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Abstract: Thepurpose of this study was to investigate how the geometry
of a fiber optic probe affects the transmission and reflection of light through
the scleral eye wall. Two geometrical parameters of the fiber probe were
investigated: the source-detector distance and the fiber protrusion, i.e.
the length of the fiber extending from the flat surface of the fiber probe.
For optimization of the fiber optic probe geometry, fluorescence stained
choroidal tumor phantoms inex vivo porcine eyes were measured with
both diffuse reflectance- and laser-induced fluorescence spectroscopy.
The strength of the fluorescence signal compared to the excitation signal
was used as a measure for optimization. Intraocular pressure (IOP) and
temperature were monitored to assess the impact of the probe on the eye.
For visualizing any possible damage caused by the probe, the scleral surface
was imaged with scanning electron microscopy after completion of the
spectroscopic measurements. A source-detector distance of 5 mm with
zero fiber protrusion was considered optimal in terms of spectroscopic
contrast, however, a slight fiber protrusion of 0.5 mm is argued to be
advantageous for clinical measurements. The study further indicates that
transscleral spectroscopy can be safely performed in human eyes under
in vivo conditions, without leading to an unacceptable IOP elevation, a
significant rise in tissue temperature, or any visible damage to the scleral
surface.

© 2011 Optical Society of America
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1. Introduction

Opticalspectroscopy has been used as a supplementary technique for detection and characteri-
zation of cancer in many human organs [1]. Choroidal melanoma is the most common primary
malignant eye tumor, but a variety of other benign and malignant tumors may develop in the eye
and pose diagnostic problems [2, 3]. Recently, we have shown that transscleral spectroscopy is
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a feasible method for predicting the content of both melanin and hemoglobin in experimental
choroidaltumors [4, 5]. The homogeneous structure of the sclera and the location of various
choroidal tumors immediately underneath it, suggest that a transscleral approach is the most
appropriate way to perform optical spectroscopy of intraocular tumors.

The wavelengths which can be used to probe optically thick tissues are limited by the scat-
tering and absorption properties of the tissue. It is known that light of longer wavelengths, in
general, has a lower attenuation than light of shorter wavelengths and thus a better penetra-
tion [6]. Many biologically important chromophores have specific absorption imprints residing
within the shorter wavelength regions. Thus for spectroscopy measurements, a trade-off be-
tween penetration, signal-to-noise ratio and chromophore specificity and sensitivity needs to
be considered. In addition to the wavelengths of the probe light, the source-detector distance
is another important factor to consider for suitable depth penetration [7, 8]. Given the optical
properties (reduced scattering coefficient,µ ′

s, and absorption coefficient,µa) of a tissue, the
source-detector distance will directly influence the depth of the sampled volume, i.e. a large
source-detector distance leads to a deeper sampled volume than a small source-detector dis-
tance [9, 10]. For measurements of the deeper situated regions within tissues, it is therefore
important to select a suitable source-detector distance to maximize the spectroscopic contrast,
i.e. the relative amount of photons which have interrogated the deeper situated tissue layers
compared to the photons which have only propagated through the superficial layers.

The main purpose of this study was to develop a fiber optic probe suitable for being handheld
duringin vivoocular spectroscopy and to optimize its parameters for transmitting and receiving
light through the scleral eye wall. With the aim to measure blood, water and melanin concen-
trations, the spectral range needs to cover at least 600-1000 nm to include the imprints from the
different chromophores. In our previous studies, the source-detector distance was first roughly
estimated using Monte-Carlo simulations [4, 5]. Since few reports exist on optical properties
of ocular tissues over a wide spectrum [11], the simulation results were only regarded as an
estimate. To investigate this further, we here present experimental data with different source-
detector distances. In addition, different fiber protrusions, i.e. the length of the fiber extending
from the flat surface of the fiber probe are investigated. Protruding fibers will change the eye
curvature and/or compress the scleral substance, which in turn may influence light transmission
through the tissue. Benefits with slightly protruding fibers are that the probe can be more se-
curely held in place and that temporary fine spots are created on the scleral surface, which can
be used as a visual confirmation of the probe placement. For the different fiber probe config-
urations, the spectroscopic contrast was experimentally determined inex vivotissue phantom
models with specific fluorescence labeling, using diffuse reflectance spectroscopy and laser-
induced fluorescence. This provided a way to optimize the geometry of a handheld fiber optic
probe for maximum spectroscopic contrast and signal-to-noise ratio, which also would be ro-
bust enough to clinically monitor intraocular tumors.

