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Abstract— We analyze a class of LDPC convolutional codes
that are constructed from tightly braided convolutional base
codes by a lifting procedure. For these braided protograph
convolutional codes, we show that the distances grow linearly
with the constraint length, and we present lower bounds on their
asymptotic segment distance and free distance as well as on the
asymptotic minimum distance of their tail-biting versions. With
some constraints imposed on the lifting permutations, braided
protograph convolutional codes can also be decoded as turbo-
like codes by iterative application of the BCJR algorithm. For
this case, we derive an explicit upper-bound on the asymptotic
decoding error probability as a function of the number of
iterations.

I. INTRODUCTION

Braided convolutional codes form a class of iteratively

decodable convolutional codes that are constructed from

component convolutional codes [1]. Like turbo codes, they

are decoded by iterative application of the BCJR algorithm

[2], which operates in the component decoding trellises.

A special property of braided convolutional codes is that

both information and parity bits are connected to each

of the component decoders in a symmetric manner. This

feature makes them more similar to (generalized) low-density

parity-check ((G)LDPC) codes [3] [4] than other turbo-like

constructions.
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Fig. 1. (a) Encoder for tightly braided convolutional codes (TBCC) [1].
(b) Composition of the base code syndrome former H̄

T
[0,∞]

by the (here

identical) syndrome formers of the component convolutional codes CC 1
and CC 2.
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Fig. 2. Simulation results for different ensembles of braided protograph
convolutional codes using continuous pipeline decoding. M denotes the
sizes of the lifting matrices.

In this paper, we consider another variant of braided

convolutional codes in which very simple tighly braided

convolutional codes are used as a base code. A lifting

procedure replaces in the syndrome former of this base code

all ones by a permutation matrix and all zeros by an all-zero

matrix [5]. An example of such a base code and its syndrome

former, as well as simulation results are shown in Fig. 1 and

Fig. 2, respectively. Codes from the unconstrained ensembles

are decoded like conventional LDPC convolutional codes

using belief propagation, while for the constrained ensembles

a turbo-like decoder is used. Already for relatively small

lifting matrices the codes achieve low error probabilities

close to the respective convergence thresholds. A more de-

tailed description of braided protograph convolutional codes,

including efficient encoder and decoder implementations,

is given in [5]. In the following two sections we perform

an analysis of their asymptotic distance and convergence

properties.
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Fig. 3. Different variables used to compute the distances bounds. (a) Convolutional ensemble C1. (b) Tail-biting ensemble C̃1.

II. ASYMPTOTIC DISTANCE ANALYSIS

Classically, an important parameter that is used to char-

acterize the error correction performance of a block code

is its minimum distance dmin. The Gilbert-Varshamov (GV)

bound [6] states that for a sufficiently large block length

N there exists a linear binary block code with rate 0 <
R < 1 which has a minimum distance lower-bounded

by dmin ≥ αGV(R)N . The rate-dependent term αGV(R)
is called the Gilbert-Varshamov parameter. Analogously,

the Costello bound [7] states that for a sufficiently large

constraint length ν there exists a linear binary polynomially

encoded convolutional code with rate 0 < R < 1 which

has a free distance dfree lower-bounded by dfree ≥ αC(R)ν.

In this sense, ensembles of linear block/convolutional codes

for which the minimum/free distances dmin/dfree increase

linearly with the block/constraint length N /ν are said to be

asymptotically good.

Considering the LDPC block codes originally proposed by

Gallager in [3] much work has been done on the study of

the asymptotic behavior of minimum distances. For instance,

Gallager himself analyzed regular ensembles of LDPC block

codes composed by permutation matrices and showed that

they are asymptotically good [3]. Further works for more

general ensembles include, e.g., [8]–[10] and [11], [12],

where the last two references are dedicated to protograph-

based LDPC block code ensembles [13].

In this context, the free distance bounds of the LDPC

convolutional codes [14] have also received attention. In [15],

[16], combinatorial-probabilistic methods were developed

for the analysis of regular LDPC convolutional codes com-

posed by independent permutation matrices and their tail-

biting versions [17]. Furthermore, the weight enumeration

techniques presented in [11], [12] were applied in [18] for

the analysis of protograph-based LDPC convolutional codes,

which are derived from block codes using a parity-check

matrix unwrapping procedure.

