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Popular summary in English

Some 4 billion years ago, nature began the experiment that led to you, that bird on
the branch, that branch, and everything else which is alive that you see around you.
The generating process of all this splendid life is, of course, evolution. Evolution
works not only on the macroscopic scale (think eyes, muscles, wings) but also on
the molecular scale (think molecular antennas, nanoscale muscles, nanoscale motors).
On the molecular scale, almost everything with a function is made of proteins and
by proteins. Understanding how proteins work is, therefore, a major goal in science.
They also play a crucial role in society: Our ability to engineer and design them is a
key reason why many cancers are no longer a death sentence, why we can cold-wash
your laundry (yearly saving the environment from millions of tonnes of CO5), and
it provides essential research tools for understanding the mechanics of life. However,
proteins are not easily engineered. They do not have the same elegance as the famous
DNA double-helix. Instead, there are, in the words of one of the discoverers of the
hemoglobin structure (the protein that transports oxygen throughout your body),
"hideous and visceral-looking™! objects.

To improve our ability to design proteins, we looked to nature for advice. Ima-
gine visiting the butterfly collection at the Geological Museum at the University of
Copenhagen, with the goal of altering the wing of a butterfly to improve its flight cap-
abilities. You are met with a menagerie of thousands of wing shapes and body sizes.
Which shape gives the fastest flight? Do you just "average” the wing-shape or do you
take the most common shape? Neither. You need to know how flight capability af-
fects survival and a model of how survival affects the observed butterfly diversity. In
this thesis, we pursued a similar path, but for proteins. They are not kept at display
in a traditional museums, but are stored in digital libraries accessible to anyone with
an internet connection. We found that most of the variation in proteins could be
explained by their stability (in the butterfly analogy, that flight capability is a major
determinant of survival). Stability is an essential property for that protein engineers
seek to optimize. We further found that stability could be predicted from the observed
diversity.

Using the above knowledge and structure based models of protein stability, we
designed a type of protein called antibodies. Antibodies are the reason that your
body, most of the time, can defend itself against the festering of bacteria, virus, fungi,
and cancers. They are also the reason that the biopharmaceutical industry earns some
200 billion dollars each year. We designed new antibodies that could bind two protein
targets, and developed a new method, which could predict the structure of antibodies.

Max Perutz






Chapter 1

Introduction

Nothing in Biology Makes Sense Except in the Light of Evolution®

Some 4 billion years ago life emerged on Earth [2] marking the beginning of
one of the greatest natural experiments of all — evolution. Proteins soon became the
main component of the molecular machinery of life and remained so ever since. Aside
from being essential to all life forms, proteins were also co-opted by us humans for
medical and technological purposes: We use them in vaccines to evolve our immune
system to resist pathogenic invasions, in biopharmaceuticals to target cancers, and in
industry to make more environmentally friendly processes. Over the past century, we
interrogated the expanse of natural protein diversity, and we know today the sequence,
structure, and function of millions of proteins, all connected through the process of
evolution that built the tree of life. How can we use this information to understand
evolution and improve or enable new medical and technological protein applications?

In this thesis, we studied the origin of patterns in protein evolution (paper I). En-
couraged by the apparent simplicity we developed a new method to simulate protein
evolution (paper II). We asked how one best interprets natural protein diversity to
improve protein thermostability (paper III) — an essential parameter both in natural
evolution and in industry. We developed a new evolutionarily-consistent method to
predict the structure of antibodies, a type of immune system proteins (paper IV). We
applied the prediction method to understand the molecular details of an antibody
with relevance for cancer therapeutics (paper V). Using the evolutionary lessons we
had yet to fully understand (paper I1I), we used the natural sequence and structure di-
versity of antibodies to develop an antibody design algorithm (paper VI) that proved
successful in creating new protein-binding antibodies (paper VII).

IChristian Theodosius Dobzhansky [1].






Chapter 2

Evolution and evolutionary
dynamics

All models are wrong, but some are useful *

Since Charles Darwin in 1859 described his theory of biological evolution [s] (also
see [6]), which explains how species arise through natural selection between varying
individuals with inheritable traits, much progress has been made. In the 1920s and
1930s the theory was married to Mendelian genetics by Roland Fisher, J. B. S. Haldane,
and Sewall Wright and further expanded by Motoo Kimura in the 1950s, who realized
that most observed mutations are the result of random genetic drift 7, 8]. In 1953,
with the structure of DNA by Rosalind Franklin, James Watson, and Francis Crick,
the physical basis of the theory was established [9]. Evolution has morphed from
being a qualitative theory, to a quantitative theory, which is explained in the language
of biology, mathematics and biophysics.

This chapter touches on the foundations of the theory applied in paper I-III.
We discuss the origin and consequence of mutations, the fate of mutations, and the
distribution of diversity.

2.1 The origin of mutations and effect of mutation

The three basic building blocks of evolution are mutation, replication and selection.
Mating (recombination) does not result in new (or, as Darwin had struggled, loss
of) genetic variation [10, 11]. Instead, mutations are the ultimate source of innova-
tion on which evolution can act. Mutations occur in genetic material due to intrinsic

1[3, 4] George Box. In constructing models of evolution it is clear that, the complete ”true” model
is impossibly complicated, and would be as helpful as a 1:1 map of navigating the London Underground
(that is, not at all). The question whether useful models that capture the essential patterns of evolution
can be constructed?
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instability of the nucleotides, environmental factors including radiation damage and
chemicals, and the finite fidelity of the replication machinery. Genetically, there can
be several consequences of a mutation event: A large proportion of mutations are
point mutations, where a single base-pair is altered in the DNA [12], but mutations
can also be tandem substitutions [13, 14] or insertions/deletions of one or more nuc-
leotides.

Mutations affect the organismal fitness, and it is on these fitness differences that
selection can act. Biologists offer no single definition of fitness [15] and theoreticians
debate how it is best described [16]. We proceed with a simple definition, that ab-
solute fitness describes the expected reproductive success of the organism. Next, and
henceforth, we disregard the absolute definition and instead uses a relative fitness, w,
where fitness is normalized by the fitness of the fittest type, so w € [0, 1]. Relat-
ive fitness is typically used since, in nearly all cases, only fitness differences matter to
selection [15].

2.2 The fate of mutations is stochastic

Much insight can be derived from studying the deterministic differential equations
that describes the growth behavior of competing species [17], but that approach can-
not describe the important effects that stochasticity has in natural evolution. Instead,
and of relevance for paper I-III, we will analyze the evolutionary dynamics in popula-
tions of constant size resulting from stochastic birth-death processes. Two birth-death
processes are of special prominence: The Moran process and the Wright-Fisher pro-
cess. In the following we simulate evolution using the Wright-Fisher process, which
is as follows: Consider a population with constant size N. The population has at least
two types, A and B, with fitnesses w4 and wp, and initial frequencies f; (A4) and £ (B).
At each time step, all individuals reproduce with a probability proportional to their
relative fitness, and thereafter, all individuals of the parent generation die. This birth-
death behavior is similar of that of for instance annual plants.

To illustrate the behavior of the Wright-Fisher process, we start by considering
the evolutionary dynamics when type A and B has the same fitness and no mutations
occur. In figure 2.1 we follow 5o trajectories of f(A) for various NV and initial fre-
quencies fj (4). We see that a special situation occurs whenever a type overtakes the
population achieving so called fixation. At this point no further evolution happens
until new mutations occur. As a result, without mutation, selection acts to purge
populations of diversity. We can also observe that fluctuations are much more rapid
when the population size is small, which result in both higher fixation probability and
as shorter time to fixation. The random fluctuations (drift) in genetic variation also
means that new exactly fitness neutral mutations can attain fixation.
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Figure 2.1: Stochastic simulations of constant size (N) populations evolving through 250 generations under the Wright-
Fisher process. The initial population consists of £ (4) * &V instances of type A and (1 — £;(4)) = N of type
B, where £ is the initial frequency. Both types have the same fitness.