2. Materials and methods

2.1. Porcine eyes

Eyes from domestic pigs were obtained from a local abattoir. Pigs with a live weight of about
75 kg and an age of 6-7 months were used for the study. The eyes were removed within 12
hours postmortem and stored at 4◦C in a moist chamber until preparation. All experiments
were performed within 4-5 days after the death of the animals.

2.2. Preparation of the tumor phantom

The methods for the preparation of tumor phantoms have previously been described in detail
elsewhere [4, 5]. Briefly, each eye was prepared for injection under a dissecting microscope.
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After removal of conjunctiva, muscles and other excess tissues, a 3-mm scleral incision was
made7.5 mm anterior to the optic nerve insertion. The injection was done with a 2-ml syringe
connected to a cannula, with a blunt and flat tip, that was gently pushed through the sclerotomy
and 3-4 mm anteriorly. A mixture of porcine skin gelatin powder (G1890; Type A; Sigma-
Aldrich, St. Louis, MO) and titanium dioxide (TiO2) (T8141; Sigma-Aldrich, St. Louis, MO)
in distilled water was stirred with a magnetic bar for 15 minutes at 37◦C until a homogeneous
white suspension was obtained. By adding appropriate amounts of human venous blood (from
one healthy volunteer) and the fluorophore Dy-781 (Dy-781; Dyomics GmbH, Jena, Germany)
to the gelatin-TiO2 suspension, samples with the final concentrations of 15% (wt/vol) gelatin,
10 mg/ml TiO2, 5% (vol/vol) blood, and 0.5 µM Dy-781 were made. The suspensions were
kept in a water bath at 37◦C and stirred gently for another 2 minutes. Immediately prior to
injection, the samples were placed in a warm vacuum chamber, and air bubbles trapped inside
the suspension were eliminated by evacuating the chamber to a pressure of 0.25 bar for 1
minute. Then, 0.75 ml of the freshly prepared gelatin suspension was slowly injected into the
suprachoroidal space between the sclera and the choroid. Immediately after the injection, the
scleral incision was closed with a preplaced suture, and the eye was put into cold saline (5◦C)
to complete the gelation of the phantom. A cross section of an eye with a tumor phantom is
shown in Fig. 1.

Fig. 1. Photograph of a cross-sectioned porcine eye. (a) Choroidal tumor phantom in the
suprachoroidalspace. Note that the phantom is in close contact with the surrounding tis-
sues. (b) The crystalline lens in the anterior segment of the eye. (c) The optic nerve entering
the posterior pole of the eye.

2.3. Spectroscopy and fluorescence equipment

The optical setup is schematically illustrated in Fig. 2. A high power projector quartz tungsten
halogen lamp (Oriel Simplicity 66765; Newport Corporation, Irvine, CA) produced a smooth
wide spectrum across the visible and near-infrared spectral region with little UV radiation. A
low-noise power supply, specified to generate less than 0.05% current ripple, was used to drive
the lamp, giving an intensity fluctuation of less than 2% over the usable spectrum during a
measurement session of 30 minutes. Between two consecutive measurements, the fluctuations
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were less than 0.1%. The total output power over the entire spectral range from the lamp was
300mW, of which 15 mW was successfully coupled into a 600-µm fiber (BFL48-600; Thorlabs,
Newton, NJ). The fiber was used to deliver the light to the sclera and a second similar fiber col-
lected the light. Both fibers were integrated into a custom made probe designed forin vivo use
(described in detail below). For this study, the probe was mounted on a micrometer-translator
stage (CVI Melles Griot; Albuquerque, NM), which enabled it to be translated vertically. Dur-
ing all measurements, the pressure needed to applanate (flatten) the scleral surface by the end
of the probe was monitored by placing the eye on an electronic scale (Kern 572; Kern & Sohn
GmbH, Balingen, Germany). A barium sulfate (BaSO4) disc (SRS-99-010; Oriel Corporation,
Stratford, CT) was used as optical reflectance reference standard for the system. Detection was
performed by a fiber-coupled spectrometer (QE65000; Ocean Optics, Dunedin, FL). It was con-
figured with a 50µm wide slit and a grating covering 350-1100 nm, giving a spectral resolution
of at least 2.5 nm full width half maximum (FWHM).

