
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Octree Light Propagation Volumes

Olovsson, John David; Doggett, Michael

Published in:
[Host publication title missing]

2013

Link to publication

Citation for published version (APA):
Olovsson, J. D., & Doggett, M. (2013). Octree Light Propagation Volumes. In [Host publication title missing]
Eurographics - European Association for Computer Graphics.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/cbd08e1a-2390-4111-8546-b634bd1b8445

SIGRAD 2013, pp. 1–6
T. Ropinski and J. Unger (Editors)

Octree Light Propagation Volumes

John David Olovsson1 and Michael Doggett2

1EA DICE, Sweden
2Lund University, Sweden

Abstract
This paper presents a new method for representing Light Propagation Volumes using an octree data structure,
and for allowing light from regular point light sources to be injected into them. The resulting technique uses full
octrees with the help of a separate data structure for representing the octree structure. The octree structure enables
light propagation to be performed at a lower resolution than the base resolution, resulting in fast propagation and
overall faster rendering times. The implementation of the technique is capable of rendering the Sponza scene at 9
frames per second, which is 8% faster than the original LPV technique.

1. Introduction

Realistic real-time illumination has been an important field
of research in computer graphics and games for a long time.
One large subset of real-time rendering techniques are dedi-
cated to providing realistic local illumination. There are also
techniques that try to model various aspects of global illumi-
nation, for example diffuse indirect lighting.

Unfortunately the nature of global illumination makes it
computationally difficult to achieve in real-time. As such it
is common for techniques targeted at real-time applications
to use rather crude approximations or to rely on preprocess-
ing. One problem with techniques relying on preprocessing
is that they are usually static. The introduction of dynamic
changes of the environment would require the preprocessing
to be redone in order to retain correct illumination.

Light Propagation Volumes [Kap09] (LPV) is a technique
which approximates global illumination, specifically diffuse
indirect lighting, without any preprocessing stage, in real-
time. While LPV runs in real-time, the uniform grid repre-
sentation does limit the scalability. In order to achieve a more
detailed and accurate result, the grid resolution would have
to be increased. Unfortunately this also means that it would
require more iterations to propagate the light throughout the
scene. Such a high resolution representation would also be
wasteful in any part of the scene which has no or relatively
uniform geometry.

This paper proposes to use a full octree, where all nodes
are allocated, instead of a uniform grid, to create a more effi-

cient and scalable technique. We further investigate the pos-
sibility of using multiple fully dynamic point light sources
instead of a single directional light source as used in the orig-
inal LPV technique. Our approach incorporates omnidirec-
tional point lights as the primary light sources and a dense
octree implementation as the data structure. We present re-
sults that compare performance to an LPV implementation
with a uniform grid and omnidirectional point lights.

2. Previous work

The LPV process is performed in four distinct steps. The
scene is first rendered from each light source into reflective
shadow maps [DS05]. The texels in these reflective shadow
maps are then used to represent virtual point lights. After the
reflective shadow maps have been created the contributions
of the virtual point lights are injected into a uniform three
dimensional grid. The grid encodes light color, intensity and
direction as two-band spherical harmonics. After the injec-
tion stage these initial values in the grid are then propagated
throughout the rest of the grid using an iterative process. In
each iteration each grid element receives a contribution from
each of the grid elements immediately surrounding it. The
accumulated result of all the propagation iterations is then
sampled during rendering to illuminate the final image.

LPV was extended with Cascaded LPV [KD10], which re-
places the single uniform grid with multiple such grids with
different density, positioned relative to the camera. These
grids all have the same resolution, but because of the dif-
ferent densities they have different extents in the scene. A

submitted to SIGRAD (2013)

2 J. D. Olovsson & M. Doggett / Octree Light Propagation Volumes

Propagation

Rendering

MergingDownsampling Propagation

VPL Creation

Light injection

Light injection
Traditional LPVs

Octree LPVs

Figure 1: An overview of the steps included in the octree based and the traditional light propagation volumes technique. The
steps are divided into those that are the same for both techniques and those that need to be implemented specifically for one
particular technique.

high density grid is used close to the camera providing high
detail close to the viewer while gradually lower density grids
are used further away from the camera.