Next, we consider what happens when type A and B have different fitnesses. Of
special interest is the situation where a novel mutant B arise in an otherwise homo-
geneous population of type A. It is useful to define the selection coefhicient (eq. 2.1),
s, which measures how much fitter B is compared to A:

s = =1 @)

In figure 2.2, we follow possible trajectories of frequency f(A) starting from one
individual in populations of various sizes and with varying selection coefhicients. We
see that selection is not omnipotent — advantageous mutations can be lost due to
genetic drift and slightly detrimental mutations can attain fixation.
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Figure 2.2: Stochastic simulations of constant size (N) populations evolving through 250 generations under the Wright-
Fisher process with different selection coefficients (s). Every simulation start with one instance of the mutant
(A) in a population of (N-1) individuals of type B

To understand the dynamics quantitatively, we simulated s0.000 independent
trajectories and calculated the mean fixation probability for different population sizes
and selection coefficients (Fig. 2.3). We see that a range of selection coeflicients are
nearly neutral (have fixation probabilities equal 1//N) when s € [—1/2N,1/2N].
An exact analytical description of the expected fixation probability of new mutations
under the Wright-Fisher model is not known. Motoo Kimura [18], derived a very
good approximation (eq. 2.2), which is shown as lines in Fig. 2.3.

, 1 — exp(—2s)
mura — 5
A=B 1 — exp(—2Ns) (22)
A slightly more accurate approximation was recently derived by Sella and Hirsh
[19].

e//a&Hzrxb 1— (WA/WB)Z
P = T =
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dot represents the mean fixation probability across 20.000 Wright-Fisher simulations. The error bar represents
the standard error of the mean. The grey lines shows Kimura’s fixation probability equation.

The Moran process is identical to the Wright-Fisher birth-death process with the
exception that it models overlapping generations, as only one individual is selected
for reproduction and one for death at each time step. This result in genetic drift that
is twice as strong as under the Wright-Fisher process, but qualitatively the dynamics
are similar.

Throughout this work, we assume that mutation-fixation events occur accord-
ing to the Wright-Fisher process in a constant environment as described by Kimura’s
equation. Although the Wright-Fisher process is robust to changes in the birth-death
process, it does not capture all aspects of reality. In nature, population sizes and se-
lection pressures fluctuate, resulting in off-equilibrium effects, which broadens the
range of neutrality and modifies the fixation probability in specific ways depending
on the exact fluctuation behavior [20]. By applying Kimura’s fixation equation, we
also assume that new mutations arise in otherwise monomorphic populations. This is
only true under conditions where the mutation rate is low and selection is strong. It
is known that heterogeneity requires special considerations [21, 22]. Likewise, special
considerations must be taken when the population is subdivided [23]. The degree by
which subdivision, heterogeneity, and fluctuations affect the mean behavior of evol-
ution in general, is unclear.

2.3 The equilibrium distribution of states

For a given element, be it a particular gene, a single position in a protein, or a higher-
level phenotype, one can describe it as situated in a finite state-space. For proteins,
John Maynard Smith, pictured the vast sequence-space and hypothesized that all pro-
teins were part of the same continuous network, each sequence connected to all other
through mutational paths [24]. The transitions between states can be described by a
Markov process with rate matrix, Q:
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Q= <—MABPAB uapPyp > (2.4)
upaPps  —upaPps

where #4p represents the proposal rate of mutation between state A and B, while
Pyp is the fixation probability of the mutation. Assuming that all states are connected
(all states can mutate to all other states through some, possibly multi-state, path)
and that detailed-balance is satisfied?, the Markov process has a unique equilibrium
distribution, which assuming that s < 1 in eq. 2.2 is given by

_ Oiexp(2Nw;)
' >_; b exp(2Nw))

where 6; is the degeneracy of the state, Vis the population size and w is the relative
fitness of the state [19, 26]. Sella and Hirsh noted that this is analogous to the dis-
tribution of states (conformation) in a thermodynamic ensemble, which is described
by the Boltzmann distribution [19], but where physical ensembles depends on energy
and temperature, evolutionary ensembles depends on fitness and drift.

(2.5)

u,. -P

AB AB

(

u, - P

BA BA

Figure 2.4: A simple Markov process where transitions happen between two states. Evolutionary transition rates are
determined by the mutation proposal rate («) and the fixation probability (). The equilibrium frequency of
each state is given by 2.5.

The flux between any two states is 43 = 74Qup and the exchangeability is
4B = Qup/7p. In paper II, we seek to reproduce the exchangeability and stationary
frequencies between amino acids in evolution.

2.4 The rate of evolution

The rate of evolution is of special interest and again is only examined under equilib-
rium conditions. Also here Markov processes provide an apt mathematic framework

2The Moran birth-death process with mutation and selection satisfies the detailed balance condition
piaQuB = pipQpA for all A, B, while the Wright-Fisher process only satisfies it in certain limits [25].
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to describe it. The rate of a Markov process is the sum of fluxes leaving all states.
The flux out of one state is simply it equilibrium frequency multiplied by its rate to
all other states, where rate in evolutionary dynamics is described as the product of
mutation rate and the fixation rate.

M= Z Z 7 Qisj (2.6)
i i
To get an intuitive understanding of the trade-off between selection pressure (§ =
Ns) and rate, we consider the simple situation illustration in Fig. 2.4. We set the
mutation proposal probability equal in both directions # = 1 and determine the rate
as given by eq. 2.6, 2.1, and 2.5. Figure 2.5 shows how the rate decreases as the selective
pressure increases.
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Figure 2.5: The rate of evolution at one site decreases with increasing selection pressure. The rate is calculated relative to
the rate of neutral mutations by numerical evaluation of equation 2.6, 2.1, and 2.5 for the Markov process
shown in fig. 2.4.

2.5 Inferring protein properties from sequence alignments

In the sections above, we have discussed amino acid frequencies, site-rates, and substi-
tution rates between amino acid as if they were measurable quantities. They are not.
No observable data exists, which directly describes them. Yet, as with the mass of
an unobservable planet causing a slight wobble in the light from a distant star, these
hidden variables can be inferred from other observations interpreted through models
of the signal generating process. In this thesis work we have not attempted to improve
on those statistical models but have used them as given. For this reason, we shall not
detail the statistical and phylogenetic methods here, but refer to Felsenstein’s book on
phylogeny for that purpose [27]. Instead, we aim provide a sense for the high-level
logic that goes into them.

Protein properties are often inferred in bioinformatics and phylogenetics using
the Markov models described above. Assuming site-independency, a single site can
be described by the rate matrix for site L, QL with the site-rate y (eq. 2.6). At this,



10 Evolution and evolutionary dynamics

already approximate level of description, the model contains 209 free parameters (190
exchangabilities and 19 stationary frequencies) per site in the modeled protein. Most
sequence alignments do not contain sufficient amount of information to reasonably
allow parameterization of that many parameters. Instead, further approximations are
made. It is often assumed that a single substitution rate matrix (Q) is relevant for all
sites®. 'This matrix is typically scaled so that # = 1, which corresponds to that one
time step yields 1 expected amino acid substitution per site.

A major variation in evolutionary behavior across sites, is the site-specific rate.
Therefore, while maintaining an invariant relative substitution pattern, Q is typically
scaled by a site-specific rate parameter u”, the likelihood of which is typically de-
scribed by a gamma-distribution. Using site-specific rates, site-specific rate matrices
are calculated as, QY = Qu’. The probability matrix for substitution between any
two amino acids over a given expected number of substitutions (thought of as pro-
portional to time) is:

P = exp(Q"?) (2.7)

the right term denotes the matrix exponential. For a given phylogenetic tree, T,
describing the evolutionary history of the data (alignment of sequences), D, a set of
site-specific rates p, a substitution matrix, Q, a likelihood can then be calculated as:

L=1]cwQ s 1 (28)
L

where the product runs over sequence data for all sites, L, and £(D|Q, #*, T)
is the likelihood of the data given the parameters. The unknown parameters, here
the substitution matrix (Q) site-rates (), and the tree (T), can then be inferred by
finding the parameters, which maximize the likelihood of 2.8. More generally, the
use of such maximum likelihood models is how protein properties are often inferred
from sequence alignments, and methods are available to infer site-rates, substitution
matrices, site-specific equation frequencies of amino acids, trees and more. Sensible
Bayesian approaches, which takes prior probabilities of parameters into account has
also been developed, and were used in the inference of rates in paper II [28].

We finally note that the sequence alignment is not observable, but should in prin-
ciple be part of the parameter set that is being inferred [29]. Through this work, we
have taken sequence alignments (typically generated with MAFFT [30]) as given point
estimates.

3Given to the chemical and functional heterogeneity between sites in proteins, this assumption is
clearly absurd. However, it works sufficiently well on average that it practice provides a good starting
point for inferring phylogenies.