Sequentially to the spectroscopy measurements, laser induced fluorescence could be meas-
ured. As excitation source, a 785-nm fiber-coupled diode laser (L785P100; Thorlabs, Newton,
NJ), giving an output power of 25 mW, was used to irradiate the eye through the sclera. An
810-nm interference filter with a FWHM of 12 nm (S10-810-S; Newport Corporation, Irvine,
CA), placed in the path between the collection fiber and the spectrometer, attenuated the excita-
tion light to a level which allowed simultaneous detection of the fluorescence and the excitation
light.

785nm diode laser

Halogen lamp

810nm

Spectrometer
MM MM

Fig. 2. Optical setup used during the experiments. A fiber-coupled halogen lamp delivered
a wide spectrum covering the visible and near-infrared spectral regions through a multi-
mode (MM) fiber (600 µm core) to the eye. Light was collected with a second multi-mode
fiber and coupled to a spectrometer for spectroscopy measurements. Sequentially, a 785
nm diode laser was used together with an 810-nm interference filter, which attenuated the
excitation light to a level were both the fluorescence and the excitation signal could be
measured simultaneously.

2.4. Fiber probe configurations

Four different probes were constructed for the study. The probes were made of black, light-
absorbing polyoxymethylene (Homopolymer acetal rods; Röchling Sustaplast KG, Lahnstein,
Germany) and shaped like a cylinder with a length of 35 mm and a diameter of 10 mm. A
schematic illustration of the probe can be seen in Fig. 3. Along the cylinder axis, two in-line
holes (each with a diameter of 1.2 mm) made it possible to continuously adjust the fiber posi-
tion. The hole diameter was set to fit the fiber diameter including the polymer coating. At the
distal end of the fibers, approximately 5 mm of the polymer coating was removed, resulting in
two fibers, each 600µm in diameter, being in contact with the tissue during the measurements.

#151319 - $15.00 USD Received 18 Jul 2011; revised 18 Sep 2011; accepted 18 Sep 2011; published 7 Oct 2011
(C) 2011 OSA 1 November 2011 / Vol. 2,  No. 11 / BIOMEDICAL OPTICS EXPRESS  3062



Each probe was made with a specific center-to-center source-detector distance of 3, 4, 5 and 6
mm, respectively. Two plastic screws (each with a diameter of 3 mm), placed 5 mm from the
proximal end of the probe, were used to gently fix the fibers in the correct position. For the
study, the protrusion of the optical fibers from the distal end of the probe were set to 0, 0.5, 1.0
or 1.5 mm. To facilitate the exact positioning of the fibers, standards made of thin metal plates
with holes for the fibers and with corresponding thicknesses to the fiber protrusion were used.

Fig. 3. Schematic illustration of the experimental setup and the principle of transscleral
diffuse optical spectroscopy. (a) Porcine eye in a gelatin-filled plastic container placed on an
electronic scale. (b) Cross section of the probe and the eye. The optical fibers (for incident
and detected light) are fixed by two plastic screws and centered on the scleral surface over
the tumor phantom. The phantom (red) is located in the suprachoroidal space between the
sclera (white) and the retina and retinal pigment epithelium (light blue and black). (c) Front
and side view of the probe end. The fiber protrusiont, from the distal end of the probe, can
be varied between 0, 0.5, 1.0 and 1.5 mm. The source-detector distanced equals 3, 4, 5 or
6 mm for the four different probes used. The diameterD of the probe itself is 10 mm.