The data structure used in CLPV is in some ways very
similar to that of the octree light propagation volumes which
is presented in section 3. Both use multiple overlapping
grids. The difference is that CLPV uses a small preset
of grids which all have the same resolution. Octree LPV
(OLPV) uses more volumes but with different resolutions.
In CLPV the different grids also cover a differently sized
area in world space, while OLPV grids all span the same
volume, no matter their resolution. Also, CLPV does not
need any separate grid to maintain the structure of the dif-
ferent grids. CLPV aims to prioritize spatial proximity to the
viewer when it comes to the quality and accuracy of the tech-
nique. In this paper we focus instead on proximity to scene
geometry and reflected indirect light instead.

Subsurface LPV [rea11] instead approximates the effects
of subsurface light scattering by usilizing a structure iden-
tical to LPV. It also introduces a new method for injecting
point lights into an LPV which is adapted by OLPV.

Sloan et al. [SKS02] introduced the concept of storing
pre-computed indirect illumination using spherical harmon-
ics. LPV uses this concept and in our implementation we use
the first two bands of spherical harmonics to store light flux.

Crassin et al. [ea11] present a technique for real-time in-
direct illumination that uses octrees. Their technique uses
a more complex sparse pointer based octree, resulting in
more complex memory access patterns than our dense oc-
tree method.

3. Algorithm

There are essentially two important parts of the octree data
structure. First and foremost are the octree levels themselves.
These store the actual data, but have no information about
the current structure of the octree. Then there is the index
volume. It complements the octree levels by keeping track of
how to index the octree levels and what structure the octree
currently has. To create the initial light contribution, omni-
directional light sources are rendered into six RSMs. These

RSMs are converted to Virtual Point Lights which have their
light propagated through the octree. The steps involved in
this technique compared to the original technique are illus-
trated in Figure 1.

3.1. Octree Representation

We use a full octree which allocates memory for all nodes
that could possibly exist down to a pre-defined level. By en-
suring that this memory is laid out linearly, it is possible to
compute the index or address for any node in the tree. Such
a representation is highly inefficient with regard to memory
usage if the represented data is sparse. It is however suit-
able in cases where the larger nodes represent a more coarse
representation of the data.

Because of the ease of use and the very straightforward
representation on the GPU, a full octree representation has
been chosen to replace the light propagation volumes from
the original technique. This imposes an additional cost in
GPU memory but has the benefit that each individual level
of the octree is just a uniform grid which is relatively easy
to work with. There will essentially be several overlapping
light propagation volumes of different resolutions covering
the same scene.

In order to simplify the description of these octrees a basic
notation is proposed. An octree is assigned a size, or resolu-
tion n, which should be a power of two n = 21,22, Given
an octree that corresponds to a n× n× n light propagation
volume, the highest resolution level of that octree also has
the size n× n× n. This level is the first level, or level i = 0.
There are a total of l = log2 n+ 1 levels in such an octree,
i = 0, . . . , l− 1. Since every level of the octree is a three di-
mensional grid it can be indexed using three indices, x̂, ŷ
and ẑ. Along with a level index i in which these indices are
used they uniquely denote a single element in the octree. The
indices are defined within the range x̂, ŷ, ẑ ∈ [0, . . . , n

2i]. The
notation Oi(x̂, ŷ, ẑ) denotes the grid element on octree level i
at (x̂, ŷ, ẑ).

As a complement to the full octree representation a sep-
arate index volume can be introduced. The index volume
would store integer indices instead of spherical harmonics.

submitted to SIGRAD (2013)

J. D. Olovsson & M. Doggett / Octree Light Propagation Volumes 3

Level 0 Level 1 Level 2

00

0

0

11

1

1

1

1

2

22

2

2

2

Resulting samplingIndex volume

Figure 2: A two dimensional slice of a flattened index vol-
ume, three levels of a full octree and the resulting sampling.