Chapter 3

The evolution of proteins

Life is the mode of action of proteins

In this chapter, we focus specifically on the evolution of proteins. We discuss
the many ways DNA mutations can change the sequence of a protein, distribution
of fitness and energetic effects of mutations, and how the protein sequence relates to
fitness and protein function.

3.1 Mutations can change proteins in various ways

Proteins are produced by translating RNA that has been transcribed from DNA. Each
amino acid is encoded by 1 to 6 different codons (base triplet). Mutations in the DNA
can change the protein sequence in several ways. Insertion and deletions (indels) of
pieces of DNA that is not divisible by three result in frameshift mutations. They can
change the entire protein sequence downstream of the mutation site and are typically
detrimental to the function of the protein. Indel mutations, with a length divisible
by three, change the length of the protein and might not be detrimental. Other
mutations only change a single base or codon in the DNA. Due to the redundant
nature of the genetic code, such mutations can be synonymous in that they encode
the same amino acid. However, synonymous mutations are no guarantee that fitness
is not affected, as some codons are translated more efficiently and/or accurately than
others [32, 33]. Non-synonymous mutations result in substitutions to other amino
acids (missense mutations) or might prematurely stop translation if resulting in a stop
codon (nonsense mutation) or changes to the start codon. Finally, missense substitu-
tions can also be introduced during protein synthesis and it has been estimated that
around 18% of all average-length protein molecules contain at least one translational-
missense error [34]. In this thesis work we have considered the fitness effects of mis-
sense mutations.

!Friedrich Engels according to William Henry Bragg [31]

II
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3.2 What determines the fitness of a protein?

Each protein in an organism can be thought of as multiplicatively contributing to
the organismal fitness. Returning to the relative fitness definition, each protein can,
at most, contribute with w,,,, = 1 and at least with w,,;, = 0 if the protein is
essential (non-essential proteins would have a w,,;, > 0). For brevity, we define
the multiplicative fitness contribution of a protein to the organism, simply as prozein
Sitness.

3.2.1 Fitness benefits

Protein fitness is the product of many biophysical properties. Ultimately, the be-
nefit of a protein comes from its function, which is achieved by energetically favor-
able interactions. Through these interactions, proteins catalyze chemical reactions,
bind ligands, transduce signals or perform other essential functions of life. With the
possible exception of intrinsically disordered proteins, the folding of the amino acid
chain is a prerequisite to correctly form a three-dimensional chemical environment
compatible with function. It is therefore not surprising that many models of pro-
tein fitness have used the probability of the folded state as a proxy for protein fitness
([35]). It follows from statistical thermodynamics that a protein with folding free en-
ergy AG = Gpded — Gunfolded has a probability of being folded (Pg44) as shown in
figure 3.1 and given by

1
1 + exp(AG/RT)

where R is the gas constant and 7'is the absolute temperature. For plots through-

Photded = Whiided = (3.1)

out this thesis work we used R7" = 0.6 kcal/mol, corresponding to a temperature of
T = 300K. In itself and for proteins that are active in their folded states, eq. 3.1 can
be interpreted as multiplicatively contributing to protein fitness. The fraction folded
fitness expression is also commonly used through the literature, in some cases in the
form of a simple step-model (the threshold model) where R7 = oo [35].

More realistically, it is not always sufficient for function that the protein is folded,
as the thermal jitter of amino acids or loops results in many non-functional folded
states. Given multiple competing states, the probability of one (active), is described
by the Boltzmann distribution

Povtive = w (.2)
> exp(E;/RT)

The ”competition” between functional and alternative states has important con-
sequences in natural proteins. For instance, it appears that evolution restricts the
side-chain conformations of amino acids in binding-interfaces [36], possibly to avoid
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non-specific interactions, but also to lower the entropy-cost of binding. The neces-
sity to design against alternative states is perhaps most clearly demonstrated by the
many cases of computational protein design, where reality found alternative ways to
form interfaces [37], organize loops [38], organize catalytic site residues, than what
was intended by the designer (for more examples see [39]).

3.2.2 Fitness costs

Drummond et al. demonstrated that another fitness function than wyz., must be
controlling the evolution of many, especially highly expressed proteins [40]. They
saw empirically that the rate of evolution decreased with protein abundance (4) and
hypothesized that the cytotoxicity burden of misfolded proteins imposed a significant
selective pressure in evolution. Assuming the distribution of mutational effect on free
energy is Gaussian (AAG .0, = 1.0, AAG, = 1.7kcal/mol) [41] and that 18% of all
proteins carry a mistranslation error, it is clear that the majority of misfolded protein
in the cell must be coming from translation errors almost independent of AG,,4i,e as
shown in figure 3.2. Capturing these effects, they proposed the cytotoxicity fitness

_ —cA (3.3)
mezczly - eXp 1 + eXp(—AG/RT) 3‘3

As shown in figure 3.1 and mathematically in supporting information of paper II,
eq. 3.3 simply offsets AG in the fraction folded fitness function (eq. 3.1) by log(cA)
when the protein is stable (AG/RT < —3). They can therefore be used synonymously

function:

in many applications of evolutionary dynamics.
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Figure 3.1: Two biophysical models of protein fitness. In one model, fitness is assumed proportional to the fraction of
folded protein. In the other model, fitness is assumed to be a function of the amount (A), toxicity (c) and
the fraction of unfolded protein. In the plot RT=1.6 and cA=10.

Serohijos et al. further analyzed the evolutionary dynamics under the cytotox-
icity fitness function and found that the correlation between evolutionary rate and
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protein abundance only holds when the mean effect of mutation becomes increas-
ingly detrimental for more stable proteins [42]. Based on mutational effects recor-
ded for real proteins in the ProTherm database [43], they showed that AAG,,.., =
—0.13 (AG) + 0.23 kcal/mol. This corresponds to a super-exponential growth of
the sequence space with decreasing stability, which is also expected from informatics-
based sequence studies [44].
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Figure 3.2: Most misfolded protein in cells is the result of translation error. The fraction of misfolded protein that results
from translation error was calculated assuming that 18% (corresponding to an error rate of 10~* and a
protein with length 400) of all protein has one translation error and sampling mutational effects on § G from
a Gaussian with parameters » = 1.0, o = 1.7kcal/mol [41]. The x-axis shows the folding free energy of the
unmutated native protein.

Besides misfolding cytotoxicity, proteins can also impose other fitness costs on
organismal fitness. For instance, it appears that selection against misinteractions im-
poses a significant selective pressure and especially so in highly expressed proteins
[45]. Levy et al. demonstrated that the surface of highly expressed proteins tends to
be decorated with “non-sticky” amino acids [46]. In addition to changing their sur-
face properties, proteins also use non-ideal secondary structures (irregular edge stands
in /3 sheet) to avoid misinteractions (stand pairing) and aggregation with other pro-
teins [47, 48]. Finally, the energetic cost involved in the synthesis of highly expressed
proteins also imposes a fitness cost [49], possibly explaining the preferential use of
ATP-cheap amino acids in highly expressed proteins [50].

3.2.3 Balancing benefits and cost leads to frustration

Although stability and misfolding-avoidance are aligned in terms of selective direc-
tionality (both work to increase protein stability), it is not always so. For instance,
it appears often impossible to select an amino acid that is optimal for both stability
and function. Shoichet et al. first hypothesized and demonstrated that significant
improvements in stability could be gained by mutating catalytic or ligand binding
residues in T4 lysozyme [s1]. Similar effects have been determined in -lactamase
[s2]. The function-stability trade-off is sufficiently strong that it allows prediction of
functional sites from structure-based predictions of energetic frustration [53—56].
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3.2.4 Fraction folded fitness functions results in marginal stability

Experimentally it is known that most proteins are marginally stable (the mean stability
of protein in E. coli is —7.1 kcal/mol [57]). DePresto et al. took this to mean that the
fitness of proteins does not follow the fraction folded fitness equation (eq. 3.1), but
instead, that fitness had to decrease when protein stability increased beyond a certain
point, arguing that a too stable protein would be harder to regulate (be protease-
resistant) and have lower activity [58]. Goldstein et al. took a different approach in
explaining the marginal stability of proteins. Using both lattice models [59, 60] and
later more detailed models of protein energetics [61], they demonstrated that marginal
stability arises directly from (i) a fraction folded fitness function, (ii) genetic drift, and
(iii) the shape of the sequence space.

