
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

reqT.org – Towards a Semi-Formal, Open and Scalable Requirements Modeling Tool

Regnell, Björn

Published in:
Lecture Notes in Computer Science

2013

Link to publication

Citation for published version (APA):
Regnell, B. (2013). reqT.org – Towards a Semi-Formal, Open and Scalable Requirements Modeling Tool. In J.
Doerr, & A. L. Opdahl (Eds.), Lecture Notes in Computer Science (Vol. 7830, pp. 112-118). Springer.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. Jul. 2025

https://portal.research.lu.se/en/publications/78881225-6983-4547-8889-df616116ff56

reqT.org – Towards a Semi-Formal, Open and Scalable
Requirements Modeling Tool

Björn Regnell

Dept. of Computer Science, Lund University, Sweden
bjorn.regnell@cs.lth.se

Abstract. [Context and motivation] This research preview presents ongoing
work on a free software requirements modeling tool called reqT that is devel-
oped in an educational context. [Question/problem] The work aims to engage
computer science students in Requirements Engineering (RE) through a tool that
captures essential RE concepts in executable code. [Principal ideas] Require-
ments are modeled using an internal DSL in the Scala programming language
that blends natural language strings with a graph-oriented formalism. [Contribu-
tion] The metamodel of reqT and its main features are presented and modeling
examples are provided together with a discussion on initial experiences from stu-
dent projects, limitations and directions of further research.

Keywords: requirements engineering, requirements modeling, software engi-
neering, CASE tool, requirements metamodel, requirements engineering educa-
tion, internal DSL, embedded DSL, Scala programming language

1 Introduction

There are many challenges in teaching Requirements Engineering (RE) [6, 9], includ-
ing conveying requirements modeling skills [1]. Given a wide-spread attention on agile
methods with less emphasis on extra-code artifacts [8], it may be particularly chal-
lenging to motivate coding-focused engineering students (and software practitioners)
to spend serious effort on requirements modeling. One way to inspire software engi-
neers to learn more about and do more RE may be to offer an interesting software tool.
There are nowadays numerous commercial RE tools available, but many are expensive,
complex and not sufficiently open [2].

This paper presents on-going work on a tool named reqT that aims to provide a
small but scalable, semi-formal and free software package for an educational setting
that (hopefully) can inspire code lovers to learn more about requirements modeling. A
long-term goal of reqT is to offer an open platform for RE research prototypes, e.g. for
feature modeling and release planning research. The tool development started in 2011
at Lund University, where reqT is used in RE teaching at MSc level in the Computer
Science & Engineering program. In 2012 reqT was rebuilt from scratch based on student
feedback. The tool can be downloaded from: http://reqT.org

The paper is organized as follows. Section 2 states the objectives and motivates the
design strategy of reqT. Section 3 presents the metamodel of reqT and some example
reqT models. Section 4 discusses limitations and some initial experiences from using
reqT in teaching and concludes the paper with a sketch of future research directions.

2 Regnell, B (2013)

2 Goals, Design Strategy and Rationale

The main objective behind reqT is to establish a set of essential RE concepts and cap-
ture them in an expressive, extensible and executable language appealing to computer
science students (and eventually practitioners). This general objective is accompanied
by the following main goals and associated design strategies:

1. Semi-formal. Goal: Provide a semi-formal representation of typical requirements
modeling constructs that can illustrate a flexible combination of expressive natural
language-style requirements with type-safe formalisms allowing static checks. De-
sign: Use graph structures based on typed nodes representing typical requirement
entities and attributes, and typed edges representing typical requirements relations,
and implement the graph as an associative array (map). Why? Graphs are well-
known to many CS students. Maps are efficient from an implementation perspective
and may be less complex to master compared to e.g. SQL databases.

2. Open. Goal: Provide a platform-independent requirements tool that is free of charge.
Design: Use Java Virtual Machine technology and release the code under an open
source license. Use tab-separated, tabular text-files for import and export. Use
HTML for document generation. Why? There are many free libraries available that
runs on a JVM. Tab-sep and HTML support interoperability.

3. Scalable. Goal: Provide an extensible requirements modeling language that can
scale from small, concise models to large families of models with thousands of
requirements entities and relations. Design: Implement reqT as an internal DSL
(Domain-Specific Language) in the Scala programming language [7]. Use Map
and Set from Scala collections to represent requirements graphs. Why? Scala is
a modern, statically typed language with an efficient collections library. Scala of-
fers scripting abilities that provide general extensibility without re-compilation. In-
tegrated development environments [11], as well as interactive scripting tools are
available [3].