This volume is denoted I. It could be represented as just an-
other three dimensional structure of the same size n as O0.
Unfortunately, such a representation requires some quite in-
efficient operations to be added to the propagation step. In
order to avoid this, a hierarchy of such structures is used
instead. These are laid out in the same way as the data
storage structures themselves and can be denoted Ii where
i= 0, . . . , l−1, just as for the data itself. It is also indexed us-
ing the same coordinates (x,y,z) as the data. Each element in
the index volume is an integer index Ii(x,y,z) = 0, . . . , l−1,
originally initialized to l−1. This index is the number of the
octree level to sample for a particular volume in world space.
It will be populated with values during several of the steps
performed throughout the technique. Details of this will fol-
low later. During the sampling, the world position is then
mapped to an element in the index volume. The value in the
index volume is then used to do a second mapping into the
correct octree level. The complication with this representa-
tion is that there are l index volume elements that could be
picked for each world space position, one from each level i.
To solve that, the element containing the minimum value is
used.

An index volume I, with the levels Ii, i = 0, . . . , l − 1
where I0 has size n× n× n, is considered to have size
n. It can be indexed using the coordinates (x,y,z) where
x,y,z ∈ [0, . . . ,n−1] according to:

I(x,y,z) = min
i

Ii

(x
2i ,

y
2i ,

z
2i

)
The resulting sampling in the octree corresponds to
OI(x,y,z)(

x
2I(x,y,z) ,

y
2I(x,y,z) ,

z
2I(x,y,z)). This is illustrated, using a flat

visualization of the index volume, in Figure 2. Such a sam-
pling is additionally given the simplified notation:

S(x,y,z) = OI(x,y,z)(
x

2I(x,y,z)
,

y
2I(x,y,z)

,
z

2I(x,y,z)
) (1)

There are several possible ways to use the proposed octree
structure to replace an LPV. In this project it was chosen that
the propagation of the injected light should be performed in-
dividually on each level of the octree. This allows the LPV
propagation scheme to be used almost without any modifi-
cations in the octree representation. On first sight this may
seem wasteful compared to just propagating on the highest

resolution level, as in the original technique. However, the
elements of the other levels in the octree cover a larger vol-
ume in world space. As a result the light on those levels will
propagate further during each iteration. This allows the more
detailed levels of the octree to be used to light the parts of
the scene close to where the light was first injected. This will
often be the areas where that light still has high enough in-
tensity to be clearly visible. On the other hand, parts of the
scene further away from this reflected light are unlikely to
be hit by much indirect lighting. Because of that, those parts
can be safely lit using a more coarse approximation of the
indirect lighting.

3.2. Light Injection and Downsampling

Parts of the LPV technique were implemented using CUDA.
CUDA was chosen to perform the light injection and light
propagation in the place of shaders. Among other things this
requires a different approach to light injection then the point
based rendering used in the original papers [Kap09, KD10].
It also relies upon efficient sharing of memory between the
GPGPU processing and the shaders.

Light is injected into the octree level O0 in the exact same
way as in the original technique. Each element Oi(x,y,z),
i = 1, . . . , l−1 will cover exactly the same volume in world
space as a specific set of eight elements from Oi−1. These
elements are Oi−1([2x,2x + 1], [2y,2y + 1], [2z,2z + 1]). In
order to maintain a uniform range of light intensities in all
octree levels, each element in Oi is populated by simply av-
eraging the corresponding eight elements from Oi−1:

Oi(x,y,z) =
1
8

2x+1

∑
x̂=2x

2y+1

∑
ŷ=2y

2z+1

∑
ẑ=2z

Oi−1(x̂, ŷ, ẑ) (2)

The process of populating the layers i 6= 0 using the above
averaging formula is called the downsampling step. It is con-
sidered as a separate step, since it is done after, and com-
pletely without any interaction with the injection step.

3.3. Propagation

After the injection and downsampling steps the octree con-
tains an initial distribution of the diffuse reflected light in the
scene. The index volume generally gives lower values close
to geometry and higher values in empty areas. The next task
is to allow this initial light distribution to propagate through-
out the scene.

The propagation is done individually on each level of the
octree. Each level is propagated in the same way as the single
level was propagated in the original technique. But because
of the hierarchy of the octree, light on lower levels of the oc-
tree is propagated further each iteration and can thus achieve
coverage of the entire scene using much fewer iterations.