3.3 The effect of mutations

What happens when amino acid altering mutations arise in protein coding sequences?
Here we examine the effect on protein fitness as well as on protein stability.

3.3.1 The distribution of fitness effects

Motoo Kimura made theoretical insights into the distribution of fitness effects. Seeing
that the rate of evolution must depend on the rate of mutation per replication (#) the
population size (/) and the rate of fixation (Pg,) the total rate of evolution (total
number of mutations that fix) is R = NuPp,. For neutral mutations where s €
[~1/2N,1/2N], we saw that the fixation probability, P4, was 1/N (eq. 2.2), and
thus for those R = . The fixation probability of detrimental mutations depend
on the population size, but would not affect the observed rate of evolution, as they
never fix (consider the sharp decrease in fixation probability in Fig. 2.2). The fixation
probability of beneficial mutations also depend on the population size and would
be predicted to affect the rate of evolution if significantly present in the distribution
of fitness effects (DFE). However, if beneficial mutations are very rare compared to
neutral mutation, and if the fraction of neutral mutations is constant, Kimura’s theory
predicts that the rate of evolution is constant. This is consistent with the observed
constant rate of evolution and provided the theoretical explanation for the molecular
clock [8], which lies at the foundation of molecular phylogenetics.

Experimental data are now available from several organisms and genes, which
support Kimura’s theoretical prediction of the DFE. Mutational studies of Hspgo (a
yeast chaperone) [62], of an RNA virus [63] (see Fig. 3.3), of S-lactamase in E. coli [64]
all demonstrates that the vast majority of mutations are either neutral or detrimental.
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Figure 3.3: Distribution of fitness effect for random mutations in an RNA virus. A large proportion of mutational effects
are detrimental (fitness=0) or neutral (fitness=1). Only, very few mutations are beneficial (fitness > 1) Data
adapted from Sanjuan et al. [63].

3.3.2 'The distribution of stability effects

Given that all positions in proteins are under selective pressure to contribute to the
fold-stability, we next consider the distribution of energetic effects of mutations (DEE).
Tokuriki et al. studied the DEE using researcher-recorded mutational effect of which
thousands have are stored in the ProTherm database [65]. They found that the dis-
tribution did not appear to depend on the fold, but was significantly different for
buried and exposed sites. The stability effects at surface exposed sites were generally
lower than mutating a buried site. The distribution of energetic effects is shown in
figure 3.4. Wylie and Shakhnovich showed that the DEE could explain the DFE in
stochastic simulations of populations that allowed for genetic drift and polyclonality
(high mutational load) [41].
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Figure 3.4: Distribution of energetic effect of amino acid substitutions in proteins. Data adapted from ProTherm [43] as
summarized by Tokuriki et al. [65].
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3.4 Energetic and fitness epistasis

In real proteins, amino acids interact. That is, the energy contribution of a site to the
total energy of the protein, depends on the exact chemical environment that the site
sits in. The non-additive interaction between different mutations is called epistasis.
The effect is sufficiently strong that covariation between amino acids is observed in
sequence alignments of homologous proteins and allows for the prediction of neigh-
boring positions in protein structure (see for example [66, 67]). Curiously, these
methods work without considering the phylogenetic relationship between sequences
and does not attempt to model evolution, which could in principle lead to spurious
covariation signals [68]. Instead, they identify coupled positions by finding the max-
imum likelihood of energetic parameters in a global statistical model that describes
the sequence alignment. Specifically, the energy of a sequence is determined as

Enyaryay = Z wii(ai, aj) + Z vi(a;) (3-4)
i<j i
where w; is an 20x20 matrix representing the energetic couplings between site i
and 7, and v; is a 20 long vector with non-coupled energies for amino acids at site .
The energy of the sequence is then converted to a probability through the Boltzmann
distribution equation P = exp(E)/Z, where Z is likelihood normalized over all se-
quences. The log-probability of the alignment, which is what is being maximized, is
computed as the sum over all sequence log-likelihoods.
Fitness epistasis might also arise without direct interaction between residues, as
can be seen in figure 3.5 by combining eq. 3.1 and 2.1 and assuming that AG; < 0
and AG; < 0.

s=expAG/RT(1 — exp(AAG/RT)) (3.5)
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Figure 3.5: The selection coefficient of one mutation resulting in AAG depends on the energy of sequence AG it occurs
in.
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In effect, all positions interact with all other positions by being coupled through
the total stability of the protein. However, as AG fluctuates much more rapidly
than single positions mutates, this effect is unlikely to result in observable covariation
between amino acids in homologous proteins. Instead, the coevolution between po-
sitions in protein originate from positions that are coupled through reciprocal sign
epistasis [69] illustrated in Fig. 3.6.

0]
fitness

BA

Figure 3.6: The fitness-sequence space of a binary two-site system exhibiting reciprocal sign-epistasis. The effect of
combined mutations has the opposite effect of what would be expected from additivity of the individual
mutations.

Talavera et al. [68] questioned whether the observed covariation could be the res-
ult of fitness epistasis between sites. Under the fitness-sequence landscape illustrated
in Fig. 3.6 and the theory described in chapter 2 they found that observable epistasis
would only arise under very high selective pressure, and that, as we also saw in Fig.
2.5, this would result in extremely slow evolutionary rates. They called the discrepancy
between observed covariation and expected covariation, “the coevolution paradox”.
In paper II we address this paradox.

From a site-centric point of view, epistasis results in fluctuations of equilibrium
frequencies of amino acids. Pollock and Goldstein [70] showed, using the evolu-
tionary dynamics framework of chapter 2, that fluctuations follows certain patterns.
Whenever mutations do not quickly revert [71], the environment becomes increas-
ingly more compatible with the mutant identity — resulting in a type of entrench-
ment, where reversion becomes increasingly more unlikely. Real proteins also display
entrenchment [72, 73].

3.5 Determinants of evolutionary rates in proteins

So far, we have considered general properties of protein evolution. We saw that
fraction-folded fitness functions explained both the marginal stability of proteins and
the abundance-rate correlation. Further, we saw that the distribution of energetic
effects applied using a fraction folded fitness function was consistent with the distri-
bution of fitness effects. In sum, we explained some of the key properties of proteins.
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To get an even more detailed understanding of the evolutionary forces that act on
proteins, we now turn to the determinants of the evolutionary rate at specific sites in
proteins, as well as the substitution rate between different amino acids.

In section 2.4 we saw that the rate of evolution decreases as fitness differences
between types becomes increasingly more pronounced. As such, the evolutionary rates
provides a site-specific, although non-linear, glimpse into the strength of evolution-
ary pressure. What are the known determinants of site-sites (and thus evolutionary
pressure) within proteins?

3.5.1 Structural determinants of rate variability

Starting from the distribution of energetic effects discussed in section 3.3.2 where Taw-
fik et al. found that core sites were less tolerable to mutations than surface sites, we
can make the general prediction that surface sites evolve faster than core sites. Such
a pattern was already noted by Perutz et al. in 1965 [74], and confirmed more gener-
ally in one of the early studies of structural rate determinants where Goldman et al.
found that surface sites appears to evolve approximately twice as fast as buried sites
[75]. Later, Worth et al. reviewed structural rate determinants, but on an atomically-
resolved scale. While they confirmed the importance of solvent accessibility, they also
noted that buried hydrogen bonds that stabilize the protein architecture, for instance
by capping the a-helices or rigidifying loops, resulted in significant evolutionary con-
straints [76].

Several phenomenological descriptors have been developed to predict the evolu-
tionary rate given a protein structure. The phenomenological models typically neg-
lects the atomic-details like those identified by Worth et al. and instead starts from
coarse structure descriptors. In line with the finding by Goldman et al., the relative
surface exposure (RSA) was applied to investigate the dependency across thousands of
yeast proteins [77] and an almost linear (although noisy) correlation was found. The
weighted contact number (WCN), another phenomenological descriptor of evolu-
tionary rates, has superseded the predictive performance of RSA (for an excellent re-
view on the many papers using WCN, see [78]). The WCN is determined as the
square distance weighted number of residues of all other residues in the protein. In
effect, WCN emphasizes the local environment like RSA, but in effect it also accounts
the overall shape of the protein. It appears likely that the additional performance of
the WCN is just a consequence of the fact that many functional sites (with very high
selective constraints and thus low rates) are situated in topologically concave regions
of the protein structure.

