LUND UNIVERSITY

SIMNON - An Interactive Simulation Program for Non-Linear Systems

Elmqvist, Hilding

Published in:
Simulation '77

1977

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Elmqvist, H. (1977). SIMNON - An Interactive Simulation Program for Non-Linear Systems. In M. H. Hamza
(Ed.), Simulation '77 : Proceedings of the international symposium, Montreaux, June 22-24, 1977 (pp. 85-89).
ACTA Press.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/8563da8c-e381-4b80-b766-f172e62d064a

Proc.

Simulation

“77, lfontreux 1977

85

SIMNON - AN INTERACTIVE SIMULATION PROGRAM FOR NONLINEAR SYSTEMS

H. Elmgvist
Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

ABSTRACT

Simnon is a command driven interactive program written in
Fortran for simulation of systems governed by ordinary dif-
ferential equations and difference equations.

The description of the system is done in a special modei
language or in Fortran. The user can separately describe
subsystems with inputs and outputs and connect them. Each
subsystem can be either a continuous time system or a dis-
crete time system.

The program is controclled by commands. There are e.qg. com-
mands to change parameters of the model, perform simulation,
plot the time response of selected variables on a display
and to modify the model. A macro facility enables the user
to store sequences of commands on a file for later and re-
peated use.

INTRODUCTION

Good man-machine communication is important for simulation.
The user must be able to change parameters and modify the
model easily. It should also be possible tc select varia-
bles to be plotted. The availability of mini computers and
advanced time sharing operating systems have made it possible
to implement interactive simulation programs.

The program Simnon is an interactive simulation program.

The user controls the program with commands. There are e.q.
commands to change parameters of the'model, perform simula-
tion, plot results from simulation and to modify the model.
The commands contain arguments which can be e.g. file names,
variables, numbers and options. They have a flexible format.
Default values are used for omitted arguments. The user can
construct own high level commands by means of a Macro fa-
cility.

The model can be described either in a special model lan-
guage or in Fortran. The modeil language is simple and easy
to Tearn and permits extensive error checking. The compniler
is included in the program and is working in parallel with
an editor. This enables the user to correct erroneous lines
immediately. It is thus easy to enter and change the model.

The notation of a subsystem is very important when modelling
systems. When inputs and outputs for a subsystem are defined,
it is sufficient to concider the internal behavior only.
Simnen has a subsystem concept which in some sense corre-
spond to the macro facility in CSSL-type of programs.

In traditional dynamic simulations it was frequency suffi-
cient to describe models by ordinary differential equations
only. When simulating computer controiled processes, it is
naturally to describe the physical process by ordinary
differential equations and the computer with its control
algorithms by difference equations. For this reason Simnon
allows description of both continuous time subsystems and
discrete time subsystems.

A special discrete subsystem is available for optimization
{4]. It has a loss function as input and parameters as out-
puts. Using this subsystem it is possibie to solve optimal
control problems. There is also a continucus subsystem for
time delays. :

The complete description of Simnon can te found in [1].

MODEL STRUCTURE

There are three types of systems in Simnon: continuous,
discrete and connecting.

A continuous subsystem is mathematically defined as

X(t) = f(x(t),t,u(t),p)
y(t) = g(x(t).t.u(t),p)
x{to) = Xg

The following notations are used
t - time (independent variable}
x - state variables (dependent variables) -
y - output variables
p - parameters
t, - start tiwe for simulation
X5~ initial values for states
u - input variables™ =
A discrete subsystenm .1s mathenatically defined as

X(Eip) = Tx(eg) . ty5u(ts))
y(t;) = a(x(Tg).t5ulty)p)
x(t1) = Xq
The i:th sampling instance is denoted t;. The sanpliny

instances need not be equidistant and need not be equal in
all sutsystens. .

The outputs of the discrete subsysteus are not defined be-
tween the sampling instances and before the first sampling
instance. In order to allow for connection of continuous
syctems and discrete systems with different sampling in-
stances, the definition of the outputs wust be extended.
This is done by introducing zero order nold circuits

at the outputs. The outputs are then defined by

y{t;) s t; < t;
y(t) = § i i i+]
\% t <ty
where y, is the initial values for the outputs of the

system.

It is sometimes practical to be able to treat the states
of a subsystem as outputs wien connecting the systens. In
order to allow this, the states aust also be defined for

all t. This is done as
x(t.) t. €t < .
x(t) = i i i+l
N XO Lt < t]

The connections of the subsystews are done in a so called
connecting systemn. Introduce the notation X, U and Y for
the concatenation of the state-, input- and output-vectors
in all subsystewns. The connections can then be written as
U(t) = h(X{t).t,¥(t),p)
Together with the output equations of the subsysteins, tnis
equation represents a set of nonlinear equations. [f the
systei does not contain any algebraic loop then the
equations can be solved sequentially by sorting thenm
apprepriately.