These goals, design strategies and rationale are directing the on-going work, and it
remains to be investigated to what extent the main objective and goals can be met. A
critical issue is how to interpret what are ”essential” RE concepts and ”typical” model-
ing constructs. The reqT tool is used in a course based on a specific text book [4] and
a specific student project concept [5], and the concepts of the reqT requirements meta-
model (see Fig. 2) reflect that context. However, the reqT architecture is prepared for
extensions of new concepts in the metamodel to cater for different educational contexts.

3 Modeling requirements with reqT

A reqT model includes sequences of graph parts <Entity><Edge><NodeSet>
separated by comma and wrapped inside a Model() construct. A small reqT Model
with three Feature entities and one Stakeholder entity is shown below:
Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Accepted for publication at REFSQ’13, Springer LNCS, http://www.refsq.org 3

Feature
("f1")

Feature
("f2")

requires

Stakeholder
("s1")

assigns(Prio(1))

Feature
("f3")

requires

Status
Spec

has

has

Fig. 1. A reqT model depicted as a graph.

The corresponding graph implied by the
above model is depicted in Fig. 1. The edges
represent different relations between entities,
in this case the requires and assigns re-
lations. Nodes with outgoing edges are called
sources and nodes with incoming edges are
called destinations. There is a special edge
called has that is used to attach attributes to
entities. The different types of entities, rela-
tions and attributes of the reqT metamodel,
depicted in Fig. 2 can be combined freely, al-
though a has-edge can only link to attributes,
while a relation can only link to entities. In the metamodel of reqT in Fig. 2, abstract
types are shown in italics and concrete types are shown in bold. All concrete types are
Scala case classes [7]. All entities have a string-valued id for unique identification. Most
attributes have string values that can be used to combine informal, natural-language ex-
pressions with formal graph-structures. The Status attribute can be associated to en-
tities to reflect their degree of refinement in RE and down-stream processes by different
Level values, as depicted in Fig. 3.

Domain-level task descriptions [4] can be modeled using the scenario-type require-
ment entity Task, as shown in the model below. This example1 is modified from Laue-
sen [4], p. 93. The special relation owns is used to express hierarchical decomposition
and reqT ensures that an entity only can be owned by one other entity.

var m = Model(
Task("reception work") owns (Task("check in"), Task("booking")),
Task("check in") has (
Why("Give guest a room. Mark it as occupied. Start account."),
Trigger("A guest arrives"),
Frequency("Average 0.5 check-ins/room/day"),
Critical("Group tour with 50 guests.")

),
Task("check in") owns (
Task("find room"), Task("record guest"), Task("deliver key")),

Task("record guest") has Spec(
"variants: a) Guest has booked in advance, b) No suitable room"

)
)

There are a number of operators defined for reqT models including the aggregate,
restrict and exclude operators denoted by double plus ++ and slash / and backslash \
respectively. The expression m1 ++ m2 results in a new aggregated model with m1
and m2 merged, with parts of m2 potentially overwriting overlapping parts of m1. The
restrict and exclude operators produce new submodels including or excluding parts of
a Model based on the right operand argument that can be of different Element types,
as explained subsequently.

1 For more examples on how to combine various entities and relations of reqT into different
requirements modeling styles, see: http://reqT.org/

4 Regnell, B (2013)

Element

Concept Structure

Node

Entity(id: String)

Context

Product

Release

Stakeholder

Requirement

Feature

UserStory

Goal

Attribute[T](value: T)

Edge

AttributeEdge

Relation

has

Key(Entity, Edge)

NodeSet(Node, Node, ...)

owns

excludes

assigns(Attribute)

Actor

Model

scala.collection.immutable.Map[Key, NodeSet]

UseCase

Task
Scenario

VividScenario

Function

Data

Quality

Interface

Spec(String)

Gist(String)

Status(Level)

Why(String)

Example(String)

Input(String)

Design

precedesOutput(String)

Trigger(String)

Precond(String)

Frequency(String)

Critical(String)

Problem(String)
Prio(Int)

Label(String)

Image(String)

Class

Member

inherits

requires

helps

hurts

Abstract

Type

subtype

Comment(String)

Deprecated(String)

deprecates

Fig. 2. The reqT version 2.2 metamodel.

SPECIFIED

ELICITED

VALIDATED

PLANNED

IMPLEMENTED

TESTED

RELEASED

DROPPED

POSTPONED

up

up

up

up

up

up

FAILED

up

up

up

down

init

up

down

down

down

down

down

down

down

down

down

Fig. 3. Refinement levels of the Status attribute.