2.5. Measurement procedures

A total of six solitary intraocular tumor phantoms were made in six different eyes. B-scan
ultrasonography (Echoscan US-3000; Nidek Co. Ltd., Gamagori, Japan) was performed to de-
termine the size and shape of the phantoms. For accurate placement of the fiber probe, transil-
lumination was used to outline the phantom borders by the shadow casted on the subadjacent
sclera. Thereafter, the eye was placed in a transparent plastic container with 30 ml of congealed
10% (wt/vol) gelatin (Fig. 4). On the surface of the gelatin gel, a hemispherical cavity was made
to hold the eye in place with adjacent physiological tension. The gelatin cup was designed to
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match the volume of the human orbita [12] and the elasticity and viscosity of orbital tissues
[13]. The fiber probe was carefully placed on the scleral surface, over the central portion of
the phantom, and gradually depressed until the end of the probe applanated the scleral curva-
ture (Fig. 3(b) and Fig. 4). Once the fiber probe was positioned, spectroscopy was performed
followed by a fluorescence measurement. For the first three eyes, this procedure was repeated
with four different fiber probes with source-detector distances of 3, 4, 5 and 6 mm, respec-
tively, and with a fiber protrusion of 1.0 mm. For the last three eyes, the fibers protruded either
0, 0.5, 1.0 or 1.5 mm with a fixed source-detector distance of 5 mm. The integration time for
the spectroscopy measurements ranged from 200 milliseconds to 10 seconds and was chosen as
long as possible without saturating the detector. For the fluorescence measurements, a 10 sec-
onds integration time was chosen. A reference standard spectrum was recorded between each
measurement.

Fig. 4. Photograph of a porcine eye placed in the gelatin cup and applanated by the fiber
probemounted on the micrometer-translator stage.

2.6. Spectroscopic contrast through fluorescence measurements

To evaluate how much the light interrogated the tumor phantom, rather than merely the su-
perficial scleral tissue for the different probe configurations, the fluorescence from the stained
phantoms and the transmitted excitation light were measured. By comparing the two signals,
it is possible to estimate the spectroscopic contrast in terms of how much the light interacted
with the tumor phantom and the sclera, respectively. A maximum contrast would occur if all
the light interacted with the phantom volume. As a measure of the spectroscopic contrast, the
contrast function,Γ, was chosen to be the fluorescence signal divided by the excitation signal
and given as

Γ =

∫ 820
800 S dλ

∫ 788
782 S dλ

(1)
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whereS indicatesthe detected spectrum andλ is the wavelength. The denominator represents
light that has been interacting with the tumor volume, while the nominator represents all de-
tected light irrespectively of the tissue volume probed. A highΓ thus indicates a high spectro-
scopic contrast.

2.7. Intraocular pressure measurements

In order to determine the effects on intraocular pressure (IOP) caused by the force exerted on
the eyeball by the fiber probe, a pressure sensor (Codman MicroSensor; Johnson & Johnson
Professional, Inc., Raynham, MA) was placed within the vitreous cavity of fresh porcine eyes
without tumor phantoms. This sensor is normally used to monitor the intracranial pressure after
neurosurgical procedures, but has also been applied for IOP measurements [14]. The system
consists of a miniature pressure transducer (diameter 1.2 mm) mounted at the tip of a flexible
nylon catheter (diameter 0.7 mm), coupled to a digital pressure monitor (Codman ICP Express;
Johnson & Johnson Professional, Inc., Raynham, MA) for real-time pressure readings. To fa-
cilitate placement of the pressure transducer inside the eye, a 16-gauge venflon (BD Venflon
Pro; Becton Dickinson, Helsingborg, Sweden) was first passed through the optic nerve into the
center of the eye. The needle was then removed, and the pressure transducer could easily be
inserted through the remaining plastic tube. Thereafter, the plastic tube was withdrawn, and a
4-0 silk suture was tied around the optic nerve to prevent leakage of fluid around the catheter.
The eye was placed into the gelatin bed, and the IOP changes, induced by a probe with 5 mm
fiber source-detector distance and 0.5 mm fiber protrusion, were recorded in a total of 5 eyes.
Prior to the fiber probe placement, the baseline IOP was set at a physiological level, between 10
and 20 mm Hg, by injecting an appropriate volume of saline into the vitreous. Three consecu-
tive measurements at different baseline pressures were performed on each eye. As the eye was
stabilized in gelatin during the measurements, the tendency of unphysiological deformation of
the eye globe by the probe was reduced to a minimum.

2.8. Temperature measurements

An electronic thermometer (Bat-12; Physitemp Instruments Inc., Clifton, NJ), with an accuracy
of 0.1◦C, was used to measure the temperature within the eye wall during spectroscopy. A
flexible implantable thermocouple probe (IT-14; Physitemp Instruments Inc., Clifton, NJ) was
inserted into the suprachoroidal space, between the inner surface of the sclera and the tumor
phantom, and positioned straight below the tip of the light injecting fiber. The measurements
were performed at room temperature for a duration of 15 minutes.

