of space points for two standardized neutron
flux densities, a flat flux (18) and a sinusoidal flux density.
The latter is defined as a flux density having constant equili-
brium buckling at all space points.

(N-i-l]"‘Z[]_c n

B2 = o
k HE SN+

] k=1,...,N

where H s core height.
2

k1
It converges to B2 = T

for infinite N. The flux density then approaches a sine curve.
The mean flux density is defined

@ =

2|~

N
2.%
1
for the flat flux density, and
N
s 1
? = NH ; g

for the sinusoidal flux density.

We assume homogeneous control of the core. Fig. 3 shows
the critical height as a function of the number of space points
for the two flux shapes. We verify the previously known
result that the critical height is greater for the sinusoidal
flux. The stability limit for a certain flux form converges

]

Sine flux

Hihm

S~ | Fatfu

2 5 10 5 20

N ——

Fig. 3: Critical core height for multipoint models as function of the number
of meshpoints of the core (N) for two different symmetric flux shapes

nearly exponentially to a constant value, which depends on
the form factor

‘ﬁmean

Call the critical height for N space points H(N). If H(N) is
extrapolated from 2, 3 and 4 space poins, the result is H(s0)
=555 m and H(20) = 5,55m for the flat flux. H (20) has
been found to be 5,38 m, so the error is 3,2%.

Atomkernenergie (ATKE) Bd. 16 (1970) Lig. 2

A similar_extrapolation of the sinusoidal flux curve gives
H{eo) = H (20) = 8,68 m, while the computed valve of H (20)
is 8,89 m. The difference is 2,4 %.

The period of the flat flux oscillation is estimated surprisingly
accurately by the two point model. It is found to be 23,81
hours, quite the same with five figures accuracy as the twenty
point model. When mean flux is increased five times, the
period T (34) decreases to about half. The difference to a ten
point flat flux model is less than 107 hours.

The sinusoidal flux, however, is not so well described by the
two point model. This is easily understood, since the curvature
cannot be shown by only two points. Even three points will
give a much more accurate description as the centre point
represents the top of the curve better. The period is:

20,56 hrs for 2 points
22,55 hrs for 3 points
23,09 hrs for 10 points.

The critical height of the three point sinusoidal flux (Fig. 3)
is also much better than the height, found with the two point
medel. The error is 50%0 smaller.

The temperature coefficient is another interesting parameter
(Fig. 2).

It is a well-known fact that the critical height decreases for
increasing temperature coefficient. The ratio of the relative
changes of the critical height and the temperature coefficient
a is calculated. It is here called Q.

For —-005<a<0

Q= —0,0622

was found

for all fiat fluxes from two through ten meshpoints.
For the sinusoidal flux was found
Q = — 0,081 for the two point model,
= — 0,069 for three meshpoints and
Q = — 0,068 for ten meshpoints.

Thus, we find also here, that a three point model gives a
rather accurate description of the sinusoidal flux.

Finally some results of critical height calculations with dif-
ferent models are compared, viz. the TRAXEN model, the
linear models presented here and a modal expansion model
based on clean reactor modes, presented by other authors
[2,17]. The flux shapes are shown in Fig.4 and the results
are listed in Table 1.

Flat flux Diteh ffux

'

w=1p y=114

Flat sine llux Sine flux

D

p=13% v=15

Fig. 4. Different flux shapes used in the calculations

Table 1: Critical heights in m for some neutron flux densities calculated
with different models. (3 =1, « = — 0,0514)

Tab. 1: Kritische Kerndimensionen in m fir einige NeutronenfluBdichten

Form TRAXEN Modal Linear mode!
factor (20 points) expansion (20 points)
1,0 5,36 5,26 5,38

1,14 5,15 5,20 =

1,35 7,50 7,60 —

1,57 8,89 8,82 8,89
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Transient amplitude

As the flux deviation, caused by xenon, must be limited of
technological reasons we are interested not only in stability
but also in the amplitude of the transients. Fig. 5 shows the

maximum flux deviation during a transient for the two point
model (30) and the TRAXEN model.

The latter has simulated a symmetric flux with form factor
1,29 approximated by 20 space points [11]. The disturbance
consisted of a stepwise movement of 100 pcm reactivity from
one core half to the other. The critical heights are 7,25 m
(TRAXEN) and 6,93 m (two point model) respectively. The
difference between the simulations and the two point model
is all the time within 10%. Around the critical heights the

difference is only 2,6 %s.