The expression m / Task("x")
results in a new submodel that is
restricted to all parts of m with
Task("x") as source node, while
the expression m \ Task results in a
new submodel that excludes all Task
sources. The expression
((m / e) ++ (m \ e) == m)
is always true.

A reqT Model has the methods
up and down that promote or regress
all its Status attributes according to
the state machine in Fig. 3. By using /
and \ for extracting submodels, levels
can be selectively promoted, e.g. the
expression
m = (m / Feature("x")).up ++ (m \ Feature("x")) updates m to a
new model where only Feature("x") is promoted to the next level. Several more
operators and methods for create/read/update/delete of entities using Scala scripts are
available in the Model case class, see further: http://reqT.org/

Accepted for publication at REFSQ’13, Springer LNCS, http://www.refsq.org 5

In our course projects [5] students shall produce requirements documents that can be
validated by laymen. This is supported in reqT by an export operation on models called
toHtml that generates files that can be shown in web browsers as illustrated in Fig. 4.
The HTML generation is controlled by a DocumentTemplate case class that allows for
specifying title, free form text paragraphs and optional numbers of Chapters containing
optional Sections including specified parts of a reqT model in flexible ways using Scala
function literals that can, e.g., apply restrict and exclude operators to models. In Fig. 4
the Scala function literal m => m / Context restricts the contents of a chapter to
only Context type source entities. Fig 4 also shows toTable export to spreadsheet
programs via tab-separated text files. The code in Fig. 4 can be executed e.g. as a script
using the interactive Scala Read-Evaluate-Print-Loop (REPL) from the command line,
or in a scripting environment such as Kojo [3], or inside the Scala Eclipse IDE [11].

var m = Model(
Product("reqT") has

Gist("A tool for modeling evolving requirements."),
Release("2.0") has

Gist("Major update based on student feedback."),
Product("reqT") owns Release("2.0")

)

m += Feature("toHtml") has Gist("Generate web document.")

val myTemplate = DocumentTemplate(
"Requirements Document",
Text("Generated by " +

" reqT.org " +
(new java.util.Date)),

Chapter("Context", Text(""), m => m / Context),
Chapter("Features", Text(""), m => m / Feature)

)

m.toHtml(myTemplate).save("reqT.html")

m.toTable.save("reqT.txt")

Fig. 4. Example of template-based export to HTML and tab-separated table export.

4 Discussion and Conclusion

The results of the on-going work with reqT remains to be further investigated and a
validation of reqT as a RE learning tool and research experimentation platform is sub-
ject to future work. This section discusses some preliminary experiences, limitations,
relation to state-of-the-art and future research directions.

Preliminary proof-of-concept. The first version of reqT was tried on a voluntary
basis by 12 students working in groups of 6 students each during fall 2011. Statements

6 Regnell, B (2013)

from course evaluations indicate that the students found reqT useful in their learning.
One group used a configuration management tool for reqT models to manage their
parallel work, while one group used a cloud service and tab-sep export/import to col-
laborate over the Internet. The group with the largest requirements model produced 64
features, 18 tasks, 12 functions, 30 data requirements and 33 quality requirements, in
total 157 requirements entities.

Several students appreciated that reqT can mix informal text with a graph-oriented
formalism, but some requested more elaborated functionality for document generation,
as well as linking to external images. Some students also requested more modeling
examples that show how the text book techniques could be transferred to reqT models.

Based on student feedback, reqT was rebuilt from scratch during 2012 with a new
architecture and a new version of the meta model (see Fig. 2), as well as a revised
Scala-internal DSL. The template-controlled HTML generation was implemented based
on student suggestions. The teaching material was complemented with more example
models directly related to the textbook. The second version of reqT is currently tested
by students in a new course instance and a post-course evaluation of reqT is planned in
spring 2013.

Our preliminary experiences from applying reqT in teaching suggest that reqT, if
used in a suitable teaching context, may encourage students with a code-focused mind
set to learn and practice RE in the following ways: (1) A free and platform-independent
software tool that is implemented using a modern programming language with interac-
tive scripting facilities can attracts the interest of code-focused students. (2) Require-
ments can be processed, queried, transformed or exported using Scala scripts, and the
open-ended nature of reqT that allows students to code their own scripts to both man-
age requirements models and to adapt reqT to fit their RE needs in the course project
was appreciated by several coding-literate students. (3) By turning requirements models
into executable code, students can use programming tools such as a console command
line interpreter (the Scala REPL) as well as a source code version control system (e.g.
git-scm.com) to branch and merge their collaborative work on requirements in ways
they are used to from their previous collaborative software implementation courses,
including issue tracking systems and code review support.