2.9. Scanning electron microscopy

The surfaces of the sclera of three eyes were analyzed by scanning electron microscopy (SEM)
to investigate possible damage caused by the fiber probe. The eyes had been measured by
a probe with 5 mm fiber source-detector distance and 0.5, 1.0 and 1.5 mm fiber protrusion,
respectively. Immediately after the spectroscopic recordings, a small rectangular block of full-
thickness sclera was carefully excised from the measurement area, fixed in a solution of 2% glu-
taraldehyde, and further processed for conventional SEM studies. Each specimen was mounted
on an aluminum pin stub using conductive self-adhesive carbon labels and sputter coated with
a 10 nm coating of gold-palladium. Using a scanning electron microscope (JSM-7400F; JEOL,
Tokyo, Japan) the scleral surface was examined at magnifications ranging from x40 to x1250
at an accelerating voltage of 5 kV.
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3. Results

3.1. Tumor phantoms

In all 6 eyes, B-scan ultrasonography revealed that the phantom was located within the supra-
choroidal space, mimicking a solitary choroidal tumor with low to medium internal reflectivity.
The largest basal phantom diameter(mean±SD) was 16.0±1.2 mm (range, 13.8-16.9 mm),
and the largest phantom thickness(mean±SD) was 4.7±0.6 mm (range, 4.1-5.9 mm). By
gross examination, the phantoms appeared as dome-shaped choroidal tumors with a light red
color (Fig. 1). In previous studies, we have shown by light microscopy that the adhesive gelatin
suspension lies in direct contact with the surrounding tissues [4, 5].

3.2. Noise level and dynamic range

The detector used in the optical setup had a 16 bit analog to digital resolution. With a dark
current level generating around 2500 counts, it gave the detector an operational range of about
63000 levels. The dark noise level was estimated to 5.8 root mean square counts at a 10 seconds
acquisition. Thus the system had a dynamic range of 11000:1, which thereby also set the limit
for the maximum attenuation possible to measure in a single acquisition.

3.3. Fluorescence measure ratio

Fluorescence spectra of the porcine eyes 1-3 with varying fiber source-detector distance can be
seen in Fig. 5. Note that the spectra also include the excitation light around 785 nm. Each spec-
trum was normalized with respect to the intensity at 785 nm. An increased contrast, meaning a
higher normalized fluorescence signal, could be observed with a fiber source-detector distance
of 4 and 5 mm compared to 3 mm. With a fiber source-detector distance of 6 mm, the signal
was close to the noise level for the system. Maximum contrast could be measured with a fiber
source-detector distance of 5 mm. Varying the fiber protrusion and measuring on eyes 4-6 re-
sulted in the fluorescence spectra presented in Fig. 6. The trend was a declining contrast with
increasing fiber protrusion, giving the maximum contrast at zero fiber protrusion.

780 790 800 810 820
0
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1
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ity

 [-
]

(a) Eye 1

780 790 800 810 820
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(c) Eye 3
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Wavelength [nm]

Fig. 5. Normalized fluorescence spectra for 3 porcine eyes with varying fiber source-
detectordistance and a fiber protrusion of 1.0 mm.

All the fluorescence measurements are summarized in Table 1, presenting the optimized con-
trast function,Γ. Two out of three eyes showed a maximum contrast for a fiber source-detector
distance of 5 mm. One eye had peak contrast at 4 mm with still a relatively good contrast at 5
mm. Contrast as a function of fiber protrusion was maximized at zero fiber protrusion for all
eyes examined and declined monotonically.
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Fig. 6. Normalized fluorescence spectra for 3 porcine eyes with varying fiber protrusion
anda fiber source-detector distance of 5 mm.