Models that predict site-rates from the first principles of evolutionary dynamics
theory as described in chapter 2 and biophysical models of protein stability have also
been developed. Jiang etal. generated evolutionary trajectories for 38 natural proteins
and compared the resulting site-variation to empirical site-variation [79]. The site-
variation predicted by the model was poorly correlated (#* = 0.16) to the empirical
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variation. An alternative approach was taken by Echave et al. [80] who combined
the Markov chain formalism illustrated in figure 2.4 with a mean-field approximation
[81] to generalize the stability effects of mutations conditioned on a single structure
for site-rate prediction. Although incapable of generating evolutionary trajectories,
this approach yielded site-rate correlations of 7 = 0.30 on par with those calculated
using structural predictors such as WCN .

In sum, both phenomenological and biophysical evolutionary dynamics-based
models predict site-rates rather poorly. Why are first principle models not out-performing
the coarse phenomenological models? One possibility is that the biophysical models
of protein energetics are inaccurate, which indeed they are (see chapter 4), but as we
show in paper III, this does not appear to be the reason. Another possibility is that
rates, due to epistasis, fluctuate significantly over evolutionary time-scales, as paper
IT indicates, and that taking a single structure as representative for all sequence en-
vironments, is not a good approximation. We intend to study this in the future. A
third option, is that non-structural (non-stability) selection pressures significantly af-
fect rates. We believe this is less likely as functional sites only make up around 10%
of all residues [82]

3.5.2 Functional determinants of site-rate variability

Functional sites, such as active site residues in enzymes and binding residues in lig-
and or protein-protein interactions, are under strong selective pressure, and therefore
have severely depressed evolutionary rates [83]. The magnitude of the rate depression
depends on the type of function — allosteric sites and non-obligate protein-protein
interactions have for instance higher rates than catalytic residue, but see the review of
Echave et al. (2016) for a more completely review on the effect of function-type on
rate depression [78].

The prediction of functional sites from protein structures, is an important prob-
lem in biochemistry, as researchers often seek to understand the mechanism of novel
proteins. Although the rate-depression resulting from functional selection constraints,
is sufficiently high and consistent to enable prediction of functional sites from rates
alone [84, 85], it is not a perfect measure, as stability constraints also depresses site-
rates. In paper III, we develop a method to predict functional sites from rates, while
taking the expect rate-depression from stability into account.

3.5.3 Determinants of the substitution rate between amino acids

Averaging across sites, another measure that informs on general evolutionary pressures
becomes apparent: The rate by which different amino acids substitution with one an-
other. This substitution behavior is cornerstone in bioinformatic and phylogeny and
has been phenomenologically described with two different approaches. Probability
matrices such as the BLOSUM [86] have been highly useful for sequence alignments
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and homology search, but are not based on an underlying model of evolution [87].
In contrast, models that explicitly describe the process of evolution have been useful
for comparative sequence analysis. These models describe the substitution pattern as
an aggregated Markov process where sites evolve independently from each other and
with the same substitution rates that depends on the identity of the current amino
acid (WAG matrix [88]) and possibly with a site-specific rate parameter (LG matrix
[89]). To understand the origin of the variation in substitution rates, several studies
have established statistical correlations between biophysical amino acid descriptors
(such as secondary structure propensity, charge, codon count ect.), and the empirical
rate variation [90—92]. It has also been demonstrated, that significantly better de-
scription of the evolutionary process can be achieved if multiple secondary structure-,
or site-rate-dependent matrices are used [93, 94]. Both approaches have yielded an
understanding of the factors important, but it remains an outstanding question which
underlying fitness pressures causes these substitution patterns. We investigate this is
in paper III.

3.6 'The evolution of protein function and antibodies

It is curious to note that just a small subset of protein folds are so innovative that
they can encompass the majority of all enzyme activities. Similarly, that our immune
system is capable of recognizing almost any foreign antigen, is thanks to the innovab-
ility of just a single fold — the immunoglobulin fold (the subject of paper V to VIII).
Dellus-Gur et al. hypothesized that the key to innovability is modularity (in their
words, "polarity”): That the functional site is composed of flexible loops attached to
independent stable scaffolding elements [95]. Nowhere is modularity more evident
than in the immune molecules, here illustrated by antibodies (the design and predic-
tion of which is pursued in paper V-VIII), as they evolve under constant evolutionary
pressure to be universally modular.

The adaptive immune system of vertebrates, which arose approximate 500 million
years ago [96], is one of the most astounding molecular marvels of evolution. From
five, almost universally modular parts, each encoded by less than 100 genes, the im-
mune system is capable of generating almost 10'° different molecules [97]. Each part
(a gene segment) encodes a specific structural element in the immunoglobulin protein
as illustrated in figure 3.7. Function (antigen-binding) typically derives from a lim-
ited portion of the antibody structure called the complementarity determining region
(CDR), which spans two interacting immunoglobulin domains (the light and the
heavy chain) the relative relative orientation of which can vary based on the residues
in the domain interface. Each immunoglobulin domain presents three CDR loops.
The first two loops are encoded by a single gene segment, while the last loop derives
from an error-prone recombination event between either two or three gene segments.
Despite their sequence diversity, the backbone conformation of most CDRs, except
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heavy chain CDR 3, falls into a handful of distinct canonical conformations. For
instance, light chain CDR 1 adopts only approximately five conformation across all
1,000 solved antibody structures [98]. The recombination is not done with a spe-
cific target ”in mind” but instead, binding antibodies are selected from a repertoire
of germline antibodies [99]. James et al. [100] found that some germline antibod-
ies display considerable conformational diversity, allowing for initial multi-specificity.
That conformational dynamism enables multi-specificity is an important principle in
the evolution of function and has also been demonstrated for enzymes [101], where a
duplication event can free the redundant copy from selection on the native function
and allow further optimization for new functions.

Heavy Light
chain chain

Figure 3.7: The structurally modular antibody. The variable domain of antibodies is created by genetic recombination of
five different gene segments. The light chain is made through the recombination of V and J gene segments,
while the heavy chain is created by recombining V, D and J gene segments. Constant domains are not shown.
This figure, originally created by the present author for a presentation at the Weizmann Institute of Science,
was reproduced previously in the thesis work of Lapidoth [102].



Chapter 4

Prediction and design of protein
structures

What I cannot create, I do not understand !

Protein design offers immense opportunities for medicine and the chemical in-
dustry, and also provides the ultimate test of our understanding of molecular driv-
ing forces and the principles that shape natural protein diversity. Protein structure
prediction serves as an essential tool in protein design and is also an invaluable tool
in biochemistry. In this chapter, we discuss the mapping between protein structure
and energy, how such energy functions are derived, their shortcomings, and how the
dynamics of natural evolution impacts the work of protein design and structure pre-
diction.

4.1 Macromolecular energy functions

An energy function is a mathematical function that, for a given set of 3D coordinates
of a molecule, computes its corresponding energy. Throughout this thesis work, we
have used the energy function of the macromolecular modeling suite Rosetta [103].
The energy function is necessarily approximate, as the underlying physics is quantum
mechanical and currently intractable to compute for design applications. Instead,
Rosetta computes the energy as a linear combination of terms, that together approx-
imates the energy of the structure in question,

Evpras = Z wz'Ei(ea ‘m) (4.1)

!Richard Feynman
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where w is the weight of each energy term, O the coordinates of the structure, and
aa the sequence. The energy function is optimized against various structure prediction
and sequence design tasks, which we discuss in the following.

4.1.1  Parameterizing the energy function for structure prediction

Part of the energy function is parameterized following Anfinsen’s thermodynamic
principle of protein folding [104]: The native conformation of the protein attains the
conformation where the Gibbs free energy is the lowest?. That proteins fold this way,
allows prediction of protein structures knowing only their sequence. The principle
also provides a target function for energy function parameterization: The weights of
the energy terms and parameterization of atoms and amino acids, should be such that
the energy function, when combined with sampling of structural degrees of freedom,
reproduce the atomic-details of known protein structures (side-chain packing, hydro-
gen bonds, van der Waals interactions, and more) and identifies the correct structure
from a set of decoys [106]. Sippl took the thermodynamic principle one step further
and posited that not only would the conformational ensemble of the protein itself
be Boltzmann distributed, but so would the distribution of specific sub-geometries
observed in protein structures [107]. This was later justified from a Bayesian point of
view by Simons et al. [108] and formalized by Hamelryck et al. [109]. Today, many of
the terms in Rosetta are individually parameterized from distributions of geometries in
protein structures. For instance, the backbone potential in Rosetta derives from amino
acid dependent probability distributions of backbone angles, P (¢, 1)|aa), based on
approximately half a million high-resolution protein structures, which are then con-
verted to an energy potential via the inverted Boltzmann relation, £ = —In (P).
Other interactions types such as Van der Waals have a more physics-based origin, ap-
plying a Lennard-Jones 6-12 potential with further approximations for computational
efficiency [103].

