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An aspect on the orientation of the gyros in a three-gyro inertial

stabilized platform system

by

Karl-Johan Astrdm

This is a brief summary of some of the results obtained in reference 1
concerning the influence of the orientation of the gyros on the sta-

bility of the platform system.
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1. Introduction

The system consists of three single axis gyros mounted to a stable
element., The stable element is supported for three degrees of free-

dom by a system which makes it possible to apply a torque to the

stable element, e.g. by a system of gimbals. The rotations of the
stable element are sensed by the gyros. The output signals of the
gyros are amplified, filtered and distributed to the device by which the
torque is applied to the stable element. By the proper choice of

the transfer functions from the gyros to the torquemotors it is

possible for the stable element to maintain the desired reference.

2. The eguations of motion of the system

The linearized equations of motion of the system are derived in refe-~

rence 1.

The signalequation, which tells how the angular motions of the stable

element are sensed by the gyros, is

= = 1 -
$ (p) 9(p) = v (p)L2(p) - 7 n(p) 2.1
' 22
where
;Ei(t) the angular velocity of the stable element
@<l)(t) the output signal of the (i) gyro
(1)
N 2
! (PEB§
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J mi(t) the disturbing torque acting on the float of
the i-gyro
) m, ()
B(t) = m,(t)
t
ny(4)
J the moment of inertia of the gyroscopic element
W the angular velocity of the gyroscopic element



J A the inertia tensor of the float of the gyro
including the gyroscopic element.
In order to simplify the problem we assume that
the inertia ellipsoid of the float of the gyro

is symmetrical with respect to the output axis i.e.

Ay =0 if i#

J AQZCrij(p) the transfer function from the output signal of
the j-gyro to torque acting on the float of the
i-gyro
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Q(l) the orientation angle of the i-gyro
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The signal equation can be illustrated by the following block-diagram,



Figure 2.1. Block-diagram of the third component of the signal equation

The linearized equation of motion of the stable element

P (p)(Up) = W(p) - &(p) 3(p) 2,2
where

F(p) =p B + wo(m -EE)

ey

®(p) = T(p) + 0D I+ 4, 2" L
and
J M(t) the disturbing torque acting on the stable element
J B the inertia tensor of the stable element including
all moving parts fixed in their actual position
J'C;j(p) the transfer function from the output signal of

the j-gyro to the i-component of the torque acting

on the stable element
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5.
t 11(P) le(p) TB(p)
v(p) = Tp® Ty Tyl
T5:(e) T5,(p) Ts55(p)

The left-hand side of the equation (2.2) is the time-derivative of

the angular momentum of the stable element.

The right-hand side of the equation 2.2 is the torque acting on the
stable element, which is composed by the disturbing torque M(t),

the torque applied by the torque-motors, which are controlled by
the output signals of the gyros, and the reaction torques of the

gyroscopes.

The block-diagram of figure 2.2 is a representation of the third

component of the equation of motion of the stable element.

In some cases it is more convenient to represent the equations (2.1)

and (2.2) by the matrix-blockdiagrams of figure 2.3 and 2.4.

' m(t)
= ' = E—
20 W(p) A 5 (p) P
N p - Wt/ ] Y
Y
Figure 2.3. Block-diagram illustrating the signalequation 2.1

(Notice that the differential operators in the blocks
are matrices and the variables vectors. As matrix-
multiplication is not commutative the blocks cannot

be interchanged)
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W(p)

@}—4‘ 571 (p) | &(p) @ II 1 (p) .”—:"*.

re 2.

W(p)

Block-diagram of the platform system. Illustrating the signal
equation %2.1) and the equation of motion of the stable element
(2.2). (Notice that the differential operators in the blocks
are matrices and the variables vectors. As matrix multiplication
is not commutative the blocks cannot be interchanged.

Eliminating @(t) between the equations (2.1) and (2.2) we get

K(p) (L(p) = W(p) + =~ @&(p) - " (p) 5(p) 2.3

A22
where

K(p) - (p) + &(p) - 7 1(p) - V(p)

The equation (2.3) is refered to as the equation of motion of the

stable element when the servoloop is closed.

Introducing the matrix K (p) the block-diagram of figure 2.4 becomes

el
N

w ~L(p) K(p) - ®(p) —- 71 (p)

re 2.