We use the light propagation scheme described by Ka-
planyan and Dachsbacher [KD10], because it has better the-

submitted to SIGRAD (2013)

4 J. D. Olovsson & M. Doggett / Octree Light Propagation Volumes

Merge computation

Propagate computation

Downsample computation

Inject computation

Clear computation

Pre−render root node

Real scene node

Light spheres node

Root node

Root camera

Main scene node (Sponza)

Light sources (*)

Lights node

Light geometry (*)

Light source root nodes (*)

Pre−render camera (*)

Pre−render scene node

Pre−render branch Render branch

Figure 3: Diagram showing the structure of the scene
graph used in the real-time implementation. Non-essential
branches have been omitted. Nodes marked with a star (*)
and diverging incoming arrows, may exist in multiple copies
for each parent node.

oretical coverage. This includes maintaining a separate grid
that contains the geometry of the scene.

3.4. Merging and Rendering

After the propagation, the scene can be rendered as in the
original technique, with the exception that the sampling
scheme from Equation 1 must be used. This is however not
practical, since it would require the rendering pipeline to
have access to, and be able to read both all the levels of
the octree Oi, and all the levels of the index volume Ii. To
avoid this an additional merge step is introduced. It stores all
the sampled values using S(x,y,z) into a single traditional
n×n×n LPV M where:

M(x,y,z) = S(x,y,z)

Once the merge step has been completed the result is just
a single LPV that works in the exact same way as in the
traditional technique. This also makes it possible to use the
exact same rendering step as in the traditional technique.

3.5. Real-Time Implementation

A scene graph is used to put together the rendering passes
and the setup is shown in Figure 3. The pre-render branch
is responsible for performing all the steps of the technique
from the creation of the RSMs to the merging step. Note that
it does not perform the actual rendering. That is done in a
separate branch, the rendering branch. Both these branches
eventually end up in the main scene node which contains the
loaded Sponza model.

Figure 4: Samples of rendered images using the real-time
implementation. The leftmost image shows only indirect il-
lumination without any textures. The center image shows in-
direct illumination but with textures. The rightmost image
shows the final rendering with both direct light, indirect light
and textures. Note that the effect of indirect lighting has been
slightly exaggerated in these images.

4. Results

We have implemented our algorithm using OpenSceneGraph
with osgCompute and CUDA. The final version of the real-
time implementation has been manually tuned both based
on visuals, performance and simulated results. This version
uses a total of k = 4 iterations, since further iterations no
longer contributes visually to the resulting intensity levels.
The octree has a size of 323 and the RSMs have resolution
1024×1024, while the effective resolution with regard to the
LPV technique is 256× 256. The volume is sampled only
once in each 4×4 region. This allows for high quality shad-
ows while maintaining reasonable performance during light
injection. In our implementation the parameters for propaga-
tion are based on those used in NVIDIA’s implementation of
CLPV from [Cor0]. The propagation factor is set to p = 3. A
rendering using our technique of the Sponza dataset is shown
in Figure 4. Figures 5, 6 and 7 show the full version, and
other examples.

Figure 5: The sponza scene rendered using only indirect
illumination and without any diffuse texturing. Note that the
indirect lighting has been slightly exaggerated in this image.

There are small intensity variations between levels of the
octree, but these have little visual impact on the final image.
Also, light can propagate further in the lower levels of the

submitted to SIGRAD (2013)

J. D. Olovsson & M. Doggett / Octree Light Propagation Volumes 5

Figure 6: The sponza scene rendered using only indirect
illumination but with diffuse texturing. Note that the indirect
lighting has been slightly exaggerated in this image.

Figure 7: The final rendering of the sponza scene with both
direct and indirect illumination and diffuse texturing. Note
that the indirect lighting has been slightly exaggerated in
this image.

octree leading to a slightly higher overall ambient lighting of
the scene. Again this has minimal impact on the final image.

4.1. Error Measurement

There are a variety of ways to measure errors of the type of
data contained in an LPV. Here we measure the average pair-
wise error between two spherical harmonics vectors ae and
be. The infinity norm ||v||∞ = max

i
vi, or max norm, of the

vectors is used to calculate the errors. Both the absolute error
||ae−be||∞ and the relative error ||ae−be||∞

||ae||∞ is considered.

