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An aspec t on the ori entation of the syro s i-n a three-mrro inertial
stabilized. platforn sYstenæ

by

Karl-Johan Âströn

this is a brief sunmarY of some
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I . Introduction

The system consists of three single axis gyros mounted. to a stable
element. The stable element is supported- for three d-egrees of free-
d.om by a system which makes it possible to apply a torque to the

stable elementr e.g. by a system of gimbals. The rotations of the

stable element are sensed by the gyros. the output signals of the

gyros are amplified-, filtered. and- d-istributed- to the d-evice by which the

torque is appì-ied to the stable element' By the proper choice of
the transfer functions from the gyros to the torquemotors it j-s

possible for the stable element to maintain the d-esired- reference.

The equations of motion of the system2.

The linearized- equations of motion of the system are derj-ved in refe-
rence I

The signalequation
element are sensed

, which tells how the angular motions of the stable
by the gyros, is
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J JA. the inertia tensor of the ftoat of the gyro

includ-ing the gyroscopic element.
In ord-er to simplify the problem we assume that
the inertia ell-ipsoid- of the float of the gyro
is symmetrical with respect to the output axis i.e.
A._.=o if i/¡1J

the transfer function from the output signal of
the j-gyro to torque acting on the float of the
i-gyro
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The signal equation can be illustrated. by the following block-d-j-agrãtt
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Figure 2.I" Block-d-ia,gram of the third component of the signal equation

The Lineari-zed. equation of motion of the stable element
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fhe left-hand side of the equation (z"z) is the time-derivative of
the angular momentum of the stable element.

The right-hand. side of the equation 2.2 is the torque acting on the
stabl-e eLement, which is composed by the d.isturbing torque ú(t),
the torque applied- by the torque-motors, which are controlled, by
the output signals of the gyros, and. the reactÍon torques of the
gyroscopes.

The block-d.iagram of figure 2.2 is a ïepresentation of the third_
component of the equation of notion of the stable element.

rn some cases it is more convenient to represent the equations (z.t)
and (Z.Z) by the matrix-blockd.iagrams of figure 2.1 and. 2,4.

i '(t)

-()(t) I t)

Fisure 2.1 Block-d.iagram illustrating the signalequation Z.I
(wotice that the d.ifferential operators in the brocks
are matrices and. the variables vectors. As matrix_
nultiprication is not cormrutative the blocks cannot
be interchanged.)

+(p) s-I (p)
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6

i[(t)

-ñ(r')

Fj'gure 2.4. Block-d-iagran. of the platform system. Illuetrating the signal
eqrration (Z.t) and the equation of motion of the stable element
(Z,Z). (tlotice that the d,ifferential- operators in the blocks
are matrices and. the variables vectors. As matrix multlplication
is not commutati-ve the blocks cannot be interchanged.

Eli¡rinating g(t) between the equations (z.t) and (z.z) we get

rc(p) J-i-(p) = rvr(p) + f- e(p) s-I(p) ,(p) 2.1

where

m(p) = u(p) * G(p) .s-I(p) . v(p)

The equation çz.l) is refered. to as the equation of motion of the
stable el-ement when the servoloop is c1osed..

rntrod-ucing the matrix rc(p) the block-d.iagram of figure 2.{ becomes

'(t ) u(t)

,p(t )

¡
Z¿

sf(t )

Block-d.iagram of the platform system. (t'totice that the vari-
ables are vectors and- the transfer functi-ons in the blocks are
matrices. As matrix nultiplication is not comnutati-ve the blocks
cannot be interchanged.).

w(p) w -1(p) rc(p) - e(p) IF p( )
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t The stabilitv o f the platform system

1.1 lVe wif 1 now d-iscuss the stability of the platform system. Vüe

start by defining a concept of stabilì-ty" The equation of
no;þion of the system is

a

rc(pX--(p) = M(p) * +ç(p) s-r(p) '(p)n22

The platform is thus d.isturbed, ly ttn(t) ana ñ(t), who are referred
to as d-isturbÍng torque acting on the stable element and. on the

f loats of the gyros , respectively. lüe ad-opt the f ollowing d.e-

finitions

Definition l.1l

A platform system is said to be stable if a proper torque puls actÍng
the stable element or on the float of a gyro gives a flnite angular
d.isplacement of the stable element.

