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Abstract. To fulfill increasing requirements within the manufacturing sector, 
highly flexible and adaptable automation systems are needed. It is desirable to 
have one integrated approach that stretches from the process planning phase, 
through the implementation phase and all the way to the phase for execution of 
the process control logics. One promising approach is to use the concepts of 
service-oriented architectures within automation, here referred to as SOA-AT. 
As service technology, DPWS has proved to be the most suitable for realizing 
service based communication on device level. The paper shows how Grafchart, 
a graphical language aimed for sequential control applications, can support the 
development of DPWS applications, and how Grafchart can be used for process 
modeling and execution in the planning and execution phase. This constitutes a 
unique framework for the development and execution of SOA applications in 
accordance with the requirements for automatic control tasks. The paper also 
presents an industry-related experimental setup in which the SOA-AT concepts 
are demonstrated through the use of Grafchart. 

Keywords: Service oriented architecture, Devices Profile for Web Services, 
Grafchart, Flexible manufacturing systems, Web Services, Graphical languages, 
Agile manufacturing, Manufacturing control, Process modeling, Production 
control, Control systems, Automation systems. 

1 INTRODUCTION 

To fulfill increasing requirements manufacturing companies have to set up and recon-
figure their production plants in ever-shorter time intervals and time frames. In paral-
lel, the manufacturing equipment and the control tasks become more complex. To 
deal with these circumstances highly flexible and adaptable automation systems are 
needed. Therefore, the automation devices and software should be easy to integrate, 
configure, extend, and reuse. Today, control architectures comprise several types of 
automation components that realize different automation tasks. The control of the 
manufacturing equipment for executing the production process is typically done with 



a process logic controller (PLC). Usually, the development of PLC processes is based 
on process diagrams of the planning phase. However, the code is written from scratch 
because there is no integrated or well-defined information flow between process plan-
ning and implementation. Since the process logic and the functionality of field devic-
es are increasing the PLC programs are getting evermore complex. This leads to high 
efforts for programming, commissioning, and reengineering of control programs.  

The increasing demands on automation systems call for advanced automation con-
cepts and technologies that meet todays and future requirements. Component based 
methods support the handling of complexity and reusability of control programs. To 
facilitate an integrated information flow the planning phase has to be linked directly 
to the component based software development. Additionally, technologies are needed 
to enable a high degree of vertical and horizontal integration of the software compo-
nents. A promising approach that meets these demands is the paradigm of Service-
oriented Architectures (SOA). The potential of applying SOA within the automation 
domain has already been recognized in several research projects like the SIRENA [1], 
SOCARDES [2-3], and PABADIS’PROMISE [4] and other publications [5]. Howev-
er, in practice SOA is still not used for process control applications in factory sys-
tems. To make use of the benefits provided theoretically by SOA in real applications, 
planning methods and technologies for implementing SOA in the automation domain 
are needed. On this account, the approach SOA-AT (SOA in automation technology) 
is developed, with the aim to provide methods, models, proceedings, and technologies 
to support the use of SOA in industrial automation [6]. The work presented in this 
article is part of this. 

In the following, an integrated approach for the planning, implementation, and ex-
ecution of process control logics by using process models and service-orientation is 
presented. This allows for the first time to develop and execute control tasks in a ser-
vice-oriented way with a suitable service technology. First, the conceptual approach 
SOA-AT is described. After that, the modeling language Grafchart and the tool 
JGrafchart with the integration of the DPWS technology are introduced. Finally, the 
concept of combining DPWS and Grafchart for the development and execution of 
service-oriented control tasks is presented through an industry-related experimental 
setup. 

2 SERVICE-ORIENTED AUTOMATION 

2.1 Service-oriented process control 

The use of the SOA paradigm for applications in industrial automation has the poten-
tial to decrease the engineering effort significantly. The term Service-oriented archi-
tectures describes generally a system architecture that represents software functions as 
encapsulated services in an open and implementation independent way [7]. This ena-
bles a high degree of reusability, flexibility, and interoperability of software compo-
nents. Since the biggest field of application of SOA is enterprise software most defini-
tions and best practices deal with business processes [8-9]. 



The basic idea of the conceptual approach, SOA-AT, is to apply the principles of 
service-oriented architectures to the domain of industrial automation [10]. This im-
plies that all automation functions within an industrial automation system are repre-
sented as services. Since the focus here is the execution of a production process, the 
implementation of the process logic should be done in a service-oriented way. The 
interface between the physical process and the automation system constitute the field 
devices. Thus, their mechatronic functions are the basic services of SOA-AT. To im-
plement a certain control task these basic services have to be arranged with logical 
operations. This procedure is also called service orchestration. The encapsulation of 
low-level functions to services enables a higher degree of abstraction for the imple-
mentation of the control logic. This allows a hardware-independent development of 
the process logic and a simpler programming and reuse of control programs. 