Block-diagram of the platform system. (Notice that the vari-
ables are vectors and the transfer functions in the blocks are
matrices. As matrix multiplication is not commutative the blocks
cannot be interchanged).




3. The stability of the platform system

3.1 We will now discuss the stability of the platform system. We
start by defining a concept of stability. The equation of

mqﬁ}on of the system is

K(p)D)(p) = H(p) + A—;mp) 51(p) a(p)

The platform is thus disturbed by M(t) and m(t), who are referred
to as disturbing torque acting on the stable element and on the
floats of the gyros, respectively. We adopt the following de-
finitions

Definition 3.11

A platform system is said to be stable if a proper torque puls acting
the stable element or on the float of a gyro gives a finite angular

displacement of the stable element.

Definition 3%3.12

A platform system is said to be strictly stable if a proper tocrgue

puls acting on the stable element gives a displacement error which
tends to zero and a proper torque puls acting on the float of a

gyro gives a finite angular displacement of the stable element.

By a proper torque puls we mean a disturbing torque, with so small

a magnitude that the servos are not saturated, acting for a time.
Considerably smaller than the stepfunction response time of the
servosystem.

We will now analyse the stability of some inertial stabilized plat-

form systems. We have

Definition 3.13%

A stable platform system is inertial stabilized or stabilized with

respect to inertial space if a constant torque acting on the stable

element gives a finite angular displacement of the stable element.

Before continuing we will further discuss the properties of the

K (p)-matrix for an inertial stabilized platform system. For this
purpose we adopt the viewpoint of Thévenin. Suppose the stable
element to be enclosed in a "black-box" arranged in such a way that

we can apply a torque to the stable element. At present we also



assume that the disturbing torque acting on the floats of the gyros

are zero.

The gguation of motion of the stable element with the servoloop closed

is then
X(p) O (p) = H(p)

Nondiagonal elements of the K(p)-matrix mean that a torque applied to
the stable element along one axis gives angular displacements along
other axes, i.e. corsscouplings. For a discussion of the properties
of the diagonal elements there is no loss in generality of discusgsing
the single axis case. We thus have an axis coming out of a black box.
When a torque is applied to the axis the angular velocity (1L(%) of the
axis will be determined by

k(p) () (p) = M(p)
If

k(p) = ap
the angular acceleration of the system inside the "black box" will
be proportional to the applied torque. The observer outside the

"black box" thus can interpret the system inside the "black box" as

a wheel whose moment of inertia is a.
Similarly if

k(p) = b = const.
the angular velocity of the system inside the '"black bex" will be
proportional to the applied torque. The outside observer thus can
interpret the system as a velocity situation as the axis coming out

of the "black box" is provided with a velocity proportional damping.

If
k

k(p) = -

we get
N (p) = £ u(p)

and

t
o(+) = [Ou(e) a(o) = Lu(y)



The angular deviation is thus proportional to the torque applied,

which the outside observer can interpret as if the axis is spring
restrained with respect to angular desplacements. The spring coeffi-

cient is obviocusly k.

As the equation of motion is linear, we can easily interpret complex
K(p)-matrices by adding terms of the discussed type.

{
Instead of +talking of the properties of "the stable element

when the servoloop is closed", we introduce the concept of platform
and simply say the properties of the platform.

With the introduced physical interpretations the definition 3.13%
simply means that the platform in an inertial stabilized system
should at least be spring restrained to inertial space with respect

to angular displacements. This can be formulated as a lemma.

Lemma 3,11

For an inertial stabilized platform system the matrix K(p) has the

property

Ly

1
K(p) == €+ 0 (==

p p=0 p
where n 1l is an integer and € is a diagonal matrix with constant

nonvanishing diagonal elements.

Before continuing we introduce some notations.

Definition 3.14

An equation is said to be stable if it has no roots in the open

right half plane and only simple zeros on the imaginary axis.

An equation is said to be strictly stable if it has no roots in
the closed right half plane. The function f(z) is said to be
(strictly) stable if the equation f(z)=0 is (strictly) stable.

We will now give a condition for the stability of the system.
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Theorem 3.11

A necessary and sufficient condition that an inertial stabilized platform

system should be stable is that the equations

det {p K(p) ‘!L= 0 3.1
and i

det {p 8(p) & (p) K(p)}= 0 3.2
are stable.