Each element in the octree can be denoted by four in-
dices, the octree level i and the coordinates within that level
(x,y,z). For each such element i 6= 0, it is possible to cal-
culate an averaged value from the corresponding elements
from level i−1 according to the downsampling in Equation
2. The downsampled value can be denoted Ôi(x,y,z). There
are then two error metrics, the average absolute error eabs

Figure 8: The errors measured after each iteration during
a simulation. Both the average absolute errors and the aver-
age relative errors are presented.

and the average relative error erel of all elements in the oc-
tree i 6= 0. They are defined according to:

eabs =
7

8l−8
·

l−1

∑
i=1

∑
p∈Oi

||Oi(p)− Ôi(p)||∞

erel =
7

8l−8
·

l−1

∑
i=1

∑
p∈Oi

||Oi(p)− Ôi(p)||∞
||Oi(p)||∞

In the above expressions, 7
8l−8 is the inverse of the com-

bined number of elements in O1, . . . ,Ol−1, derived from the
geometric sum, and p = (x,y,z).

We have created a simulator that models just the light
propagation. The two metrics eabs and erel are the primary
error measurements calculated by the simulator. It calcu-
lates the values for both of them after each iteration during
the propagation. Figure 8 shows the errors for a simulation
closely corresponding to the situation in the real-time imple-
mentation. This shows that the average relative error gener-
ally increases steadily up until approximately 20 iterations.
After that it is essentially constant. This is simply because
there is no noticeable light intensity left in the buffers at
that point. This causes the accumulation buffer to remain the
same after each iteration. The average absolute error exhibits
a less erratic behaviour. It also stops increasing much sooner
then the average relative error.

It makes sense for the errors to be increasing gradually
each iteration. After all, during the downsampling, the val-
ues of Oi are chosen to be exactly that of Ôi. Each itera-
tion then introduces a small error compared to what a newly
downsampled value would give. This makes O diverge from
Ô more and more until they stop changing. Using fewer iter-
ations will result in less coverage by high resolution levels of
the octree. At the same time it will also result in less diver-

submitted to SIGRAD (2013)

6 J. D. Olovsson & M. Doggett / Octree Light Propagation Volumes

gence from the ideal light distribution. Using many iterations
can however void the problem with the higher divergence
to some extent since the final solution would instead con-
tain more of the higher resolution levels of the octree, and
specifically O0. Along with the related performance consid-
erations it is still a trade off between speed, accuracy and
visual quality.

4.2. Performance

The original LPV technique theoretically needs k = 32 it-
erations in order to propagate light throughout the entire
volume, even though k = 16 iterations is often more then
enough in practice. Using the OLPV technique, this num-
ber was lowered to k = 4. The intention is that this decrease
should be able to more than make up for the added time to
manage the more complex data structure.

All of the performance data in this section is generated
on a computer with an NVIDIA GeForce GTX 480 graphics
card. The focus has been on the newly added steps that are
closely tied to the octree representation. This also includes
modifications to previously existing steps from the original
technique which were required for compatibility with the
new octree structure. This includes the downsampling, prop-
agation and merging steps, but generally not the creation of
RSMs, light injection or the final rendering.

To ensure that timings were accurate, the CUDA kernels
were run with CUDA_LAUNCH_BLOCKING=1 to disable
asynchronous kernel launches. This only ensures that CUDA
kernels are not asynchronous, so other CUDA operations and
OpenGL operations could run synchronously. We rendered
500 frames and timing results are shown in Table 1.

Table 1 shows that the OLPV technique outperforms tradi-
tional LPV by 8%. The propagation is the stage of the tech-
nique which experiences the highest increase in speed, al-
most 60%. This follows from the decrease in iterations from
k = 16, when using the uniform implementation, to k = 4,
when using the octree implementation. This speed increase
is partially countered by the addition of the downsampling
step, the merge step and managing the index volume.

The NVIDIA implementation of CLPV [Cor0] reaches a
frame rate of between 60 and 80 frames per second with
similar settings, but with a single directed light source. This
equals a single RSM, rather than the 18 that are used in the
implementation in this project.