2.2 Process modeling and execution 

The general procedure for developing an executable process within a SOA is based on 
a process description. This process description models the planned process in an ab-
stract way. For example, a common modeling language for business applications is 
the “Business Process Modeling Notation”. To generate an executable process the 
abstract process model has to be transferred to a service orchestration. Therefore, a 
process logic has to be developed based on the process model and the abstract process 
steps have to be assigned with existing services, see Fig. 1. An example of an orches-
tration language is the “Business Process Execution Language” for specifying execut-
able web service orchestrations. How fluently the procedure for generating an execut-
able process is depends on many factors, e.g. how detailed the process description 
already is, how good the services and the process steps match, how well the data inte-
gration works. 

The goal is to define an integrated procedure from an abstract process modeling to 
the generation of an executable service orchestration for the process control of pro-
duction equipment. The prerequisites are suitable modeling languages and a tool 
chain without any media breaks. 

 

Fig. 1. Generation of a service orchestration. 



2.3 Realization aspects 

Most of the existing SOA standards, technologies, and tools are tailored to business 
applications. However, automation and business applications differ in many ways 
[10]. Thus, an investigation is needed analyzing which existing service technology, 
process modeling, and service orchestration language are suitable for process control 
modeling and execution. 

Previous work has already evaluated several service technologies [6]. It turns out 
that the Devices Profile for Web Services (DPWS) proves to meet the requirements 
best [11]. This is due to the fact that DPWS was developed for realizing web service 
on resource-constraint devices [12]. Thus, the DPWS defines a profile specifically 
targeted for SOA at the device level using existing WS-* specifications [1], [12]. 
Especially the support of eventing and discovery mechanisms makes the DPWS tech-
nology attractive. Hence, DPWS is chosen as the service technology. The hierarchy of 
DPWS services is shown in Fig. 2. On the highest level a DPWS “device” has to be 
defined. Each device can be discovered by means of the WS-Discovery standard. 
Furthermore, the devices must provide some metadata to describe themselves more 
detailed. The underlying DPWS levels with “services”, “portTypes”, and “operations” 
corresponds exactly to the structure of common web services. The abstract services 
that represent the functionality of the field devices are encapsulated to “operations”. 

 

Fig. 2. Hierarchy of DPWS service elements. 

A drawback of DPWS is that no standardized modeling or execution languages exist 
for orchestrating DPWS services. Thus, a framework for the generation and execution 
of DPWS processes is needed. One of the most important requirements is that the 
framework should have a high potential of being well-accepted by its future users, i.e. 
people in the automation domain. Additionally, even high complex logical structures 
should be presented clearly by means of a graphical representation. A promising can-
didate to meet these demands is Grafchart [13]. 



3 GRAFCHART 

3.1 Introduction to Grafchart 

Grafchart is the name of a graphical language aimed for sequential control applica-
tions. Grafchart has been developed at Lund University [14-15]. Graphical program-
ming is popular in the automation community, e.g. three of the five proposed pro-
gramming languages of the PLC standard IEC 61131-3 are graphical. The advantages 
of graphical programming languages are simplicity and declarativeness. They often 
allow programming in a style that closely mimics the style that people model prob-
lems. An added benefit is the possibility to use color and animation to provide feed-
back as the program executes.  

Grafchart is based on the graphical syntax of Grafcet/SFC, one of the graphical 
languages of IEC 61131-3. The syntax of Grafcet/SFC is well-accepted in industrial 
application today, however the language itself is a rather low-level graphical lan-
guage. By adding ideas from high-level Petri Nets [16], Statecharts [17], and object-
oriented programming, Grafchart is transformed into a high-level, object-oriented 
graphical language with support for formal analysis [15]. 

3.2 Syntax of Grafchart 

The primary building blocks of Grafchart are steps, representing states, and transi-
tions, representing the change of states. A step and a transition are connected by an 
arc. Grafchart also supports alternative and parallel branches. An active step is indi-
cated by the presence of a token in the step. An example of a Grafchart application is 
depicted in Fig. 3. Associated with the steps are actions that are executed at certain 
occasions, e.g. when the step is activated (S action) or deactivated (X action). To each 
transition a boolean condition is associated. The transition is enabled when all preced-
ing steps are active. An enabled transition fires if its condition is true, meaning that 
the preceding steps are deactivated and the succeeding steps are activated. 