Table 1. Measure of the fluorescence from the stained phantom in comparison to the trans-
mitted excitation light,Γ, in 6 different porcine eyes with varying fiber source-detector
distance and fiber protrusion. The ’x’ indicates the source-detector distance or protrusion
used in combination with the varied source-detector distance or protrusion.

source-detector distance [mm] protrusion [mm]
3 4 5 6 0 0.5 1 1.5

eye

1 0.3 1.0 0.9 0.9 x
2 0.3 1.2 1.8 1.0 x
3 0.6 0.6 2.2 1.4 x
4 x 1.9 1.3 1.0 0.9
5 x 1.5 1.1 1.1 1.1
6 x 1.5 1.4 1.4 0.9

The photo-bleaching of the fluorophore was measured and found negible. No significant
decreaseof the fluorescence intensity could be observed for several seconds of exposure.

3.4. Diffuse reflectance spectroscopy

Complementary to the fluorescence measurements, transscleral spectroscopy spectra in semi-
logarithmic scale for varying fiber source-detector distances are presented in Fig. 7. A clear
imprint of blood and water was observable in the spectra. Oxy-hemoglobin was giving rise to
the characteristic double-peak at 541 and 577 nm. The peak at 630 nm is likely to be caused
by methemoglobin absorption [15]. Water could be recognized with the peak at 980 nm [16].
As expected, an increasing source-detector distance gave rise to increased attenuation. This
was most evident at longer wavelengths, where the eye tissue in terms of water content is
expected to be close to homogeneous. At shorter wavelengths with the longer fiber source-
detector distances of 5 and 6 mm, the signal tended to drop below the noise floor.

Transscleral spectroscopy spectra with varying fiber protrusion are displayed in Fig. 8. Here
the attenuation decreased with increasing fiber protrusion. At the shorter wavelengths, around
550 nm, the signal dropped below the noise floor when the fiber protrusion was less than 0.5
mm.

3.5. Intraocular pressure

The IOP elevation, induced by a probe with 5 mm fiber source-detector distance and 0.5 mm
fiber protrusion, was assessed by three consecutive measurements on a total of 5 eyes. The mean
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Fig. 7. Transscleral spectroscopy spectra for 3 porcine eyes with varying fiber source-
detectordistance and a fiber protrusion of 1.0 mm.
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Fig. 8. Transscleral spectroscopy spectra for 3 porcine eyes with varying fiber protrusion
anda fiber source-detector distance of 5 mm.

baseline pressure was 14 mm Hg (range, 10-20 mm Hg) and the mean of the maximum recorded
pressure during spectroscopy was 30 mm Hg (range, 18-48 mm Hg). The force required to
applanate the eye surface by the probe led to a mean pressure rise of 15 mm Hg from baseline
(range, 8-28 mm Hg).

3.6. Temperature

When the light-injecting fiber was placed on the outer scleral surface and the temperature sensor
was placed between the inner scleral surface and the tumor phantom, a temperature rise of only
0.3◦C could be observed. The thickness of scleral tissue between the tip of the light-injecting
fiber and the thermocouple was estimated to be approximately 0.5 mm.

3.7. Scanning electron microscopy

Three eyes that had been measured by a probe with 5 mm fiber source-detector distance and
a fiber protrusion of 0.5, 1.0 and 1.5 mm, respectively, were examined. SEM of the excised
scleral specimens revealed that there was no visible damage or persisting imprint on the scleral
surface caused by the indentation of optical fibers with a protrusion of 0.5 or 1.0 mm. The case
for 0.5 mm fiber protrusion and 5 mm fiber source-detector distance is shown in Fig. 9 as an
example. For the eye measured with a fiber protrusion of 1.5 mm, only subtle and superficial
marks could be observed on the surface of the sclera.
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Fig. 9. Scanning electron microscopy image of the outer scleral surface from an eye that has
beenmeasured by a probe with 5 mm fiber source-detector distance and a fiber protrusion
of 0.5 mm. The dashed circles indicate the areas where the optical fibers have indented the
sclera. Note the plain surface and lack of any imprint from the fibers.

4. Discussion and conclusions

The central issues of this study were how to optimally design a fiber optic probe in terms
of measurement geometry, usability and safety. A flexible probe was designed for this pur-
pose in a cylindrical shape with two slightly protruding fibers. Two fiber probe parameters, the
fiber source-detector distance and the fiber protrusion, were investigated as to which combi-
nation that would yield the maximum spectroscopic contrast. A fiber source-detector distance
of 5 mm was found to provide maximum contrast of light interacting with the phantom rela-
tive to light propagating between the fibers without entering into the phantom volume. By the
same argument, a fiber protrusion of 0 mm provided maximum spectroscopic contrast. A 5 mm
source-detector distance seems reasonable considering the geometry of the eye and the highly
scattering tissues. This finding is also supported by the previously published Monte-Carlo sim-
ulations [4].