Definition 3,L2

A platform system is said- to be strictl stable if a proper torque
puls acting on the stable elenent gives a d-isplacement error which

tend-s to zero anù a proper torque puls acting on the float of a

gyro gives a fi-nite angular d-ispl-acement of the stable element.

By a proper torque pul-s v¿e mean a d-isturbi ng torque, with so small

servos are not saturated, acting for a time.
than the stepfunction response time of the

lÏe will now analyse the stability of some inertial stabilized plat-
f orm systems. ï/e have

Definition J.1l

A stabl-e platform sys tem is inertial stabilized. or stabiÌized- with
respect to inertial space if a constant torque acting on the stable
element gives a finite angular displacement of the stable element.

Before continuing Íre will further d-iscuss the propertles of the

f (p)-matrix for an inertial stabilized. platform system. For this
purpose we ad-opt the viewpoì-nt of Thlevenin. Suppose the stable
element to be enclosed in a "bl-aCk-box" arranged- in such a way that
we can apply a torque to the stabl-e element. At present we also

a magnitud-e that the
Cons j-d.erably smal-1er

servosystem.
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assume that the d.isturbing torque acting on the floats of the ryros
aTe zeTo.

The qquation
is then

of motion of the stabre element with the servoloop closed

r(p)_r^l_(p) = i¡(p)

Nond.iagonal elements of the K(p)-natrix mean that a torque applied. to
the stable element along one axis gives angular d-isplacements along
other axesr i.e. corsscouplings. For a d,iscussion of the properties
of the d-iagonal elements there is no loss in generality of d.iscussing
the single axj-s case. SIe thus have an axis comlng out of a black box.
ltlhen a torque is applied to the axis the angular velocityJì(t) of the
axis will be d.etermined by

t(p) .fl(p) = M(p)
If

t(p) - ap

the angular acceleration of the system insid-e the ilblack box'r wil-1
be proportional_ to the applied- torque. The obseïveï outsid.e the
I'black boxrr thus can interpret the system insid-e the I'b1ack boxrr as
a wheel whose moment of inertia is a.

Similarly if

t(p):b=const.

the angular velocity of the system insid.e the "black b¡x" wil] be
proporti-onal to the applied. torque. The outsid-e observer thus carr
interpret the system as a velocì-ty situation as the axis coming out
of the I'black boxrtis provid.ed. with a velocity pïoportional d.amping.
If

t(p) k
p

we get

^rrÐra(p) = # tw(p)

and.

L
t

fo(t) = /rr(")J
U

¿(") = * t(t)
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The angular d-eviation is thus proportionar to the torque appried.,
w-hich the outsid-e observer can interpret as if the axi-s is sprj-ng
restrained. with respect to angular d"esplacements. The spring coeffi-
cient is obviously k.

As the equation of motion is linear,
K(p)-matrices by ad-ding terms of the

we can easily interpret complex

discussed type,
t

t of platforn
rnstead- of talking of the properties of 'rthe stabre erement
when the servoloop i-s closed-r', we introd.uce the concep
and. siroply say the properties of the platforn.

with the introd-uced physical interpretations the definitior. J,11
sinply means that the platform in an inertial stabilized. system
should- at least be spring restrained- to inertial- space with respect
to angular d-isplacements" This can be formulated as a 1e¡nma.

lrçmma J,LL

For an inertial stabilized- platform system the matri" Kp) has the
property

K(p)=!o* o f4l\r / TL - ^t n-1'p p>up

where n 1 is an integer and- CI is a d.iagonal matrj-x with constant
nonvanishing d.iagonal elements.

Before continuing we introd.uce some notatlons.

Definition j .l-4

An equation is said- to be stable if it has no roots in the open

right half plane and only sinple zeros on the imaginary axis.

An equation is said. to be strictl-y stable if it has no roots j.n

the closed right half plane. The function f(z) is said. to be

(strictly) stable if the equation f(z)=O is (strictty) stable.

V[e will now gi-ve a cond.ition for the stability of the system.



Theorem l. 11

A necessary and, sufficient
system should. be stable is

10.

condltion that an inertial stabilized platforn
that the equations

3.rt
l

0

and-

det

det

p rc(p)

p s(p) e-l(p) m(p)I

I
I

I
I

0 t.2
are stable.