The equation (3.1) is referred to as the characteristic eguation of

the system. The roots of the characteristic equation determines the
way the displacement error fades out after a torque puls disturbance
on the stable element. If all the roots of the characteristic equa-
tion are in the left half plane the displacement error is exponen-
tially damped. If the characteristic equation has simple imaginary
roots the displacement error will oscillate with constant amplitude.
A single root at the origin but no other roots in the closed right
half plane means that the displacement error tends to a constant etc.
Because of lemma 3.11 the characteristic equation has no rcot at the
origin. Similarly the roots of the equation (3.2) determines the way
the displacement error, after a torque puls on one of the gyro-floats,
fades out. Instability of the equation (3.2) means that a torque
puls acting on one of the gyro-floats will give an exponentially

increasing angular displacement of the stable element.

Although a system is strictly stable according to the above defini-
tions the displacement error obtained after a torque puls disturbance
on the stable element may not tend to zero fast enough. Therefore

in an actual application there may be further restrictions on the

characteristic equation of the system.

Although it is possible to claim that the characteristic equation
is strictly stable we cannot claim strict stability of the equation (3.2).

This is obvious from the following lemma.

Lemma 3%.12

For an inertial stabilized platform system equation (3.2) has always

one single root p=0.

The proof is left for the reader.
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We will now discuss some consequences of the theorem 8.11. We have

the following sufficient condition for stability,

Corollary 3.11

An inertial stabilized platform system is stable if

(1) The function det {W(p)} is stable.

(ii) The characteristic equation of the system,
det < p K(p) Y = 0
is (strictly) stable.

(ii1) The function detJrKKp) - P(p) ) has no poles in the

J

right half-plane.

We have
w. 3  w (s=3)
det W(p) = (%) + == p% _ {

where s is the spin of the platform

2 2

s = (sin Q(1>-cos 9(3))2 + (sin @(2)—cos Q(l)) + (sin 9(3)—005 9(2))

[The total angular momentum of the gyros is Vgﬁ- J wo]

and é is the output axis orientation number defined as the triple

scalar product formé&d by unit vectors parallel to the output axes of
the gyros. We have

= sin Q(l) sin 9(2) sin 9(3) + cos 9(1) cos 9(2) cos 9(3)
The condition (i) can thus be formulated

(i) The arrangement of the gyros is chosen in such a way that

s> 3 and £ = 0.

Some examples of systems with this arrangement of the gyros are shown

in plate 3.3 and 3.9.



PLATE 3 3
SYSTEMS WITH SPIN THREE AND OUTPUT AXES IN THE SAME PLANE

-——’Zr-,n,«-T S=3,I1=0 "'%‘:ﬂ:%?‘] S=3, I=0




PLATE 3.9

ORTHOGONAL SYSTEMS WITH SPIN FIVE

5

u - - _n - -
[0,0,--z-]sﬁ,io I:O,'n:, 7]55,[0

B S

[o,_.’z‘_,lzl.] s=5,1=0 E),_%,E] s=5, =0
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If the condition (i) is dropped the function det V(p) is unstable.
The system then must be heavily restricted in order to assure sta-

bility. This is illustrated by the following lemma,.

Lemma 3.13
For a stable platform system the functions det W(p) and det{:K(p)-F(p)}

have the same zeros in the right half plane.
The proof is left for the reader. Compare figure 2.5,
This lemma means that if the function

w 5 o (s-3)
det Wp) = () + 22— p? _ {3

is not stable i.e. Z;é 0 or Z= O and s «< 3 the matrices K(p) and
®(p) must be chosen in & very special way if a torque puls acting on
one of the gyro floats should not give an exponentially increasing

angular displacement of the stable element.

3.2 An example

We will now illustrate the theory of section 3.1.

Suppose we have a system with

K(p) = b1, ()T - 22 [, (p) - o] n} 5,21

L

This means that the interaction is entirely caused by the output

axis sensitivity of the gyros.

It is easily deduced that for this special system the stability of
the equation 3.1 implies the stability of the equation 3.2,
For a system of this type it is thus sufficient to analyse the sta-

bility of the characteristic equation

de‘t{p K(p)} =0 3.22

For this equation with the K(p)-matrix given by the equation 3.21

we have
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Lemma 3.21

A sufficient condition that the characteristic equation (3.22) should
be stable for any Yl(p) with no zeros in the closed right half plane

is

Proof.