The declining contrast with increasing fiber protrusion was a somewhat unexpected finding.
It is, however, possible that the indentations of the two optical fibers have altered the scleral
contour in a way that facilitates light transmission through the scleral layer and thus decreased
the contrast. This may also be the reason for the increased attenuation of the light with decreas-
ing protrusion. A possible explanation for the increased attenuation lays in the probe contact
with the scleral surface. The probe contact, excluding the two protruding fibers, with the scle-
ral surface would decrease as the protrusion increased. A gap would occur between the fibers
and the flat surface of the probe. This gap grew bigger the more the fibers were protruding. As
an effect, the scleral layer of the eye tissue did not get equally squeezed by the probe while
varying the fiber protrusion. A zero fiber protrusion thereby pressed the scleral tissue layer the
most and hence reduced the possible propagation pathway of the photons through the scleral
tissue layer the most. At a 5 mm source-detector distance, the attenuation of a pure phantom
suspensions is very strong, thereby requiring the presence of the scleral tissue layer to guide the
photons. With the thickness of the scleral tissue layer being reduced with decreasing fiber pro-
trusion, the signal magnitude hence also decreases. The slight deviations between the spectra
of the six eyes were presumably caused by morphological variations, such as different degrees
of pigmentation and the presence of ciliary nerves and blood vessels within the eye wall.
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When considering the diffuse reflectance spectroscopy measurements with the finite dynamic
rangeof the detector, some configurations of the fiber probe geometry were not feasible. For
a source-detector distance of 5 mm, the fiber protrusion needed to be at least 1.5 mm in order
to be able to measure across the entire spectral range. For a fiber protrusion of 1.0 mm, the
source-detector distance could not be longer than 4 mm without being affected by the dynamic
range of the detector. Limiting the spectral range would solve the issue of the finite dynamic
range of the detector. Measuring a spectrum in two parts, one for the shorter wavelengths and
one for the longer wavelengths, would also be a solution. The drawback of limiting the spectral
range is that all chromophores of interest may not be identified. A spectrum extending to 1000
nm is required to adequately reveal water absorption [16]. Blood is strongly absorbing around
550 nm, but can also be identified at longer wavelengths [15]. Melanin extinction is most pro-
nounced at the shorter wavelength side of the spectrum [17], even though Marchesini et al. [18]
used the spectral region of 717-817 nm to quantify cutaneous melanin concentration. Thereby,
a fiber probe with 5 mm source-detector distance and 0 mm fiber protrusion still has a feasi-
ble geometry, despite the limited spectral range obtainable in one acquisition for the measured
tumor phantoms.

When the circular flat end of the probe applanated the sclera, it led to a relatively constant
pressure exerted onto the eye surface and a stable indentation of the two optical fibers into the
scleral substance. From a clinical point of view this is important, as the downward force needed
is mainly defined by the IOP and the area of the probe end, and thus quite self-regulating
and relatively independent of how the probe is hold by the examiner. A probe with a smaller
diameter than 10 mm could perhaps be preferable (for example 7 mm diameter with 5 mm
source-detector distance). However, the shorter the distance from the protruding fiber tip to the
edge of the cylinder, the greater is the force required to applanate the scleral surface by the
end of the probe. We investigated this in preliminary experiments by using the electronic scale,
and found that the force needed for scleral applanation increased significantly with increasing
source-detector distance at constant fiber protrusion (data not shown). In addition, it is probably
easier to keep a thick probe steady against the eye compared to a very thin probe. During the
study, we also noted that a minimal fiber protrusion of 0.5 mm could be advantageous in a
clinical setting. With a slight protrusion of the fibers, the probe can be more securely held in
place and it has the benefit of leaving two temporarily dark spots on the scleral surface, which
may serve as a visual confirmation of placement to the examiner. The dark spots are caused
by displacement of water in the scleral tissue, similar to a sponge from which water can be
squeezed, making the underlying, pigmented choroid visible for a short period of time. In the
present study, the eyes were prepared for spectroscopy by removing excess tissue, including
the conjunctiva, from the scleral surface, and areas with a smooth surface were chosen for the
measurements. In a clinical situation, however, transscleral spectroscopy may be performed
with or without an overlying conjunctiva and on more uneven regions of the eye surface. Then,
a slight fiber protrusion will also be beneficial to secure a close contact between the fibers and
the outer scleral surface.