4.1.2  Parameterizing the energy function for protein design

Another part of the energy function is parameterized based on assumptions about the
evolutionary process and is necessary for protein design. The necessity arises since
there, contrary to structure prediction, is no guarantee that the target structure will
fold to any specific conformation. Instead, it becomes necessary to engineer an energy
gap such that the target structure is energetically well-separated from all alternative
conformations, and thus highly populated according to the Boltzmann distribution.

2We note that this is not an obvious consequence of physics or for that sake evolution. Proteins could
also have been under kinetic control, such that native states are not in the global energetic minimum.
Interestingly, however, Govinarajan and Goldstein demonstrated with simple lattice models that even
if protein folding is under kinetic control, the native state will most often also be the global minimum
[105]
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Sequence design strategies to avoid alternative states are called "negative design” and
spans both heuristic and explicit strategies [39]. The simplest negative design strategy,
built directly into the energy function of Rosetta, is to approximate the energy of the
unfolded state as a sum of amino acid-specific reference energies over all positions
in the sequence. If accurate, this ensures the encoding of an energy gap between
the target and the unfolded states. To ensure an energy gap to alternative folded
conformations other strategies must be employed (see next section). To parameter-
ize the reference energies of the energy function, it is also assumed that the amino
acid frequencies at positions in protein alignments are distributed according to the
Boltzmann distribution [110]. This assumption traces back to work by Steipe et al.
[111] who, inspired by Sippl [107], applied the Boltzmann assumption to approxim-
ate the stability effects of mutations in antibodies. However, as should be clear from
chapter 2 and 3 or simply by comparison of the Boltzmann distribution (eq. 3.2) and
the distribution of genotypes given fitnesses (eq. 2.5), the assumption is not strictly
correct. The consequence of this and a possible route for improvement is explored in
Paper I.

4.2 Designing energy gaps with imperfect energy functions

In practice and in theory, particular design and structure prediction problems are par-
ticularly hard. One can think of the difficultly as being dependent on how hard the
energy gap is to design or realize. Problems with small energy gaps achieved through
interactions that are hard to measure accurately, are the hardest. Somewhat coun-
terintuitively, this makes the design (prediction) of globular protein structures with
large hydrophobic cores and large energy gaps to alternative conformations an “easy”
problem, while the design (prediction) of loop conformations or the organization of
active site residues is far more difficult to get right [39]. In the following we review
strategies used to overcome difficult-to-design energy gaps.

4.2.1 ldealized protein design makes alternative states unlikely

Historically, protein design has been undertaken starting from the protein folds of
nature. As we saw in section 3.2.4, there are no selection pressures that will optimize
thermostability of proteins beyond what is necessary to achieve function and minimize
cytotoxicity, and consequently most protein are marginally stable or "non-idealized”.
This property is also reflected in their structures, which often have holes or other struc-
tural defects, which encourage repacking into alternative conformations. One recent
approach has been to disregard the nature-given scaffolds and to design idealized pro-
tein structures. This has resulted in designed proteins with stabilities far exceeding that
of any natural protein, remaining folded at 95°C in 7 M guanidine hydrochloride (a
denaturant) [112]. More recently, this approach enabled the generation of barrel-shape
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topologies that precisely fit the geometries of target small-molecules [113, 114]. How-
ever, for understanding the properties of natural protein structures or reengineering
them for new purposes, protein ideality cannot be the way forward.

4.2.2  Symmetrical design multiplies the energy landscape and leads to higher
separation of states

Another approach, which has been immensely successful, has been to design symmet-
rical protein structures, such as icosahedral capsids. The multivalency of symmetrical
protein interactions effectively results in a multiplication of the energy landscape, res-
ulting in a far better separation of states. In paper VII, we review the biophysical
principles of protein self-assembly in detail [115]. To illustrate, we refer to figure 4.1,
which shows the energy landscape of association of subunits of the icosahedral capsid,
Lumazine synthase, as mapped out by a global docking simulation with Rosetta. Fig-
ure 4.1A shows that the dimeric and trimeric interface are not well-separated from al-
ternative orientations when forming independently. However, when forming across
the interface of pentameric units, the energy gap is significant.

A
0
e
c E >—10 °
=) o
s g g <
m [
- 8‘20% 8 piel
o © £ ®e
v E g 8
< E—3.08
—4% 0 15 20 25
RMSD
B 0

Interface energy
b
o

-30

Association of
pentamers

o &by ©

4% 5 10 15 20 25
RMSD

Figure 4.1: Energy landscape of Lumazine synthase, a protein that form capsids with icosahedral symmetry. Global dock-
ing simulations using Rosetta was done of either (A) monomeric subunits or (B) correctly formed pentameric
subunits. Root-mean-square deviations (RMSD) to native dimers formed across the pentameric interface were
calculated for all generated docking conformations. Conformations within 2 A of the native pentamer, tri-
mer, and dimer orientation are colored in blue, red, and green respectively. Correctly formed pentameric
dimers (<2 A) are colored in split red/green. The energy landscape was only funneled for the tri- and dimeric
interface when formed simultaneously across pentameric subunits.
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4.2.3 Explicit consideration of alternative states

Enumerating all alternative states is intractable except for the simplest of systems,
as the conformational space increases exponentially with the number of degrees of
freedom (rotatable bounds). However for simple systems such as helical bundles some
progress has been made [116]. In situations, where the alternative states can be isolated
to different (enumerable) alternative interactions, explicit negative design has been
used to design orthologous pairs of both de novo and natural proteins [117, 118].

4.2.4 Heuristic design against alternative states

Implicit sequence design against alternative states can be conducted in multiple ways.
For protein-protein interface design, one approach has been to ensure that the inter-
acting residues would occupy high-probability constellations, reducing the conform-
ational plasticity of the interacting surface patch [119, 120]. More generally, for design
of surface and core positions, with no particular function other than ensuring struc-
tural stability, another approach is to limit the amino acid choices to what is generally
observed in natural proteins for positions of comparable surface exposure and sec-
ondary structure (see for instance [121]). In paper IV, VI and VIII, we took a more
quantitative approach and, following previous work [111, 122], we constructed align-
ments of sequences that encoded a similar structure as the target for sequence design
(Fig. 4.2), and used log-odds-ratios of the observed amino acid frequencies com-
pared to background frequencies to bias the energy function and to entirely restrict
amino acids available for design to those observed. In paper I, we question whether
the log-odds-ratios describe the underlying connection between observed frequencies
and folding energetics. Nonetheless, this approach has now been successful also bey-
ond the conditionally modular antibody scaffold where it has been applied to improve
thermostability [123], design TIM-barrels [102, 124], and protein-protein dimers [118].
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Figure 4.2: Evolution-based heuristic negative design approach for designing an antibody loop. Since more than a
1000 antibody structures have been deposited in the protein databank, and since most antibody loops have
distinct canonical conformations, the allowable sequence diversity at each position in an antibody loop can
be gauged accurately. This in turn can be converted into a position specific bias function, which steers
computational design away from sequences with many unwanted alternative states (not shown). In this
example, the naive energy function has a tendency to insert a hydrophobic amino acid instead of the highly
geometry constraining glutamine at the first position in the loop.

4.3 Guiding sampling of degree of freedom in structure and
sequence space

4.3.1 Vast but discrete sequence-structure spaces

Both in structure prediction and protein design, one must sample a space of con-
formations and/or sequences to find low energy solutions. The larger the sequence-
structure space is, the more difficult it becomes to find the best solution and the larger
the risk becomes that the energy function will make mistakes that will be detrimental
to protein stability or obscure the energy gap, which should be observed for confid-
ent structure prediction. In section 4.2.4, we discussed ways to limit the sequence
space based on observed sequences. Similar approaches have been taken in de novo
structure prediction, where short sequence-similar structure-fragments with length
3 or 9 residues from known proteins have been used to limit and guide conforma-
tional sampling [108]. Today, for de novo structure prediction, the search space is
typically even further restricted based on residue-residue contact constraints derived
from statistical models over sequence alignments, as discussed in section 3.4. At the
residue level the search space can also be restricted and discretized. Due to the back-
bone dependent intra-residue energetics, large barriers exists between different amino
acid side-chain conformations [125]. When discretized to high-probability peaks in
the corresponding likelihood functions, inferred from observed structures, these con-
formations are called rotamers [126].