The equation (S.t¡ is referred- to as the characteristic equation of
the system. The roots of the cLtaracterlstic equation d.etermines the

way the d-isplacenent error fad-es out after a torque puls d-isturbance
on the stable element. If all the roots of the cl'taracteristic equa-

tion are in the left half plane the displacement error is exponen-
tially d-amped.. If the characteristic equation has sinple imaginary
roots the d-isplacement error will oscil-late with constant arnplitud-e "

A single root at the origin but no other roots i-n the closed- right
half plane means that the d-isplacement error tend-s to a constant etc.
Because of lemna J.11 the characteristic equation has no root at the
origin. Simllarly the roots of the equation (l.Z¡ determines the way

the d-isplacement error, after a torque puls on one of the gyro-floats,
fad"es out. Instability of the equation (l.Z) means that a torque
puls acting on one of the gyro-floats will give an exponentially
increasing angular d-isplacement of the stable element.

Although a system i-s strictly stable accord.ing to the above d-efini-
tions the d.isplacement error obtained, after a torque puls d.ísturbance
on the stable element may not tend- to zero fast enough. Therefore
j-n an actual application there may be further restrictions on the

characteristic equation of the system.

Although it is possible to clain that the cltaracteristic equation
j-s strlctly stable we cannot claim strict stability of the equation (l"Z¡.
This is obvious from the following l-emma.

Lemma t.L2

For an inertial stabilized- platform system equation (l.Z¡ has always

one single root p=Q.

The proof is l-eft for the reader.
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ï/e will now discuss some consequences of the theorem 8.11. vfe have
the fol_lowlng sufficient cond.ition for stabiJ_ity.

Corollarvl.ll

An inertiar stabirized. platform system is stab]e if
(i) rhe function der 

{*(n)i is stabfe.

(ii) The characteristic equation of the system,
d"t {p rc(p) } = o

is ç!t"i"tr/) stable.

(ii-i) [he function der{"rn) - e(p) ! n"" no poles in the
right ha]-f-plane.L J

det w(p) = r?lt . ",1:-'! ,, - { nt

where s is the spin of the platforn

s = (sin o(t)-"o* e(J))' * (sin o(r)-"o" n(r)¡2 * (sin e(1)-"o" n(z)¡2
r
[fhe total angular momentum of the g]rros is

Ïlie have

and- {, i" the o t t axis or

tp . r 
"o_]

d.ef j-ne d as the triplentati nr¿mbe

scalar product formeid- by unit vectors paral-rel to the output axes of
the gyros. iiÏe have

= *i.,,, s(l) "i' s(2) "r' n(5) * "o" e(1) "o" o(2) 
"o= n(l)

The condj_tion (i) can thus be formufated

(l) The arrangement of the gyros is chosen in such a way that
s> J and, { = o.

Some examples of systems with this arrangement of the gyros are shown
ín plate j.J anð, j.9.
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SYSTEMS WITH SPIN THREE AND OUTPUT AXES IN THE SAÞIE PLANE
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If the cond.ition (i) is dropped the functj_on det V(p)
The system then must be heavily restricted Ín ord.er to
bility. This 1s ilfustrated, by the following lemma.

l-4.

is unstable.
assure sta-

f,emma rt5

For a stable platform systen the functions det v(p) and d.et
have the same zeros in the right half pì_ane.

The proof is left for the read-er. Compare figure 2.5.
This lemma means that if the function

(i) 5 6 ls-¡)
det w(p) = (*) + o':' p2 - Í n3

f
l
I lrc(p)-r(p)

5.2r

is not stabte i.e. /.¡ O o, {= O and s <j the natrices K(p) and(p) nust be chosen in a very special way if a torque purs acting on
one of the gyro floats shourd- not give an exponentially increasing
angular d.isplacenent of the stabfe el_ement.

1.2 An example

![e wi]l now illustrate the theory of section J.L
Suppose we have a system with

rc(p) b Y- (n)l - 4
1'-' cù [v. 