 

Fig. 3. Process modeling with Grafchart 



It is possible to express alternative paths and parallel paths in Grafchart as shown in 
Fig. 4. Alternative paths means that only one of the possible paths is executed. Paral-
lel paths means that several paths are executed at the same time. The execution is split 
up and joined with parallel splits and parallel joins respectively. 

 

Fig. 4. In Grafchart it is possible to express parallel and alternative paths. 

Grafchart supports three hierarchical abstractions mechanisms: macro steps, proce-
dures, and workspace objects, see Fig. 5. Macro steps are used to represent steps that 
have an internal structure. Sequences that are executed in more than one place in a 
function chart can be represented as Grafchart procedures. The call to a procedure is 
represented by a procedure step (procedure call) or process step (separate execution 
thread). The workspace object is simply a named sub-workspace and is another way 
to structure large applications. The added features in Grafchart compared with 
Grafcet/SFC imply that Grafchart is better suited for code reusability, higher abstrac-
tion through procedure and process steps, and clarity of processes (Macro steps). 



Grafchart also contains constructs for doing more convenient error handling. The 
exception port on the macro step can connect all the steps in its sub-workspace with a 
single connection to a special transition, the exception transition, and makes it possi-
ble to abort the execution of the macro step. The execution of an aborted macro step 
can then also be resumed through its history port. The procedure step also has an ex-
ception port. There is also the Step Fusion Set which makes it possible to have several 
steps which are conceptually the same step and thus always are activated and deac-
tivated together. 

 

Fig. 5. The ways to do hierarchical structuring in Grafchart: Macro Steps (M1), Proce-
dures (Proc1), and Workspace Objects (W1). Procedures can be used by Procedure 

Steps (P1) and Process Steps (P2). 

3.3 Modeling service orchestrations with Grafchart  

Since Grafchart combines the well-known graphical syntax of established process 
control languages and high-level modeling features it is entirely suited as a formal 



language for the mentioned demands. In particular, the possibility to create different 
abstraction levels by means of encapsulation of sub-processes and object-orientation 
is an important fact. Due to this service orchestrations can be modeled in various ab-
straction degrees so that both the process description and the service orchestration can 
be done with the same language. This enables a top-down engineering procedure 
without any media breaks. 

For generating the process description the process steps can be represented as 
Grafchart steps, see Fig. 3. During the planning phase the process description can be 
detailed by decomposing the processes steps by means of the mentioned high-level 
features of Grafchart. For the development of executable control logic the abstract 
process description has to be transferred to a service orchestration. Therefore, the 
process steps have to be enriched with actions and the transitions with conditions. In a 
last step, the actions and transition conditions have to be implemented by assigning 
them with existing services. By this procedure the development of control software 
can be done hardware-independent for the longest time. 

3.4 JGrafchart 

For realizing this integrated engineering procedure a tool for modeling and executing 
Grafchart applications with DPWS services is needed. A Java implementation of 
Grafchart called JGrafchart is developed by the department of Automatic Control at 
Lund University and is available as freeware [18]. 

JGrafchart already contains several means of connecting various I/O. For example 
it is possible to supply completely custom made Java implementations of analog and 
digital I/O. Using only these it is not possible to make a good DPWS implementation 
since they only allow boolean and real values to be read and written from a JGrafchart 
application while DPWS sends XML messages. Something as simple as passing on a 
returned string from one operation to another operation would be very hard to accom-
plish. 

It is also possible to create more general I/O with sockets. JGrafchart then connects 
as a client to a TCP/IP server, sends TCP/IP messages to the server each time a Sock-
et output value is changed, and updates the corresponding Socket inputs when a mes-
sage is received from the server. 

4 DPWS INTEGRATION IN JGRAFCHART 

4.1 The socket I/O prototype 

Calling DPWS operations from JGrafchart was initially prototyped using the already 
existing Socket I/O. To do this a TCP/IP server was implemented to translate the as-
signments to socket outputs in JGrafchart to DPWS operation calls, as well as opera-
tion responses to socket inputs in JGrafchart, see Fig. 6. Some special socket inputs 
and outputs as well as some extra code to detect event arrival were also needed for 
subscriptions and event notifications. 



 

Fig. 6. Overview of solution using the already existing socket I/O. 

A big advantage with this prototype is that an almost unmodified version of JGraf-
chart was sufficient. For each device that you want to use you add a small piece of 
translation code in the server. The only required modification to JGrafchart was al-
ways sending a message to the server upon assignment to a socket output. Previously 
a message was only sent if the value had changed and since assignments correspond 
to DPWS operation calls this meant that consecutive calls with the same arguments 
were not made. 