Relation to state-of-the-art. To the best of our knowledge there is no other RE tool
that allows semi-formal requirement models to become executable programs through
an internal Scala DSL, and thus letting coding, testing and requirements engineering
share the same media. In the RE tool survey by Carrillo de Gea et al. [2] it is pointed
out that ”many expensive tools aren’t sufficiently open”. The reqT technology aims to
be completely free and open to facilitate academic usage, collaborative evolution and
incorporation of new RE concepts in different teaching and research contexts. Many of
the existing tools have proprietary representations [2], while users of reqT can extend
the reqT metamodel with new entities and attributes simply by adding case classes
with a few lines of code. However, reqT cannot compete with versatile commercial RE
tools [2] in terms of e.g. features completeness and graphical user interface.

Limitations. In its current version, reqT has a number of limitations: (1) As the user
interface is text based and depends on the command line interface of the Scala REPL
or a script editor environment [3, 11], students that only are prepared to use graphical

Accepted for publication at REFSQ’13, Springer LNCS, http://www.refsq.org 7

user interfaces may be discouraged. Some of our students preferred to work in a GUI
spreadsheet application using tab-separated exports from reqT that was generated by
other team members assigned by the student group to be reqT experts. (2) It requires
some knowledge of Scala to tailor reqT exports and there is a need for a more com-
prehensive API for adaptable document generation. (3) The embedded DSL requires
some learning efforts and it remains to be investigated if the effort is justified by the
knowledge gained. (4) To support scalability to large families of reqT models there is a
need for modularization concepts and overview visualizations. (5) The explicit typing
of entities with keywords such Feature and Stakeholder can be perceived as verbose
compared to more concise but potentially cryptic abbreviations (e.g. Fe, Sh). This may
be addressed by DSL-specific editor support, such as code-completion, code folding
and code templates.

Future work. Further directions of research include (1) incorporation of constraints
on models for support of prioritization and release planning [10], (2) more elaborate se-
mantic checks to better guide requirements modelers, and (3) graphical visualization of
requirements graph models. (4) Natural Language Processing technology including e.g.
ambiguity risk detection may be interesting to combine with reqT. (5) It is also impor-
tant to further investigate the pedagogic advantages and limitations of the approach.

A major objective of this research preview paper is to expose the latest version of
reqT to the community of RE scholars and to invite discussions and contributions.

Acknowledgments. This work is partly funded by VINNOVA within the EASE project.

References

1. Callele, D., Makaroff, D.: Teaching requirements engineering to an unsuspecting audience.
In: Proceedings of the 37th SIGCSE technical symposium on Computer science education.
pp. 433–437. SIGCSE ’06 (2006)

2. Carrillo de Gea, J., Nicolas, J., Aleman, J., Toval, A., Ebert, C., Vizcaino, A.: Requirements
engineering tools. Software, IEEE 28(4), 86 –91 (july-aug 2011)

3. Kogics: Kojo, http://www.kogics.net/kojo, visited Nov 2012.
4. Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley (2002)
5. Lund University: http://cs.lth.se/ets170, visited Nov 2012.
6. Memon, R.N., Ahmad, R., Salim, S.S.: Problems in requirements engineering education:

a survey. In: Proceedings of the 8th International Conference on Frontiers of Information
Technology. pp. 5:1–5:6. FIT ’10, ACM (2010)

7. Odersky, M., et al.: An overview of the Scala programming language. Tech. rep. (2004),
http://lampwww.epfl.ch/˜odersky/papers/ScalaOverview.html

8. Ramesh, B., Lan, C., Baskerville, R.: Agile requirements engineering practices and chal-
lenges: an empirical study. Information Systems Journal 20(5), 449 – 480 (2010)

9. Regev, G., Gause, D.C., Wegmann, A.: Experiential learning approach for requirements en-
gineering education. Requirements Engineering 14(4), 269 – 287 (2009)

10. Regnell, B., Kuchcinski, K.: Exploring software product management decision problems
with constraint solving - opportunities for prioritization and release planning. In: Software
Product Management (IWSPM), 2011 Fifth International Workshop on. pp. 47 –56 (2011)

11. Scala Eclipse IDE: http://scala-ide.org/, visited Nov 2012.