In this paper we extend the bounding methods of [15], [16]

to the braided protograph convolutional code ensembles and

their tail-biting versions. However, it is worth to mention that

the technique that we will present in this section enables an

asymptotic distance analysis of any protograph-based LDPC

code construction (i.e., regular or irregular, block or convo-

lutional) composed by independent permutation matrices.

A. Distance Bounding Technique

Without loss of generality, we explain the distance bound-

ing technique using the code ensemble C1 resulting from the

base code depicted in Fig. 1.

Let us consider the length N = 3ML codeword

v[0,L−1] = (v
(0)
0 ,v

(1)
0 ,v

(2)
0 , · · · ,v

(0)
L−1,v

(1)
L−1,v

(2)
L−1)

where v
(p)
t = (v

(p)
t,0 , · · · , v

(p)
t,M−1), with v

(p)
t,i ∈ GF (2) for

t = 0, · · · , L − 1, i = 0, · · · ,M − 1 and p = 0, 1, 2. If

v[0,L−1] is a codeword of C1, the following equation must

be satisfied:

v[0,L−1]H
T
[0,L−1] = 0, (1)

where

H
T
[0,L−1] = [C

(0)
0 ,C

(1)
0 , · · · ,C

(0)
L+1,C

(1)
L+1]

is the syndrome-former and each sub-matrix C
(p)
t , t =

0, · · · , L+ 1, p = 0, 1, is a column of independent M ×M
permutation matrices and all-zero matrices, as shown by Fig.

3(a) for L = 4.

The starting point of our bounding technique is the calcu-

lation of the probability that the codeword v[0,L−1] satisfies

the constraint equation expressed by (1). Because of the sta-

tistical independence of the permutation matrices in Fig. 3(a),

the total constraint satisfaction probability can be expressed

as the product of the probabilities that the codeword v[0,L−1]

satisfies the subset of constraints represented by each of the

columns C
(p)
t . In this context, the expression below shows

the composition of the total constraint satisfaction probability



for the ensemble C1:

ψ[0,L−1] =
t=L+1
∏

i=0

1
∏

p=0

ψ
(p)
t , (2)

where ψ
(p)
t are the probabilities that the subset of constraints

represented by C
(p)
t are satisfied. The correspondences be-

tween ψ
(p)
t and C

(p)
t are also shown in Fig. 3(a). The

probabilities ψ
(p)
t can be determined as a function of the

Hamming weight composition

d[0,L−1] = (d
(0)
0 , d

(1)
0 , d

(2)
0 , · · · d

(0)
L−1, d

(1)
L−1, d

(2)
L−1)

using the combinatorial approach presented in [15]. In this

case, we have:

ψ
(0)
0 = ψ

(1)
0 =

(

M

Mρ
(0)
0

)−1

, (3)

ψ
(0)
L+1 = ψ

(1)
L+1 =

(

M

Mρ
(0)
L−1

)−1

, (4)

ψ
(p)
t ≤

[

∏

{i,j:ρ
(j)
i

∈ρ
(p)
4,t

}

(

M

Mρ
(j)
i

)

]−1

exp
(

MG4(λ
(p)
4,t ,ρ

(p)
4,t )
)

,

for t = 1, L and p = 0, 1, (5)

ψ
(p)
t ≤

[

∏

{i,j:ρ
(j)
i

∈ρ
(p)
6,t

}

(

M

Mρ
(j)
i

)

]−1

exp
(

MG6(λ
(p)
6,t ,ρ

(p)
6,t )
)

,

for 2 ≤ t ≤ L− 1 and p = 0, 1, (6)

where λ
(p)
4,t and λ

(p)
6,t are the vectors containing the formal

variables λi,j corresponding to the columns C
(p)
t . E.g., in

Fig. 3(a) we have

λ
(0)
4,1 = (λ1,2, λ2,2, λ3,2, λ4,2) and

λ
(0)
6,2 = (λ0,4, λ1,4, λ4,4, λ5,4, λ6,2, λ7,4).