One possible improvement of the prototype would be to make the translation more 
generic, replacing the need to write specific code for each device by configuring the 
mapping from DPWS operations to socket inputs/outputs. Together with a library in 
JGrafchart for event notification this would become rather convenient. 

However, a problem with the prototype is that it is hard to make calls to request-
response operations synchronous. When JGrafchart has written to a socket output, 
which is related to invoking of a request-response operation, it does not know that it 
should wait for the update of a socket input before resuming the execution. Apart 
from this there is also the aesthetical issue that operation calls look like assignments 
and returned values are fetched from a separate socket input. 

Our conclusion from making this prototype is that it was a surprisingly small effort 
to get it working, requiring only a tiny modification to JGrafchart. We are quite con-
fident that this approach can also be used for other, similar methods of communica-
tion. 

4.2 Using DPWS services 

In JGrafchart version 2.1.0, a generic DPWS implementation has been integrated 
directly into JGrafchart using the DPWS4J toolkit [19]. A DPWS service port type is 
connected to the new DPWS Object in JGrafchart. Using the capabilities of DPWS, 
existing services as well as service startups and shutdowns are automatically detected 
and the services are automatically rebound to the corresponding DPWS Objects. 
Since the services are self-describing it is also possible to check that operation calls 
are at least well formed at compile time. The WSDL files may also contain documen-



tation that can be, and is, displayed to the user directly in JGrafchart. It is also possi-
ble to view the raw WSDL which can be useful for example if the WSDL has insuffi-
cient documentation. 

WSDL specifies four kinds of operations; one-way, request-response, solicit-
response and notification. The one-way and request-response types are initiated by 
JGrafchart. Request-response calls have a return value and consist of both a message 
from JGrafchart to the service and a message back from the service to JGrafchart. 
One-way calls only consist of a message from JGrafchart to the service. Symmetrical-
ly notification calls only consist of a message from the service to JGrafchart. This is 
typically used for eventing. Solicit-response calls work like request-response calls but 
the other way around. Solicit-response calls are not supported by JGrafchart as they 
are considered rare in automation. 

Calling of DPWS service operations has been designed to look like any other 
method call in JGrafchart. Fig. 8 contains examples on how the operations defined in 
Fig. 7 are used. The one-way operation oneWayOp is called on the service port type 
myPortType bound to myDPWSObj. In this case the operation does not require, nor 
allow, any parameter, as the corresponding message definition does not specify any 
parts. The request-response operation reqRespOp on the other hand requires a string 
as a parameter, in this case “par” is sent, and it will return a boolean which in this 
case will be assigned to the JGrafchart variable ret. Since the port type specifies that it 
is an event source it is possible to subscribe to events. On the first line a 10 minute 
subscription is initiated and on the last two lines a check is done if any eventOp noti-
fications have been received, and if so the oldest event is fetched and stored it in the 
integer variable ev. 
... 

<message name="oneWay"/> 

<message name="req"> 

 <part name="arg" element="string"/> 

</message> 

<message name="resp"> 

 <part name="ret" element="boolean"/> 

</message> 

<message name="event"> 

 <part name="id" element="integer"/> 

</message> 

 

<portType name="myPortType" EventSource="true"> 

 <operation name="oneWayOp"> 

  <input message="oneWay"/> 

 </operation> 

 <operation name="reqRespOp"> 

  <input message="req"/> 

  <output message="resp"/> 

 </operation> 

 <operation name="eventOp"> 

  <output message="event"/> 

 </operation> 

</portType> 

... 

Fig. 7. A WSDL example where three operations are defined, namely oneWayOp, 
reqRespOp, and eventOp. 

 



S myDPWSObj.oneWayOp(); 

S ret = myDPWSObj.reqRespOp(“par”); 

S dpwsSubscribe(myDPWSObj, “PT10M”); 

... 

S e = dpwsHasEvent(myDPWSObj, “eventOp”); 

S ev = e ? dpwsGetEvent(myDPWSob, “eventOp”) : 0; 

 

Fig. 8. Grafchart actions calling all operations in Fig. 7. 

4.3 Example 

The DPWS4J toolkit v1.3.0 includes a sample of a lamp controller implemented as a 
DPWS service. If you download the toolkit and JGrafchart you can try this example 
out by yourselves. 

Consider motion triggered lighting of a room. After any motion, the room shall be 
lit for two minutes. The lamp controller is implemented using the same interface as 
the sample and the motion sensor is implemented as a digital I/O. 

 

Fig. 9. A Grafchart application for motion triggered lights. 