Because the probe will be in direct contact with the eye during spectroscopy and the method
may become an integral part of ophthalmic surgery, it is important to maintain sterile conditions
during the procedure. In preliminary experiments, we performed transscleral spectroscopy after
covering both the probe and the fibers with a sterile, adhesive and transparent polyethylene
drape (Steri-Drape 1035; 3M Health Care, St. Paul, MN). Except for a slight but insignificant
reduction in the intensity of the reflected light, the sterile draping did not lead to any distinct
changes in the absorption spectrum (data not shown).

In the present study, we measured real time IOP during spectroscopy. This is clinically rele-
vant because a high probe contact pressure during the examination may induce tissue damage
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and alter intraocular blood flow, leading to visual field changes [19] as well as a high degree
of intra- and inter-observer variability [20]. Although we found a positive relationship between
certain probe parameters and increased IOP, applanation by the preferred probe (with 5 mm
source-detector distance and 0.5 mm fiber protrusion) led to a mean IOP of only 30 mm Hg
with no readings above 48 mm Hg. Taking the maximum exposure time of 10 seconds into ac-
count, such brief IOP elevations are unlikely to be dangerous in non-glaucomatous individuals
[21].

Porcine eyes were chosen for this study, because their anatomic and physiological features
strongly resemble that of human eyes [22]. The mean scleral thickness of human eyes ranges
from 0.39 to 0.49 mm [23, 24], and this corresponds closely to the porcine scleral thickness
of 0.3-0.4 mm at the eye equator [25]. The phantoms were designed to simulate choroidal tu-
mors. By injecting the gelatin suspension directly into the suprachoroidal space, we made an
orthotopic model suitable for the biophysical laboratory analyses. Gelatin was chosen as the
phantom matrix because of its thermo-reversible gelation behavior, making it particularly suit-
able for injections into the fine structures of the eye wall [26]. In addition, gelatin allows the
inclusion of cellular-based constituents such as blood, and becomes both firm and adhesive
after gelation, with the elastic properties similar to biological tissues [27]. To achieve scatte-
ring characteristics similar to that of the choroid, TiO2 powder was added and homogeneously
dispersed within the gelatin suspension [11, 27, 28]. The dimensions of the tumor phantoms
corresponded well to the size of choroidal melanomas found in clinical studies. In a Norwe-
gian series of 108 choroidal melanomas the mean tumor diameter and thickness were 13.3 mm
(range, 4.4-21.0 mm) and 7.2 mm (range, 1.5-15.0 mm), respectively [29]. The lesion size in
possible differential diagnoses, such as hemorrhagic choroidal detachment, choroidal heman-
gioma, metastasis and vasoproliferative tumor, is also comparable in size with the phantom
dimensions in the present study [2, 3].

A fundamental challenge of biomedical optics is the validation of measurement results ob-
tained from excised tissues. In postmortem eyes, optical properties related to physiological
parameters such as blood flow, oxygenation and body temperature will change significantly.
Thus, extrapolation of our results to human,in vivo, conditions should be done with caution.
Also, the probe was optimized for a uniform tumor phantom volume with one set of optical
properties. A different phantom size or different optical properties (e.g. another blood volume
fraction) would probably yield a different set of optimal probe parameters. The optimization
was done in the spectral range 780-800 nm. Shifting the wavelength would again change the
optimal probe parameters.

In conclusion, a fiber source-detector distance of 5 mm with zero fiber protrusion was con-
sidered optimal in terms of relevant optical and spectroscopic parameters, however, the same
source-detector separation with a slight fiber protrusion of 0.5 mm was found to be advanta-
geous in a clinical setting. The study further indicates that transscleral spectroscopy can be
safely performed in human eyes underin vivo conditions, without leading to an unacceptable
IOP elevation, a significant rise in tissue temperature, or any visible damage to the scleral sur-
face.
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