The vectors ρ
(p)
4,t and ρ

(p)
6,t contain the normalized Ham-

ming weight compositions (i.e., ρ
(p)
t = d

(p)
t /M for

t = 0, · · · , L − 1 and p = 0, 1, 2) correspond-

ing to the columns C
(p)
t . Taking the example from

Fig. 3(a), we have ρ
(0)
4,1 = (ρ

(1)
0 , ρ

(2)
0 , ρ

(0)
1 , ρ

(1)
1 ) and

ρ
(0)
6,2 = (ρ

(0)
0 , ρ

(1)
0 , ρ

(1)
1 , ρ

(2)
1 , ρ

(0)
2 , ρ

(1)
2 ). Finally, the function

GK(λ
(p)
K,t,ρ

(p)
K,t) is defined as:

GK(λ
(p)
K,t,ρ

(p)
K,t) = −

K−1
∑

i=0

λ
(p)
K,t(i)ρ

(p)
K,t(i) (7)

+ ln

∏K−1
i=0 (1 + eλ

(p)

K,t
(i)) +

∏K−1
i=0 (1 − eλ

(p)

K,t
(i))

2
,

where λ
(p)
K,t(i) (ρ

(p)
K,t(i)) corresponds to the i-th element of

the vector λ
(p)
K,t (ρ

(p)
K,t).

Here it is worth to mention that, in contrast to [15],

a more general arrangement of the syndrome former is

assumed in Fig. 3(a). In this case, some all-zero matrices

are placed between the permutation matrices. Furthermore,

we extended this analysis to irregular code ensembles, as

shown by the numerical results of Section II-C. Once that

the probability ψ[0,L−1] has been determined, the expectation

of the normalized Hamming weight composition ρ[0,L−1] =
d[0,L−1]/M is defined as follows:

E(ρ[0,L−1]) = ψ[0,L−1]

L−1
∏

t=0

2
∏

p=0

(

M

Mρ
(p)
t

)

. (8)

After substituting the expressions in (3)-(6) and applying

the Lemma 1 of [15], the expectation above is upper-bounded

by

E(ρ[0,L−1]) ≤

(

L−1
∏

t=0

2
∏

p=0

σ
(p)
t

)3

exp

(

MF (λ,ρ[0,L−1])

)

,

(9)

where σ
(p)
t =

√

2πeMρ
(p)
t , the function F (λ,ρ[0,L−1]) is

given by

F (λ,ρ[0,L−1]) =

1
∑

p=0

G4(λ
(p)
4,0,ρ

(p)
4,0)

+

L−2
∑

t=1

1
∑

p=0

G6(λ
(p)
6,t ,ρ

(p)
6,t ) +

1
∑

p=0

G4(λ
(p)
4,L−1,ρ

(p)
4,L−1)

− 3

L−1
∑

t=0

2
∑

p=0

H(ρ
(p)
t ) + 2H(ρ

(0)
0 ) + 2H(ρ

(0)
L−1), (10)

and H(·) is the binary entropy function. The function

F (λ,ρ[0,L−1]) is the component that governs the upper

bound given by (9). For instance, if F (λ,ρ[0,L−1]) < 0
for some λ, then the expected number of codewords with

normalized weight composition ρ[0,L−1] goes to zero expo-

nentially with M as M tends to infinity.

Defining ρ∗L as solution to the max-min optimization

problem

ρ∗L = max

{

ρsum : max
ρ[0,L−1]

{

min
λ

{

F (λ,ρ[0,L−1]) < 0
}

}

}

,

where ρsum =
∑L−1

t=0

∑2
p=0 ρ

(p)
t , allows us to state the

following theorem.

Theorem 1: In the ensemble C1, there exists a convolu-

tional code with segment distance lower-bounded by

dL ≥ ρ∗LM = (ρ∗L/9)νs, (11)

where νs = 9M is the constraint length of the convolutional

code. �

Similar to [15], we have the following lower bound on the

free distance of the ensemble C1.

Theorem 2: In the ensemble C1, there exists a convolu-

tional code with free distance lower-bounded by

dfree ≥ (ρ∗/9)ν = αC1
ν, (12)

where ρ∗L converges to ρ∗ as L tends to infinity. �
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Fig. 4. Distance to constraint length (block length) ratio bounds. (a) Distance ratio bounds for the regular ensembles C1 and C̃1. (b) Distance ratio bounds

for the irregular ensembles C2 and C̃2. dL/νs is the segment distance to constraint length ratio of the convolutional code. d̃min,L/N is the minimum

distance to block length ratio of the tail-biting code. dT
free

/νs is the free distance to constraint length ratio of the convolutional code obtained from the
tail-biting code.

B. Distance Bounds for Tail-Biting Ensembles

The techniques shown above can be applied to lower-

bound the minimum distances of tail-biting codes in an

analogous way. In order to simplify the explanation, we use

the tail-biting code ensemble C̃1, which is derived from the

convolutional code ensemble C1.