A JGrafchart based implementation could look like in Fig. 9. The lights interface 
contains a port type named SwitchPower which here is bound to the DPWS Object 
SP. The operation Switch in the SwitchPower port type accepts the parameter values 
“ON” and “OFF” which turn on and off the lamp respectively. 

The JGrafchart application starts in the initial step where the lamp is initially 
turned off. When motionSensor is true, the initial step will be deactivated which 
means that the lamp will be turned on. The construct <stepName>.s returns the num-
ber of seconds that the step named “stepName” has been active since the last activa-
tion. The bottom right transition makes sure that this counter is reset whenever mo-
tionSensor is true. 

 



5 EXAMPLE 

To evaluate and illustrate the DPWS implementation, a service orchestration in 
JGrafchart that controls real production equipment is implemented. The equipment 
setup represents a small flexible and agile manufacturing system. 

5.1 Experimental setup 

The experimental setup is part of the demonstration facility of SmartFactoryKL and 
comprises real industrial devices. It consists of a conveyor belt transporting carriers 
with bins that shall be filled with a certain number of pills. There are two stations on 
the demonstrator, one that fills the bins with pills, and one that checks the quality of 
the filled bins. The latter simply checks if the bins have been filled with the correct 
number of pills by image recognition. On each bin there is an RFID tag containing 
life cycle information about the product [20]. Amongst other things it saves some 
information about the production process, e.g. how many pills that the bin should 
contain, if it has been filled, and if quality control has been performed. 

 

Fig. 10. The quality control station of the demonstrator. 

The quality control process in Fig. 10 consists of five devices; an inductive sensor that 
detects the arrival of a carrier, a stopper that can stop the carriers, an ultrasonic sensor 



that can check if there is a bin on the carrier, an RFID reader that can read from and 
write to the RFID tag on the bin, and a camera that can take top view pictures of the 
contents of the bin. In previous work the devices of the quality control process have 
been enhanced with microcontrollers that serve as service gateways. The basic func-
tions of the devices have been encapsulated and implemented as DPWS services [10]. 
The sequence for coordinating the station can be modeled as in Fig. 11. 

 

Fig. 11. A model of the coordination sequence for the quality control station, where 
state (1) is the initial state 

5.2  Process execution with JGrafchart 

Using the model as a basis, a JGrafchart application for coordinating the quality con-
trol station is created, see Fig. 12. As some states in the model have a straight forward 
flow, they can be implemented in the same Grafchart step. The steps CheckBinRFID 
and QC in JGrafchart correspond to the model states (3)-(4) and (5)-(8) respectively. 



 

Fig. 12. A JGrafchart implementation of the quality control station. The code is shown to 
highlight the approximate amount of code that is required; it is not intended to be readable. 

XML utility functions are used to simplify the code, e.g. xmlFetch is used to obtain a 
derived value from an xml string. The camera’s count operation returns a sequence of 
value elements, where each element describes the number of pills of a specific color. 
The total number of pills is fetched with xmlFetch(resp, "value", "sum"); where resp 
is the returned string, "value" is an XPath that selects all elements with the tag name 
value, and "sum" is a built-in handler that calculates the arithmetic sum of the selected 
elements’ texts. 



6 CONCLUSIONS 

Service-oriented architectures constitute a powerful concept to improve industrial 
automation systems regarding the flexibility, integration capability, and re-usability of 
their devices and software. However, the effective use of SOA in automation applica-
tion depends heavily on how well the concept can be realized with existing tools, 
technologies, and engineering proceedings. Therefore, an integrated procedure from 
the process planning to the operation phase is presented. Grafchart is used as the pro-
cess modeling and service orchestration language and DPWS as the service technolo-
gy.  

Using the basic concepts of SOA-AT, together with the DPWS service technology 
and the sequential language Grafchart, three main advantages are achieved; 1) the 
development and modeling of elaborated processes can be made independently of the 
implementation of the process control logic which is vendor and hardware dependent, 
2) the language used for modeling of elaborated processes can also be used for execu-
tion of the same processes, 3) the coupling to the services is made in a simple and 
straight forward way using the DPWS technology.  

The focus of the work has so far been on integrating DPWS in JGrafchart. Version 
2.1.0 of JGrafchart can be used for realizing DPWS service orchestrations and is 
freely available at http://www.control.lth.se/Research/Tools/grafchart/. 

Future plans include linking the process implementation in Grafchart to previous 
factory planning phases. Another future research area is the realization of services for 
production equipment. Concepts are needed for defining service for the different au-
tomation tasks. Furthermore, technological questions have to be answered, e.g. de-
mands on the SOA communication system like real-time, security, and safety issues 
and how industrial devices can provide the computational power and networking ca-
pacity.  
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