(r)t
t

p [,
I

lo

This means that the interaction is entirel caus e d. the o t t
axrs sensitivity of the gyros.

rt is easily d.ed.uced, that for this speci_ar_ system the stabirity of
the equatio'. j'1 implies the stability of the equatíon j.2.
For a system of this type it is thus sufficient to analyse the sta-
bility of the characteristic equati_onIrdet{pm(p)l =oL- '-',J - 5.22

For this equation with the
we have

K(p)-matrix given by the equatíon J.ZI
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Lemma a.ZI

A sufficient condition that the
be stable for any fa(t) with no

ís
s=3

0

[v, 
(r )

15.

ch.aracteristic equation (1. ZZ) should
zeros in the cLosed. right half plane

¡l

Proof.

The characteristic equatÍon of the system can be red_uced. to

p r, (r) I(/.
a

2ap
0 i = Lr2rj

o

where the t-:s are the roots of the equation1

,3 s-ã I- - ' t-1. = O2'

s is the spÍn number and. ¿ is the output axis orientation number j-n-
trod.uced. in paragrapln J"

ff the cond.ition of the theorem is satisfied. we have

']ú)

t.
1

0 í : Ir2rl

the characteristic equation is then

p vr(n) - o

The function yr(l)
system is inertial

has no zeros in the right half p1ane. As the
stabilized- we have

lin
! ->o

n rr(n) / o

which implies that the characteristic equation is strictly stable.
The system d.iscussed. is thus certainly stable for any Yr(n) with no
poles or zeïos in the closed. right hatf plane, if the arrangement of
the gyros is suitable i.e. g=J and- I =O.

Some questions now arises" Is it possible to obtain a stabl-e system
if the arrangement of the gyros is not of a type with s=J and { =o.

Although a system wi¡¡ s=J and ð=o is strictly stabre, is it suffi-
ciently d.amped. to be of practical use.
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Before answering these questions we will further d-iscuss the properties
of the actual Vr(l)-functions.

One possible Y- (p)-function is'1
22

r.(n)

For a system with this rr(l)-function we can concl-ude.

If the cro Þ oDn 1Í ng coefficient y d-efined bv

Y
e!.
t)

o

l-s suffioieirtl v small " the system is stabfe indâ t of the orien-
tatÍon of the Ayros.

The critical value of the crosscoupling coefficj.ent for whj.ch the
system turns unstable is given by

i)yo ' *" tr" J = tG, oo)

where t^ is the root of the equationo

¡3*ú_¡,_/=o2"

in the first quad-rant or on the real axj_s and

r(1, d, ) = min(2(", d

and- z^ is the smal-lest positive root of the equationo

oo

z;(t +a)zi - (r+aq')u' * 4(,(L+2(,2), 2
4e n

{'"}
2Im

o-
o

Re

Analysing this cond-ition further we obtain that systems with

L=o
ë:)

are stable for all values of the crosscoupling coefficient.

Some examples of the rootlocus of the characteristic equation with
respect to the crosscoupling coefficient y for systems with different
orientation of the gyros are shown in plates 8.2-8.24.

L
U

o
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PLATE 8.2¿
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t.1 A remark concerning a questÍon of practical interest

The condition

r"
lt

plays an important roLe in the previous d-iscussions of stability.
The above cond.ition was a consequ.ence of the necessity for the equa-
tion d.et v(p) to be stable. as the condition depends on the orj.en-
tation of mechanical axes it is impossible to satisfy the cond.itíon
exactly. The reader night therefore expect that the systens whose

stability d.epend- on the above condition in practice are unstable.
This is not necessarily the fact. In an actual application we have
to consid.er the fact that the cond.ition cannot be exactly satisfied.,
but we must also notice that the input axes of the gyros are not
mutually orthogonal.

Consid.ering this fact the above cond-ition is replaced- by a similar
cond.ition which tells that.Ë shoutd. lie in an interval including O.

In an actual application we also have to consid-er variations in the
angular velocities of the ryros.

/)
The orientation of the ryros sometimes used- at MIT is s:! and ,[r:O
with two output axes sometimes horisontal. The reasons for this
chqice are d.ue to other facts than the stability consid,eratlons.
According to professor Markey no instability generated. by the out-
put axis sensitivity of the gyros has been notj-ced. for systems of
this type if the electronic bandwid.th ie euffioiently high.
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