86

Ihe description of a subsystem contains two parts, one for
computing outputs and one for computing derivatives resp.
update of states. The equations of each part are executed
sequentially. The equations defining the connections be-
tween the subsystems must be written in a special order.

If an output variable appears in the right hand side of
such an equation then the output-section of the correspond-
ing subsystem will be executed before evaluating the
equation. The user then has to ensure that the inputs
which are used in that output section have been assigned
previosly. Warnings are given to aid sorting the equaticns.
There are plans to wake the program sort all the equations
automatically.

The sampling instances for cach discrete subsystem are
specified by a special variable in the system description.
This variable is updated at each sampling instance to con-
tain the time for the next sampling. After the activation
of some discrete subsystems it is thus known when the next
sampling should be performed. The differential equations,
which are parameterized by the discrete states and outputs,
can thus be sclved over the sampling interval by an ordi-
nary integration routine. At present there are a Hammings
predictor-corrector algorithm and a Runge-Kutta algorithm.
Both are able to handle discontinuities in the eguations.
There are plans to include an algorithm for stiff equa-
tions and aigebraic Toops.

There are cases when one wants certain cvents to occur
when some condition an the variables are fulfilled, i.e.
the next sampling of a system should be performed when
this condition is fulfilled. This feature requires modi-
fication of the integration routines and are planned to be
included Tater.

Another facility which is sometimes required, but not
implemented yet, is to reach the value of an input variable
tc a discrete subsystem at the timc just before the sam-
pling instance. This corresponds to placing synchronously
triggered sample and hold circuits at the inputs.

HMODEL LANGUAGE

Simnon includes a special lanquage for describing subsystems

and connections. The equations are entered using the as-
signinent statement of A?gal-60. The if-then-else construc-
tion has shown to be very useful and also eliminates the
need for special "nonmemory operators". The model lanquage
is very simple which has made it possible to do extensive
error checking. [f complicated models are used there is a
possibility to use Fortran subroutines for model descrip-
tion.

There are three types of systess, continuous, discrete and
connecting. Ccntinuous and discrete systens have the
following structure.

system heading
declarations
INITIAL-section
OUTPUT-section
DYNAMICS-section
END

The system heading gives the type of the system and its
nante. There are declarations to specify variable types.

The types are [NPUT, OUTPUT, TIME, STATE, DER, NEW and
TSAMP. The type DER is used in continuous systems to asso-
ciate a variable as derivative for a state-variable. The
dEl-declaration i< uscd in the same way in di crete systens
for the update of a state-variable. One vari:ible of type
TSAYMP is used in each discrete system to specify the next
sampling instance. The system description can also contain
parameters and auxiliary variables, which are not declared.

Parameters are assiqned by a statement of the following
form S

-

<parameter>: <number>

Initial values of state-variables can be assigned in the
same way. :

|
The INITIAL-section contains statements which are executed |
only before the simulation is started, e.g. parametric I
expressions. The OUTPUT-section is used to assign output
variables and the DYHAMICS section is used to assign DER-
or NEW- variables. Auxiliary variables can be used in all
sections and parameter assignirents can be done in all
sections.

The connecting system has the following structure.

system heading |
declaration

INITIAL-section

CONNECT-section

END

The CONNECT-section contains assignment statements for the
INPUT-variables of the subsystems. The same identifier may
be used for variables in different subsystems. The follow~
ing notation is therefore used in connecting system to
reference variables in the subsystems.

<variable>[<system identifier>]

The right hand part of the assignments may contain STATE-
and QUTPUT-variables which are referenced in the same way.

MODEL MANIPULATION

In Simnon the nodel manipulation is clearly distinguished

from the model itself. The model description is stored on |
files on mass storage. The manipulation of the models are |
done with commands with arguments. The commands are nor- |
mally entered from the terminal but can also be read from |
files. The results of the simulations are plotted on a |
graphical display. |

A brief description of the most important commands are
given below. Note that all facilities are not described.
For a compiete description see {1]. !

SYST <file name>...

This command compiles the system descriptions on the named

files. The last file should contain the connecting system.
The entire system description can, however, be done as a
single continuous or discrete system with no inputs.

The compiler is working in parallel with an editor. When
the compiler discovers an error an error-message is given
and the user directly gets the possibility to correct the
erroneous line by certain editing commands.