The characteristic equation of the system can be reduced to

p ¥, (p) -t

2
%f— [Yl(p) - ] =0 i=1,2,3

where the ti:s are the roots of the equation

0 4 531 t-{ =0

]
s is the spin number and < is the output axis orientation number in-

troduced in paragraph 3.
If the condition of the theorem is satisfied we have

t. =0 i=17293

The characteristic equation is then

The function Yl(p) has no zeros in the right half plane. As the

system is inertial stabilized we have
lim p Y, (p) # O
p—=0
which implies that the characteristic equation is strictly stable.

The system discussed is thus certainly stable for any Yl(p) with no
poles or zeros in the closed right half plane, if the arrangement of

the gyros is suitable i.e. s=3 and ‘Z =0.

Some questions now arises. Is it possible to obtain a stable system

if the arrangement of the gyros is not of a type with s=3 and Z'=O.

Although a system with s=3 and ff=0 is strictly stable, is it suffi-

ciently damped to be of practical use.
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Before answering these questions we will further discuss the properties

of the actual Yl(p)—funotions.

One possible Y. (p)-function is

1

2 4 2£45p+82
P

¥, (p) = 2

For a system with this Yl(p)—function we can conclude.

If the crosscoupling coefficient y defined by

is sufficiently small, the system is stable independent of the orien-

tation of the gyros.

The critical value of the crosscoupling coefficient for which the

system turns unstable is given by
[y |
YO * Re Ltoj = f(Z;, OCO)
where to is the root of the equation
£ + 83 ¢ - /o
2
in the first quadrant or on the real axis and

£(¢, @ ) = min(2¢, a)
and zZ is the smallest positive root of the equation

2<:(1+ao)z5 - (1+8c2)z2 + 4C(1+2C2)z - 422 20

o]V

Re< t
o)

Analysing this condition further we obtain that systems with

L -0
s =3
are stable for all values of the crosscoupling coefficient.

Some examples of the rootlocus of the characteristic equation with
respect to the crosscoupling coefficient y for systems with different

orientation of the gyros are shown in plates 8.2-8.24.




" PLATE 8.2

ROOTLOCUS WITH RESPECT TO THE CROSSCOUPLING
CCEFFICENT ¥ FOR THE CHARACTERISTIC EQUATION

OF A SYSTEM WITH Sa1, e=0,6=0 AND Y(p)_ P1.41p41
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PLATE 8.22

ROOTLOCUS WITH RESPECT TO THE CROSS
EQUATION OF A SYSTEM WITH S=3

COUPLING COEFFICIENT ¥ FOR THE CHARACTERISTIC
e=-1¢0 AND Y(P)= P4 1,41 +1
)




PLATE 8.23

RCOTLOCUS WITH RESPECT TO THE COUPLING COEF

FICIENT § FOR THE CHARACTERISTIC
EQUATION OF A SYSTEM WITH S« 3 re=1,6=

0 AND Yip)_ P 1.41P 41
p
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PLATE B.24

ROOTLOCUS WITH RESPECT TO THE COUPLING COEFFICIENT ¥ FOR
THE CHARACTERISTIC EOUATION OF A SYSTEM WITH S=5,e=0

Q=0 AND Y(P). P& 141p+1

P

—

0.5
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3.3 A _remark concerning a gquestion of practical interest

The condition

s 23

L-o

plays an important role in the previous discussions of stability.
The above condition was a consequence of the necessity for the equa~
tion det W(p) to be stable. As the condition depends on the orien-
tation of mechanical axes it is impossible to satisfy the condition
exactly. The reader might therefore expect that the systems whose
gtability depend on the above condition in practice are unstable.
This is not necessarily the fact. In an actual application we have
to consider the fact that the condition cannot be exactly satisfied,
but we must also notice that the input axes of the gyros are not

mutually orthogonal.

Considering this fact the above condition is replaced by a similar

condition which tells that.g should lie in an interval including O.

In an actual application we also have to consider variations in the

angular velocities of the gyros.

The orientation of the gyros sometimes used at MIT is s=5 and Af=o
with two output axes sometimes horisontal. The reasons for this
choice are due to other facts than the stability considerations.
According to professor Markey no instability generated by the out-
put axis sensitivity of the gyros has been noticed for systems of

this type if the electronic bandwidth ie sufficiently high.
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