02

T " %ﬂ/

Hinm —

Fig. 5: The maximum amplitude of the flux deviation for different core
heights after o 100 pcm reactivity step disturbance. Comparison is made
between simulations with TRAXEN (A) and onalytical results with a two
point model (B}

Nonlinear solutions
General behaviour

The simplified models are also useful for non-linear analysis.
It is easy to study the essential influence of the different non-
linear terms. Both stable and unstable periodic solutions have
been found with the two point model. The nature of the
solutions depends very much on the control rod configuration.
The qualitative behaviour of the non-linear two point model
has been verified by the TRAXEN digital simulations [11].
The amplitudes of the two models are quite different, when
the control consists of a rod. Later we explain, why this dif-
ference occurs.

Even for the two point model it will be cumbersome to ana-
lyse the equations analytically. Therefore a digital program
has been written to simulate the two cases rod control and
homogeneous control of the two point model.

We have shown, that the control configuration does not
affect the stability limit in the linear case. However, it is very
important at large disturbances. As the “rod” is acting only
in one point, the periodic solutions are very unsymmetric.
Both the eigenvalues of the linear system and the non-linear
character of the solutions depend on the temperature coeffi-
cient.

Rod control

Fig. 6 explains the behaviour of the system. It shows a quali-
tative phase plane of the system with two different tempera-
ture coefficients, and in every column the core height is de-
creasing from A to E and F to K respectively.

Some important conclusions can be drawn. At small core
heights (E and K} all trajectories are stable and no periodic
solutions can be found. When the core size increases, it is
possible to get unstable solutions for rather small disturb-
ances (D). However, if the temperature coefficient is negative
enough, the unstable fimit cycle will disappear (J). The

96

a=-002 «=-005
A F
3
stable l.c. Res>>0 stable Lc.
unstable node
/'
B B
stable l.c. Res>0 Ty stable l.c.
unstable focus A
H H
stahle Lc. Res=0 No Le.
center
e -
b 1|
stable and Res<D sl Nolc.
unstable Le. @ stahle focus 46‘&
E K
—
HNo Le. Res<<0 Ne lc.
shable focus s
or stable node —E

Fig. 6: Qualitative phase planes of the non-linear two point model of a
symmetric flux, with rod control, and different temperature coefficients o
and core heights. Re s = real part of the greatest eigenvalue of the line-
arized model

amplitude of the unstable limit cycle decreases as the core
height increases, and it approaches zero at the critical height
(C). It will never occur for the more negative « (H).

There are also stable limit cycles, and they occur for less
negative temperature coefficients even below the critical
height (D). For more negative « they occur only over the
critical height (G).

The amplitude of the limit cycle increases with core height
and decreases when « gets more negative. The period time
is between 24 and 25 hours.

The trajectories are very unsymmetric, a result which has not
been verified by other models. This discrepancy is explained
later. The symmetry is better for more negative «, as the
large amplitudes are damped by the temperature feedback.
One example of stable limit cycle is shown in Fig.7, which
corresponds to Fig. 6 (G).

10

) f\ T_ "': n‘\__// L‘\\/"
JAUN | LA
: \\\ e i ': \\//’\\ =

05 SSps——" 1 ' inu:l_m»:u 4u‘so

Fig. 7: Projection of the state space and the limit cycle as function of time
of the non-linear two point model with rod control. The singular point af
the origin is unstable and the trajectories from origin diverge towards o
stable limit cycle. The variables are defined in (5) and {16).

x=—005 H=697m (Hyy = 6,92 m)

Compare with Fig. 6 (G)
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Fig. 8: Qualitative phase planes of the non-linear two point model of a
symmetric flux, with homogeneous control, and different temperature coef-
ficients o and core heights. Re s = real part of greatest eigenvalue of the
linearized model

Homogeneous control

The critical heights are not changed by the control, as we
have proved previously.

Fig. 8 shows that no unstable limit cycle will occur, contrary
fo the rod control case. The amplitudes of the stable limit
cycles are smaller, and the shape of the trajectories is more
regular. x, = & + &, is small all the time and Xy =1+ 7
converges exponentially to zero. Thus the xenon and iodine
deviations in point one are directed opposite the deviations
in point two.