For antibodies in particular, the guiding of conformational search can be ex-
tremely specific to the immunoglobulin fold because of the vast number of solved
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antibody structures. In paper V, we disregard the 3/9-fragment assembly approach
and instead use fragments corresponding to the splice points of gene segment recom-
bination (see section 3.7). Additionally, the large number of known structures also
allows the sampling of rigid-body orientation between the light and heavy chain from
a discretized library. It is worth noting that the approach is dissimilar to traditional
homology modeling, as sequence identity is not used to guide the selection of struc-
ture fragments.

4.3.2 Search methods

Given a set of possible geometries (backbones conformations, rotamers, or rigid-body
orientations between subunits) or amino acid identities, the space must be searched
with the goal of finding the minimum energy sequence, structure or both. The dis-
crete nature of the search space lends itself well to a Monte Carlo simulated annealing
(MCSA) optimization approach both for sequence design [127] and structure pre-
diction [108]. In this approach, changes are accepted with min(1, P(x;41)/P(x;))
where P is the Boltzmann factor exp(E(®,aa)/T). This approach reproduces the
Boltzmann distribution for any given temperature of the system [128].

The structure space is however continuous in reality, so often, between the discrete
moves with fragments, sequence or rigid-body orientations, continuous exploration
of the structure space is pursued using gradient-based minimization methods. At this
point the protein structure can be modelled at different levels of granularity. Freezing
bond length and minimizing the protein only in torsion space is highly efficient as it
significantly reduces dimensionality [129], however the speed comes at a cost accuracy,
which might obscure the energy gap in native proteins [130].






Chapter s

Summary of thesis work

In this chapter, we summarize the findings of the papers.

5.1 Paperl

In paper I, we sought to predict stability effects using only the evolutionary sequence
diversity of protein alignments as a source of information. The ability to predict the
effect mutations have on protein thermostability is important in protein engineering
as it correlates with longer shelf-life, higher operating temperatures (and thus higher
activity flux in enzymes), longer in vivo half-life, and provides a more robust start-
ing point for in vitro evolution or engineering new functions into a protein scaffold.
Prediction of stability effects is also important medically, as it can be used to predict
disease variants.

Methods that relate protein stability to observed amino acid frequencies have
a long tradition in protein engineering, and most methods build on work done by
Steipe et al. in 1994 who, with no basis in evolutionary dynamics theory, assumed
that the relationship between protein stability and amino acid frequencies would be
the Boltzmann distribution. This assumption is today embedded in a popular en-
gineering method called consensus design, in computational protein design methods
(including paper VI and VIII), and is applied when optimizing the energy functions.
In paper I, we took a different approach and tried to connect amino acid frequencies
to protein stability using the first-principles theory of evolutionary dynamics and ex-
plicit assumptions about the connection between protein stability and fitness. Several
important conclusions were made.

First, we showed that the Boltzmann distribution assumption can be understood
within the theory of evolutionary dynamics. In fact, it gives rise to the same relation-
ship between stability and frequency (albeit with a scale factor) when protein fitness is
directly proportional to protein stability. However, it is highly implausible that this
would be the case. Instead, reviewing the literature, it appears far more likely that
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the fitness-function over protein stability is sigmoidal, corresponding to fitness being
proportional to the fraction of folded protein (and anti-correlated with the amount
of unfolded protein).

Second, using evolutionary dynamics simulations based on the distribution of
mutational effects in real proteins and the fraction-folded fitness function, we showed
that the Boltzmann assumption still provided a good approximation and a perfect
ranking of the energetics within sites. We were further able to rationalize its reasonable
performance analytically. However, when comparing stability effects berween sites,
the Boltzmann assumption does not guarantee correct ranking between amino acid
choices, as the evolutionary dynamical partition function is expected to vary.

Third, we provided an approximation of the evolutionary dynamical partition
function, which tentatively, appears to improve detection of stabilizing mutations
within proteins. However, more work needs to be done to establish statistical signi-
ficance.

5.2 PaperII

The evolutionary behavior of proteins is of key interest to several fields including
bioinformatics, phylogenetics and biochemistry. In this manuscript, we develop a
novel first-principle biophysical model of protein evolution that describes the fitness of
proteins according to their predicted thermodynamic stability. We apply the model to
answer three unanswered questions: (i) Which fitness pressures control the observed
patterns of amino acid substitutions and (ii) the site-specific rate of substitution? (iii)
Can a thermodynamic-stability null-model of evolutionary rates identify sites under
functional fitness constraints?

Today, bioinformatics and phylogenetics rely on empirical descriptions of the sub-
stitution behavior as summarized in matrices such as BLOSUM or LG, which describe
evolution of all positions in proteins identically. A considerable push has been made
to develop a small set of empirical matrices that take the local environment of each
site (secondary structure for instance) into account. Ultimately, such matrices should
depend on the exact chemical environment and evolutionary dynamics. Our model
does exactly that and further allow us, for the first time, to investigate how much of
the mean substitution behavior that can be explained by thermodynamics alone (at
least 65%).

At a site-specific level, we investigated how thermodynamic fitness constraints
affect the site-specific rate of evolution in proteins, which is critically important in
phylogenetic inference. We find that our model is far better than current structure-
based methods in predicting conserved sites. This property allows us to test a cent-
ral unanswered hypothesis recently proposed by Echave, Spielman and Wilke [? ],
namely, that discrepancy between empirical rates and rates predicted with a thermo-
dynamic null-model of evolution could be predictive of functional sites. We validate
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this hypothesis, showing that the metric can predict up to twice as many functional
sites as empirical rates alone. Structure-based prediction of functional sites is an im-
portant tool in biochemistry as illustrated by the 1200 citations accumulated by the
ConSurf server, which only applies empirical rates for prediction of functional sites.

Our findings could be of interest for scientists in evolutionary biology, protein
science and bioinformatics. We provide a model that gives insight into the fitness pres-
sures that control the evolution of proteins, show how protein energetics influences
natural sequence diversity and provide a first-principle approach to predict functional
sites in proteins.

5.3 Paper III

In silico simulations of sequence evolution on protein structure has provided several
important insights concerning properties of real protein evolution. So far, most in
silico simulators of protein evolution have been based on lattice models of proteins or
simple contact-based potentials that do not model the atomic-details of interactions.
It is possible that all-atom models of protein evolution could reveal new properties or
help gauge the magnitude of various effects. In this manuscript we establish one such
model.

Following previous work, we model protein fitness as a sigmoidal function of the

free energy of folding

1
Y T 1+ exp(AG/RT + O)

where O offsets the half-maximal fitness point of the function. If the fraction of
folded protein is the only determinant of fitness O = 0. However, other selection

(5.1)

pressure pressures, including the toxicity of misfolded proteins, result in O > 0, and
thus require more stability for equal fitness. Additionally, the strength of mutational
drift, determined by the population size, has the same effect, as it offsets the distribu-
tion of sampled protein stabilities by a factor proportional to —log(N) [41, 61]. Here
we investigate how the offset of sigmoidal fitness functions influence the behavior of
protein evolution.

We began by implementing an evolutionary dynamics framework within the macro
molecular modeling suite Rosetta. Mutations were proposed at the nucleotide level,
structure and energetic effects were evaluated using the established structural model-
ing tools in Rosetta, fitness was calculated with a sigmoidal function, and the fate of
mutations determined according to Kimura’s fixation probability. Using this frame-
work, we simulated evolution using various offsets of the fitness function.

We make multiple conclusions: First, we find that effect of mutations becomes
increasingly more detrimental as lower offsets results in more stable proteins. This
effect is also observed in real proteins, as recorded in ProTherm [42], although we
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observed a 10-fold weaker effect. Second, we demonstrate that a strong coevolution
signal arises in our model from direct energetic coupling between neighboring amino
acids, and that the coevolution signal is more pronounced with lower fitness function
offsets.

The work is still preliminary and exploratory in nature and the analysis is so far
based on a single protein.