Some of the available editor commands are described below.

R <line>
Replaces the current line

C /<character string 1>/<character string 2>/
Changes some characers in the current line.
T
Goes to the beginning cf the file.
N <number of 1ines>
Goes a number of lines down the file.
L <character string>
Locates a specified string.

[<line>
Inserts a line.

U]
Deletes a line

E
Exits from the currently edited file.

STORE <variable>...

The simuiation results can either be stored on a file for
later plotting or plotted during the simulation. The comman
STORE is used to specify wnich variables should be stored.
If plotting is wanted during the sinulation the variables
are specified in the comnand PLOT. In that case the scaling
must be entered with the AXES-command since automatic

d

scaling can not be used.

SIMU <start time> <stop tiwme>

This command demands simulation of the system defined by
the previous SYST-command.

ASHOW <variable>... [(< variable>)]
SHOW <variable>... [(< variable>)]

If simulation results have been stored on a file they can
be plotted by these commands. Botn commands have a list
of variabies which will be plotted versus time or the
variable within parenthesises if any. The comaand ASHOY
finds appropriate scalings and draws axes before plotting.
The display area can be divided into several independent
plotting areas with the command SPLIT.

PAR <parameter> : <number>

Parameters are assigned in a special way in the system
descriptions. To alter parameter values between the simu-
lations one need not edit and recompile the system descrip-
tion. This can be done with the PAR-comniand.

INIT <state variable>:<number>

This command changes the initial value of a state variable.

SAVE <file name>

|After having altered parameters and initial values the
Icurrent values can be stored on'a file with this command.

'Restores a parameter set and a set of initial values from
a file.

GET <file name>

DISP <variable>...

Displays the current value of variables.

LIST <file name>
Lists the contents of files.

INTERACTIVE FACILITIES

The program Simnon is controlled by commands. The struc-
ture of each command is flexible. Arguments can in sone
cases be omitted. Default values are then used. One conmon
isituation when running the program is that the same se-
|querce of commands is given several times. The user can
Ithen difine a Macro containing the ccnmands. This Hacro
lis then used as a new command several times, possibly with
«different values of the arguments.

Repetitive loops and jumps can be introduced in a Macro.
It is even possible to make a !acro which makes the pro-
gram look like a question and answer program when executed.
This possibility can e.g. be used to introduce Simnon to
‘new users. The description of these faciiities can be found
iin [3].

EXAMPLE

|Some of the features of Siwmnon will be illustrated by an
example. The system considered is the tank systen shown
lin "Fig. 1"

IThe valve at the inlet is controlled by a requlator to
{keep the level constant. The valve at the outlet is exter-
inally manipulated. When studying this system the valve
area is considered as a disturbance.

IThe simulation study is used to determine a suitable regu-
lator and to find the regulator settings.

The model descriptions are shoun in "Fig. 2". The tank
and the valves are described in system TANK. The system
‘has two inputs, the signal V to the inlet valve and the
area of the outlet valve AOUT. The level H is the state
jand is also considered as output. The tank is controlled
by a process computer which contains a PIb-reguiator. The
‘model is called DPID.

87

The connections pf TANK and DPID is wmade in REGTANK. The
disturbance at the outlet is also given in REGTANK. Khen
tine=100 the gutlet area is increased frow 0.01 to.0.05.
The tank is initialiy eapty.

Reg . at L
ref h ? -

oy

Fig 1

The interaction with Simnon is shown below.
written after .

Comments are

>SYST TANK DPID REGTANK

>STORE H HREF QIN QOUT

>" TRY A PROPORTIONAL REGULATOR
>" WITH GAIN=1.

>PAR DT:5 " SET SAMPLING INTERVAL
>SIMY 0 200 .

>ASHOW H HREF QIN T

>" SEE FIG. 3 "

>

>" ELIMINATE THE STATIC ERROR
>" WITH A PI-REGULATOR.