Fig. 9 shows a stable limit cycle, corresponding to case 8 (F).
The period time is 24 h. The amplitude of the limit cycle is

Lim#t cycle

AR

T
] 01 62

X —»

Fig. 9: Projection of the sfale space info the x;, xp-plane of the non-
linear two point model with homogeneous control. The singular point ot
the origin is unstable and a stable |imit cycle occurs.

¥ = —0,05 H=1697m (Hy = 692 m)

Compare with Fig. 8 (F)
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very sensitive fo changes in core height. It decreases to 60 %
for a 3em decrease in core size and is zero at the stability
limit, a 2 cm further decrease.

Stable periodic solutions, but with larger amplitudes, occur
even for positive temperature coefficients. This result con-
tradicts the previous results [5], where nonoscillating unstable
trajectories were found. Similar nonoscillating solutions oc-
cur for space independent models [11], but they have not
been verified by any other refined model.

Comparison with more complex models

The qualitative performance of the non-linear two point
model has been verified by digital simulation of the non-
linear TRAXEN model [11]. The amplitudes of the limit cycles
differ between the models, o fact which can be explained.

In order to be able to compare the calculations, we should
use the same core parameters. As the critical heights of the
fwo models differ 28 (Fig.3), we can only compare the
order of magnitude.

In general the unstable limit cycles are smaller and the
stable limit cycles larger in the two point model, compared
with the TRAXEN model.

The rod configuration is the most important cause of differ-
ence. In the fwo point model the “rod" is acting in one point *
(24), which means that the absorption is uniformly “distrib-
uted" along half the core. As the oscillations are mainly de-
scribed as first overtone variations, this configuration has a
maximum damping or amplifying effect on the amplitudes,
and Fig. 7 shows clearly, that the transient is damped once
and amplified once during a cycle. These effects are due to
the rod.

When a symmetric flux is disturbed, the absorption in the
core must be increased [11]. This will make the flux in the
“rod point" decrease. Now, if the disturbance has the same
direction as the absorption increase, the rod couses an
amplification. Thus it is easier to get unstable solutions and
the stable limit cycles have a larger amplitude.

In the TRAXEN model the rod arrangement is different, as the
rod is inserted and withdrawn during an oscillation. The
amplitude of this movement depends on the absorption along
the rod and on the disturbance amplitude. The amplifying or
damping effect gets smaller, and consequently also the
amplitudes of the stable limit cycles. For the same reason it
is more difficult fo get unstable limit cycles with the TRAXEN
model. For ditch fluxes (Fig. 4) the unstable limit cycles are
verified. A ditch flux, some 10 cm below the critical height,
was disturbed by 100 pem moved from upper to lower core.
This disturbance caused unstable oscillations [111.

In order to get a rod configuration more like the two point
model we must use a rod, always inserted into half the core
with a variable absorption. The rod configuration problem
is subjected a more detailed discussion in @ technical re-
port [11].

For homogeneous control it is also possible to verify the dif-
ferent kinds of solutions, shown in Fig. 8.

The amplitudes of the periodic solutions are of the same
order of magnitude in the two models. This is quite natural,
as no rod can influence on the result.

Fig. 10 shows a numerical example of a flat flux, H = 5,40 m,
x = — 0,0514, 4 cm over the critical height. A stable periodic
solution occurs. Large disturbances result in stable trajecto-
ries, while small ones cause unstable solutions.
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Fig. 10: A limit cycle, calculated with the TRAXEN program for a 20 point
non-linear reactor model with H=540m (H,; =536 m), where the
variables are the maximum xenon and iodine deviations. Control is homo-
geneous and flux shape is flat.

The limit cycle is stable. A disturbance of more than 400 pem reactivity,
moved from one core half to the other during two hours, will bring the
trajectories outside the limit cycle

Conclusions

Digital simulation is a bad tool in the examination of the
principal behaviour of xenon spatial oscillations. The sim-
plified models have been valuable in the preliminary studies
of different parameter influences. The models have predicted
nonlinear behaviour, such as periodic solutions. Because of
these principal examinations it has been possible to come
through the digital simulations much faster.

{Received on 8. 4. 1970)
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