In this case, the total constraint satisfaction probability for

ensemble C̃1 is given by

ψ̃[0,L−1] =

t=L−1
∏

i=0

1
∏

p=0

ψ̃
(p)
t , (13)

and the probabilities ψ̃
(p)
t are given by

ψ̃
(p)
t ≤

[

∏

{i,j:ρ̃
(j)
i

∈ρ̃
(p)
6,t

}

(

M

Mρ̃
(j)
i

)

]−1

exp
(

MG6(λ̃
(p)

6,t , ρ̃
(p)
6,t )
)

,

for 0 ≤ t ≤ L− 1, and p = 0, 1, (14)

where the correspondences between the variables from above

and the parity-check matrix are shown in Fig. 3(b). The

upper bound on the expectation of the normalized Hamming

weight composition is similar to (9). However, the function

multiplied by M within the exponent is given by

F̃ (λ, ρ̃[0,L−1]) =
L−1
∑

t=0

1
∑

p=0

G6(λ
(p)
6,t , ρ̃

(p)
6,t )

− 3
L−1
∑

t=0

2
∑

p=0

H(ρ̃
(p)
t ). (15)

Furthermore, if we define ρ̃∗L as solution to the max-min

optimization problem

ρ̃∗L = max

{

ρ̃sum : max
ρ̃[0,L−1]

{

min
λ

{

F̃ (λ, ρ̃[0,L−1]) < 0
}

}

}

,

where ρ̃sum = 1
3L

∑L−1
t=0

∑2
p=0 ρ̃

(p)
t , the theorem below can

be stated.

Theorem 3: In the ensemble C̃1, there exists a tail-biting

convolutional code with minimum distance lower-bounded

by

d̃min,L ≥ ρ̃∗L3ML = αC̃1
N, (16)

where N = 3ML is the block length. �

C. Numerical Results

Using the bounding techniques presented above, we calcu-

lated lower bounds on the distances for the ensembles C1 and

C̃1 that have been used as examples in the previous section,

and also for the ensembles C2 and C̃2, which are constructed

using component codes with polynomial parity-check matrix

given by H(D) = [1 + D, 1, 1 + D + D2]. C1 and C̃1 are

regular ensembles with degree distribution (4, 6), while C2

and C̃2 are irregular and have degree distribution given by

( 1
3x+ 2

3x
4, 6).

Fig. 4(a) and Fig. 4(b) show the asymptotic ratios dL/νs

for the ensembles C1 and C2. We also calculated lower

bounds on the minimum distance d̃min,L for the tail-biting

ensembles C̃1 and C̃2 with block length N = 3ML and

period T = L. It has been shown in [16] that the free distance

dT
free of the corresponding periodically time-varying convo-

lutional code of period T and constraint length νs = 9M
is lower-bounded by d̃min,L for each L. The distance ratios

d̃min,L/N and dT
free/νs, T = L, for the tail-biting ensembles

C̃1 and C̃2 and their mother convolutional ensembles C1 and

C2, respectively, are also shown in Fig. 4(a) and Fig. 4(b).

It can be observed that for large L the bound on dT
free/νs

of the periodically time-varying codes approaches the same

value as the bound on dL/νs of the non-periodic codes,

which approaches dfree/νs as L → ∞. On the other hand,

for the shortest tail-biting code block length N = 9M
the bound on d̃min,3/N of the regular ensemble becomes

equal to the distance ratio of Gallager’s regular (4, 6) block

codes. Interestingly, we can also observe that for the irregular

ensembles in Fig. 4(b), the curves of the distance ratios show

a zig-zag behavior as if there were different ensembles for

odd L and for even L. The results also show that if M
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Fig. 5. Computation tree for iterative decoding of a symbol v
(k)
t,m. Solid

circles denote symbol nodes, empty circles constraint nodes.

is fixed but L is increased up to L = 10, the minimum

distance still grows linearly with N even if the constraint

length of the associated convolutional code is kept constant.

This means that tail-biting codes get stronger with larger L
(i.e., 3 < L ≤ 10 in this example) although the structure

of the graph is maintained and the parity-check matrix gets

sparser.

The presented distance bounds correspond to the uncon-

strained codes where all permutation matrices are indepen-

dent from each other. For the constrained codes some of

the permutations matrices are equal, what complicates the

application of combinatorial approach we presented above.

We are currently working on this problem, however, we

conjecture that the constrained ensembles will also have

asymptotic distances with linear growth behavior.