5. Future Work

There are several possible improvements to the OLPV tech-
nique. Currently there is only one propagation factor for the
entire octree. Analytically computing separate propagation
factors for each level of the octree would give a more realis-
tic propagation in the lower levels. Also propagating light on

the lowest level of the octree instead on each level could im-
prove performance and enable investigation of more sparse
octree representations.

The biggest performance gain could be achieved by us-
ing a more efficient implementation of the light injection,
such as point based light injection. Several optimiziations
of the CUDA implementation are possible. Including mak-
ing better use of local, shared and texture memory instead
of global memory, ensuring memory access is optimized for
cache access, and optimizing branching within warps to en-
sure threads are less divergent.

6. Conclusion

The paper presented a new technique for Light Propagation
Volumes using octrees. It uses a representation based on full
octrees and adds a so called index volume which keeps track
of which level of the octree to use for each part of the scene.
On top of the original technique and the new octree represen-
tation, the technique also adds new steps of downsampling
the injected light and merging the octree into a traditional
uniform LPV. Also light is injected from omnidirectional
point light sources rather than just directional light sources.

With more restricted usage of RSMs and careful artist
control of the scene, we believe that this technique could be
used for real-time global illumination effects in games.

References
[Cor0] CORPORATION N.: Nvidia direct3d 11 sdk - diffuse

global illumination demo. http://developer.nvidia.
com/nvidia-graphics-sdk-11-direct3d, 0. 4, 6

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In Proceedings of the 2005 symposium on Inter-
active 3D graphics and games (New York, NY, USA, 2005), I3D
’05, ACM, pp. 203–231. 1

[ea11] ET AL C. C.: Interactive indirect illumination us-
ing voxel cone tracing. http://research.nvidia.
com/sites/default/files/publications/
GIVoxels-pg2011-authors.pdf, 2011. 2

[Kap09] KAPLANYAN A.: Light propagation volumes in
cryengine 3. http://www6.incrysis.com/Light_
Propagation_Volumes.pdf, 2009. 1, 3

[KD10] KAPLANYAN A., DACHSBACHER C.: Cascaded light
propagation volumes for real-time indirect illumination. http:
//dx.doi.org/10.1145/1730804.1730821, 2010. 1,
3

[rea11] RLUM ET AL J. B.: Sslpv subsurface light propagation
volumes. http://cg.alexandra.dk/wp-content/
uploads/2011/06/SSLPV_preprint.pdf, 2011. 2

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In Proceedings of the 29th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2002), SIGGRAPH ’02, ACM,
pp. 527–536. 2

submitted to SIGRAD (2013)

http://developer.nvidia.com/nvidia-graphics-sdk-11-direct3d
http://developer.nvidia.com/nvidia-graphics-sdk-11-direct3d
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://www6.incrysis.com/Light_Propagation_Volumes.pdf
http://www6.incrysis.com/Light_Propagation_Volumes.pdf
http://dx.doi.org/10.1145/1730804.1730821
http://dx.doi.org/10.1145/1730804.1730821
http://cg.alexandra.dk/wp-content/uploads/2011/06/SSLPV_preprint.pdf
http://cg.alexandra.dk/wp-content/uploads/2011/06/SSLPV_preprint.pdf

J. D. Olovsson & M. Doggett / Octree Light Propagation Volumes 7

Octree (ms) Uniform (ms)
Part Count Average Total Diff Average Total
Frame 500 106 53193 -4801 115 57994
RSMCreate 9000 0 3053 316 0 2737
GVClear 500 1 671 -50 1 721
GVInject 1500 10 15593 -110 10 15703
GVDownsample 500 0 55 55 - -
IXClear 500 5 2923 2923 - -
LPVClear 500 8 4461 270 8 4191
LPVInject 1500 13 19929 -2884 15 22813
LPVDownsample 500 0 142 142 - -
LPVPropagate 500 7 3788 -5615 18 9403
LPVMerge 500 0 39 39 - -
Total -4914

8.28%

Table 1: Data specifying the amount of times each part of the technique was executed and how long these executions took, both
in total and on average. The data is presented both for the octree based implementation and the implementation using uniform
light propagation volumes.

submitted to SIGRAD (2013)