>PAR TI:50

>SIMU

>ASHOW H HREF QIN
>" SEE FIG. 4

>

>" TOO LARGE QVERSHOT, TRY CONDITIONAL INTEGRATION.
>SAVE PIPAR " SAVE PARAMETERS
>SYST TANK DPID REGTANK - EDIT
EDIT
>E " NO CHANGES IN TANK
EDIT
>L DT/TI
NINTE = INTE + DT/TI*E
>R NINTE=INTE+(IF ABS(E)<ELIM THEN DT/TI*E ELSE 0)

> ELIM:1
>E
o - EDIT
>E " NO CHANGES IN REGTANK

>
>GET PIPAR "RESTORE PARAMETERS
>STORE H HREF QIN QOUT

>SIMU

>ASHOW H HREF
>" SEE FIG. 5
>

>" STUDY THE EFFECTS OF
>" DIFFERENT SAMPLING INTERVALS.
>MACRO SAMP

>FOR P=5 TO 25 STEP 10

>PAR DT:P

>STMU

>SHOW H

SNEXT P

>END

>

>AXES H Q0 200 v 0 3
>SAMP

>"SEE FIG. 6

[-1-]

CONTINUQUS SYSTEM TANK

INPUT V AOUT
STATE H
DER DH

DYNAMICS

VALVE = TF V<O THEN O ELSE IF V>1
GQIN = QMAX*VALVE

QOUT = AOUT*SQRT{ 2*G*MAX(H,0))
“DH = (QIN - QOUT)/AREA

QMAX: 1
G:9.81
AERA: 10

END

DISCRETE SYSTEM DPID

INPUT Y YREF
GUTPUT U

STATE INTE YOLD
NEW NINTE NYOLD
TIMET

TSAMP TS

OUTPUT
E = YREF - ¥
U

DYNAMICS
NINTE = I
NYOLD = Y
IS =7+ D7

NTE + DT/TI*E

GAIN:1
TI:1E10
1D:0
DT:1

END

CONNECTING SYSTEM REGTANK

THEN 1 ELSE V

GAIN*(E + INTE + TD/0T*(YOLD-Y))

TIME T
AQUT[TANK] = IF T<100 THEN Al ELSE A2
A1:0.01
A2:0.05
YREF[DPID] = HREF
HREF:2
Y{DPID] = H[TANK]
VITANK] = U[DPID]
END
Fig 2
Z
15
05
b . 50 : 0w 50 =

200

N //\

2 _‘____________.——
1

5

0 0 100 150 20
Fig 4
1
i |
|
0 '
X y =0 20 . 150 N
Fig 5
4
054
e - T - - - +
¢ 50 0 150 200
Fig 6
IMPLEMENTATION

Simnon is implemented in Fortran. The installation depen-
dent parts for character handling, file handling and plott-
ing are concentrated to small, well defined subroutines.

The compiler consists of two parts. The first is installa-
tion independent and translates the model to a pseudo code
which is stored in an integer array. The second part is in-
stallation dependent and translates the pseudo code into
machine instructions. It is not necessary to implement the .
second part because Simnon contains an interpretation rou- :
tine for the pseudo code, which can be used during the
simulations.

]
|
The interactive faciiities are handled by a general inter- |
active module [3] which can be used in other programs. The |
editor is also a separate module. i
The program was originally implemented on a PDP-15 computer
with 32 k 18 bits words. It has then also been installed

on Univac-1108, Dec-10, and Honeywell H6000.

CONCLUSIONS

Simnon has been used extensively since 1974 both for re-
search, education and tc solve industrial control and simu-
lation probiems. [t has been found that it is easy to learn
how to run the program and the interactivity makes it pos-
sibie to do fast simulation studies. The simple model lan-
guage and the extensive error checking makes Simnon well
suited for use in education. The possibility to include
sub5¥stems in Fortran makes it possible to use complicated
models,

The model class in Simnon is sampled data systems i.e. Sys-
tems governed by both ordinary differential equations and
difference equations. This is important as the use of digi-
tal computers for process control increases.

The transfer of the program to different installations re-
quires a moderate effort because of the previous mentioned
structuring of the program.

ACKNOWLEDGEMENTS

The author wants to thank Prof Karl Johan Astrom and Dr
Johan Wieslander for many valuable ideas and stimulating
discussions.

The work has been supported by the Swedish Institute of
Applied Mathematics (1TM).

REFERENCES

1. H. Elmqvist: "SIMNON - An Interactive Simulation Program
for Nonlinear Systems - USER's MANUAL", Report TFRT-3091,
Lund Institute of Technology, Department of Automatic
Control, April 1975.

2. H. Elmgvist: "Implementation of Simnon" Report, Lund
Institute of Technology, Department of Automatic Control,
(to appear)

3. J. Wieslander, H. Elmgvist: "INTRAC - An Interactive
Monitor - Reference Manual", Report, Lund Institute of
Technology, Department of Automatic Control, (to appear)

4. T. Glad: "Constrained Optimization. using Multiplier
Methods with Applications to Contral Problems", Ph.D.
Thesis, Report TFRT-1011, Lund Institute of Technology,
Department of Automatic Control, April 1976.

89