III. ASYMPTOTIC ANALYSIS OF TURBO-LIKE

DECODING

A. Convergence Behavior of (G)LDPC Codes and Turbo

Codes

A measure for the asymptotically achievable performance

of iterative decoding is the convergence threshold. It is an

upper bound on the smallest signal-to-noise ratio (SNR)

for which the decoding error probability converges to zero

with the number of iterations for a specific class of codes

and decoding algorithms. To evaluate such thresholds, the

probability density functions (PDFs) of the messages that are

exchanged within the decoder can be tracked as function of

the iterations (density evolution). Estimates of the threshold

values for braided protograph convolutional codes have been

presented in [5].

The evolution of the Bhattacharyya parameter during

density evolution has been investigated in [19], resulting

in an upper-bound on the rate at which the decoding error

probability converges to zero for SNRs above the threshold.

For (G)LDPC codes the bit error probability can be upper-

bounded by

Pb < exp
(

−a
(

(dmin − 1)(J − 1)
)I
)

, (17)

where a is some positive constant, dmin is the smallest

minimum distance among the component codes, J is the

SISO Dec 1

SISO Dec 2

L
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ch

L
(1)
ch

L
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ch

L
(0)
e,2

L
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L
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L
(0)
e,1

L
(1)
e,1

L
(2)
e,1

Fig. 6. Illustration of the LLRs exchanged in the turbo-like decoder.

number of component codes per symbol (i.e., the variable

node degree), and I is the number of decoding iterations.

Note that a doubly exponential decrease requires either

dmin > 2 or J > 2, which indicates that the number of

component code per symbol can be traided against their

strength. For (multiple) turbo codes, on the other hand, the

bit error probability is upper-bounded by

Pb < exp (−a∆) + exp (−bI) , J = 2 , (18)

Pb < exp (−a′∆) + exp (−b′∆I) , J > 2 , (19)

where a, a′, b, b′ are some positive constants and ∆ is the size

of the decoding window, specifying how many neighboring

sections in the component decoder trellis are taken into

account. The weaker convergence rate of turbo codes is

related to their property that parity-check symbol estimates

are not improved during the decoding iterations. From this

also follows, that the free distance dfree of the component

codes does not appear in (18) and (19).

In this paper, we derive corresponding results for turbo-

like iterative decoding of braided protograph convolutional

codes.

B. Convergence Analysis of Braided Protograph Convolu-

tional Codes

To analyze iterative decoding of a particular symbol v
(k)
t,m,

it is convenient to consider a computation tree around that

symbol, as illustrated in Fig. 5. The computation tree shows,

how different code symbols contribute to the decoding of

the symbol at its root during the iterations i = 1, . . . , I .

The decoder proceeds iteration by iteration upwards through

this tree, starting from symbol node level ℓ0 = I . Let

v∆,j(v
(k)
t,m) denote the set of 3(2∆ + 1) code symbols in

the ∆-truncated trellis of component decoder j around v
(k)
t,m.

The constraint nodes in the tree represent the rule that the

symbols v∆,j(v
(k)
t,m) have to correspond to valid paths in that

trellis.

The messages from constraint nodes to variable nodes are

defined as the extrinsic LLRs at the output of the soft-input

component APP decoders. As illustrated in Fig. 6, at the

output of each component decoder j = 1, 2 there exist three

types of messages L
(k)
e,j corresponding to the different symbol



types v
(0)
t,m, v

(1)
t,m and v

(2)
t,m. The density evolution approach

relies on the assumption that all messages exchanged during

the iterations are statistically independent. This is the case

if within every computation tree all symbol nodes up to

level ℓ0 correspond to different code symbols. Under this

assumption the message distributions are independent of time

t and position m. To simplify notation, when the context

allows we will omit the indices t and m. In order to make

such an independence possible, following the approach in

[19], we consider in our analysis a windowed BCJR decoder

that operates on a truncated trellis of size 2∆ + 1, centered

at the symbol to be decoded.

The messages L
(k)
i,j that are passed to the input of compo-

nent decoder j after iteration i can be written as

L
(k)
i,j (v(k)) = L

(k)
ch + log

∑

v∆,j :v(k)=0 Pr(v∆,j
|L

i−1,j
)

∑

v∆,j :v(k)=1 Pr(v∆,j
|L

i−1,j
)
,

(20)

where L
(k)
ch is the intrinsic LLR of v(k), L

i−1,j
is the set of

LLRs corresponding to v∆,j
, and j = {1, 2} \ j denotes the

complement of j. The second term in (20) is the extrinsic

output LLR computed by the other component APP decoder.