5.4 PaperIV

One of the key principles that nature follows to generate complex structures is sym-
metrical self-assembly. Over the past decade, this strategy has also been harnessed by
protein engineers and has proven one of the most successful avenues in protein design.
In this paper, we review the current literature and discuss the biophysical principles
of self-assembly.

5.5 Paper V-VIII

Antibody molecules display a wide-range of sequence and structure diversity because
of evolutionary selection pressures that enable reactivity against almost any target an-
tigen. Additionally, antibodies are extremely well-characterized, not only because of
their importance to vertebrate life, but also because of their extreme udility in the
biopharmaceutical industry. Paper V-VIII takes advantage of this and develop a new
method to predict (paper V), design (paper VI and VIII), and study (VII) antibodies.

5.5.1 PaperV

Computational modeling is an essential step in many antibody-engineering work-
flows. Over the past 20 years the state of the art has relied on homology modeling,
expert rules, and in some cases b initio modeling of the most structurally diverse loop
of the complementarity determining region (CDR H3). Recent blind benchmarks of
antibody modeling strategies showed that existing methods still exhibit modeling in-
accuracies in the CDRs, and that models often suffer from stereo-chemical strain. In
this paper, we present a new method, AbPredict, for structure prediction that takes
advantage of the natural gene segmentation of the antibody structure and the vast
number of known and diverse antibody structures.

We begin by extracting the rigid body orientation (RBO) between and the torsion
angles of the light and the heavy chain of all antibodies in the Protein Data Bank.
Next, we use Rosetta to carry out a simulated annealing Monte Carlo search over
antibody backbone fragments corresponding to the natural gene segmentation and
RBOs, in order to identify the lowest-energy conformation (Fig. s5.1). The method is
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fully automated, uses no expert rules, and does not rely on sequence homology. Al-
though AbPredict is conceptually simple, it performs as well as other methods and is
in some cases more accurate. When we investigated the reasons for AbPredict’s super-
ior performance we found several cases, where the highest sequence-identity template
— which would be the choice of existing methods — exhibits high root-mean-square
deviation to the experimental structure; AbPredict instead selects templates of low
sequence identity (sometimes <10%) that are more conformationally accurate. In ef-
fect, identical or highly similar sequences adopt different conformations, depending
on their structural context; conversely, low-homology sequences may converge on
very similar conformations, and AbPredict can correctly identify these cases. Further-
more, we found that the models’ stereo-chemical properties are uniformly good with
the worst model having chemical quality (MolProbity) score of 1.9, compared to >3 for
other methods. Due to the high accuracy and low strain of AbPredict’s models, they
should serve as useful starting points for design and molecular dynamics simulations.
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Figure 5.1: AbPredict A method for combinatorial backbone modeling of antibodies. (A) The AbPredict algorithm uses a
pre-computed database of experimental conformations of antibody structures segmented to reflect genetic V
and (D)) recombination. (B) Combinatorial sampling of segments maps out the energy landscape for a target
sequence. (C) The lowest energy models are sometimes more accurate than both de novo loop prediction
methods (green) and sequence-homology based methods (brown). (D) Often this is due to changes in the
structural context. Target structure (orange); highest-identity template (pink); AbPredict template (blue).

s.s.2  Paper VI and VII

Today, new antibody molecules are typically generated by animal immunogenization,
which is a tedious process that provides no control over the binding site and often
yields proteins too fragile for the reality of industrial expression and clinical use. An
outstanding goal has been to build antibodies from first principles [131]. This is what
we seek to do in paper VI and VII.

Antibodies bind molecules through loops, which historically have been extremely
difficult to accurately design, as the energetic separation between the target loop con-
formation and alternative conformations is typically small and dominated by ener-
getic contributions that are notoriously difficult to model accurately (water, hydrogen
bonds, and backbone torsions). Initially, we relied heavily on the energy function of
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Rosetta to design the sequence, but this resulted in antibodies, which barely expressed
(Fig. 5.2). Implementing "expert rules”, we were able to increase expression-level
slightly (cycle 2 and 3). Next, we implemented an evolution-based bias of the en-
ergetics following the common assumption of a Boltzmann distributed relationship
between amino acid frequencies in alignments and their effect on stability’. In the
final iteration between computational design and experimental testing, we implemen-
ted a new segmentation method, which instead of treating each loop individually,
followed the natural gene segmentation of antibodies. This last step increased the
expression-level (a proxy for protein stability) to and in some cases beyond the level
of an antibody, which had been evolved in vitro for high-expression. The antibody
design protocol is described in detail in paper VII.

The antibodies were not only designed to be stable (highly-expressed), they were
also designed to bind human insulin or in other cases Mycobacterium tuberculosis acyl-
carrier protein 2. Out of approximately 100 screened antibodies, we found 3 binding
molecules. It was not possible to obtain crystal structures of any of the binding com-
plexes, so it is unclear whether binding was achieved with respect to the intended
part of the antigen. However, unbound structures were obtained of the two bind-
ing antibodies of the 5th design iteration, and although highly accurate design was
achieved throughout most of the protein, the functional binding loops deviated. This
was especially true of CDR H3, for which structure-specific evolutionary information
is sparse, as it does not have the typical pattern of canonical conformations, which
the other CDRs possess.

There can be multiple reasons for the unintended reorganization. First, the pro-
tocol did not sample the rigid-body orientation between the light and heavy immun-
oglobulin domain of the antibody — an important degree of freedom, which we
later implemented in paper V. Second, the use of an antibody structure prediction
algorithm, might have revealed that conformational rigidity of H3 was not properly
encoded. As suggested by the findings of paper V, the same sequence of CDR H3
might adopt widely different conformations depending on its structural environment.
Third, problems with the Boltzmann assumption (see Paper I) used to derived the
evolutionary energy bias, might have misled the design algorithm. Finally, the neces-
sarily approximate nature of the energy function might have resulted in mistakes.

!the research in paper I related to this, was performed after paper VI
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Figure 5.2: Iterative cycle of algorithm development and experimental testing. Expression is normalized relative to an
antibody evolved in vitro for high expression levels. Figure adapted from [132].

5.5.3 Paper VIII

The present authors contributions to this work was minimal and only amounted to gen-
erating and selecting structures with the algorithm developed in Paper V. Therefore the
[findings of the paper is only discussed in relation to paper V.

Structural modeling of known antibodies is important and can provide biochem-
ical insight necessary for further engineering. In paper VII, an antibody targeting a
tumor-associated carbohydrate antigen is studied. One of the salient qualities of the
AbPredict algorithm of paper V is the high chemical quality of the resulting structures,
which should make them particularly useful for molecular dynamics simulations. In
paper VII, an AbPredict antibody model is subjected to a 500 ns molecular dynamics
simulation, and the structural fluctuation are found to be similar to that of an anti-
body crystal structure. Given that only a single model was simulated, this only serves
as a limited demonstration of the utility of AbPredict.

5.6 Paper IX

This paper concerns data-driven modeling of a protein structure. It is unconnected from
the evolutionary theme many of the other papers have followed..
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Some proteins contain regions so flexible and disordered that there is no reason-
able hope that they could ever be characterized as a single conformation or for that
sake crystallized. Calreticulin is one such protein, which in an otherwise well-structure
core, has a long proline-rich region (P-domain) and a C-terminal (C-domain) tail,
which both appear largely disordered and together constitute more than half of the
400 residues long protein. Calreticulin is crucial for chaperoning glycoproteins and
maintaining intracellular Ca®™ homeostasis. We sought to understand how the changes
in calcium concentration could affect the accessibility of the carbohydrate-binding re-
gion of calreticulin (the lectin site).

To gain information about the position of the P and the C domain, chemical
cross-linking data was gathered. Specifically, a lysine-reactive cross-linker was ran-
domly reacted with lysine, whereafter the protein was digested with proteases, and
the resulting fragments analyzed with mass spectrometry. Fragments that were bound
with the cross-linker revealed lysine situated at most 21.4 A apart (the length of the
cross-linker as well as two extended lysines). As such cross-links provide quite in-
accurate estimates of contact lengths. Using a soft-threshold classification for when
cross-links were broken, we generated and analyzed a structural ensemble of calre-
ticulin with Rosetta.

We found that the resulting models appeared to deviate depending on whether
cross-links were collected in the presence or absence of calcium. In the presence of
calcium, the resulting structural ensemble of the P-loop tended to cover the lectin-
binding site. The findings suggest that the role of calcium binding in calreticulin
is not only related to calcium storage but might also be involved in regulating the
chaperoning activity.
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