In order to estimate the decoding error probability, we

observe the evolution of the Bhattacharrya parameters of the

LLRs L
(k)
i,j during the decoding iterations, defined as

B
(k)
i,j = E

[

exp
(

−L
(k)
i,j /2

)]

, (21)

where the expectation is over the distribution of L
(k)
i,j condi-

tioned on the all-zero transmitted sequence. To derive explicit

bounds on B
(k)
i,j , we introduce the windowed path enumerator

functions for the ∆-truncated component decoder trellises

around a symbol v
(k)
t,m

F
(k)
∆,j (B0, B1, B2) =

∑

d0,d1,d2

α∆ (d0, d1, d2)B0
d0B1

d1B2
d2 ,

where Bk and dk are the Bhattacharyya parameters and trellis

path weights corresponding to symbols v(k), respectively,

and α∆ denotes the number of paths in the set Ŝ(v
(k)
t,m = 1)

with weights dk (the symbol v
(k)
t,m = 1 itself is excluded in

the weight dk). A state segment (corresponding to a trellis

path) is called convex if all states between an arbitray pair

of nonzero states are nonzero as well, and Ŝ(v
(k)
t,m = 1)

is defined as the set of all convex state segments in the

trellis with v
(k)
t,m = 1 [19]. The windowed path enumerator

functions for a fixed ∆ and for the asymptotic case ∆ → ∞
can be obtained by transfer function methods from a state

transition description of the encoder.

Example 1: For an encoder j with polynomial parity-

check matrix H(D) = [1, 1+D2, 1+D+D2], implemented

in observer canonical form, the transfer function matrix T

is given by

T =









1 B0B1 B1B2 B0B2

B1B2 B0B2 1 B0B1

B0 B1 B0B1B2 B2

B0B1B2 B2 B0 B1









σ = 0

1

2

3

v
(2)
t,m = 1

Fig. 7. Trellis paths of the convex state segments σ ∈ Ŝ(v
(2)
t,m = 1) for a

memory mcc = 2 encoder and ∆ = 2. The highlighted two paths are the
paths of minimum weight dfree = 3 that remain when ∆ → ∞.

The corresponding trellis paths contributing to F
(k)
∆,j are

shown in Fig. 7 for k = 2 and ∆ = 2.

The following lemma connects the Bhattacharyya param-

eters of two consecutive decoding iterations.

Lemma 1: The Bhattacharyya parameters B
(k)
i,j , k =

0, 1, 2, corresponding to the LLRs passed to component

decoder j, j = 1, 2, after iteration i, i = 0, . . . , I , satisfy

the following inequalities

B
(0)
i,1 < AF

(0)
∆,2

(

B
(0)
i−1,2, B

(1)
i−1,2, B

(2)
i−1,2

)

B
(0)
i,2 < AF

(0)
∆,1

(

B
(0)
i−1,1, B

(2)
i−1,1, B

(1)
i−1,1

)

B
(1)
i,1 < AF

(1)
∆,2

(

B
(0)
i−1,2, B

(1)
i−1,2, B

(2)
i−1,2

)

B
(1)
i,2 < AF

(2)
∆,1

(

B
(0)
i−1,1, B

(2)
i−1,1, B

(1)
i−1,1

)

B
(2)
i,1 < AF

(2)
∆,2

(

B
(0)
i−1,2, B

(1)
i−1,2, B

(2)
i−1,2

)

B
(2)
i,2 < AF

(1)
∆,1

(

B
(0)
i−1,1, B

(2)
i−1,1, B

(1)
i−1,1

)

,

where A is the Bhattacharyya parameter of the intrinsic LLRs

L
(k)
ch , and B

(k)
0,j = A. �

Each of the inequalities given in Lemma 1 can be proved

analogously to Lemma 3 in [19]. The essential difference

is that several different types of symbols with different

Bhattacharyya parameters and windowed path enumerators

have to be considered. Their interrelations can be deduced

from Fig. 6. Assuming equal component encoders, so that

F
(k)
∆,1 = F

(k)
∆,2

def
= F

(k)
∆ , the outputs at the two decoders are

identically distributed, i.e.,

B
(0)
i

def
= B

(0)
i,1 = B

(0)
i,2

B
(1)
i

def
= B

(1)
i,1 = B

(2)
i,2

B
(2)
i

def
= B

(2)
i,1 = B

(1)
i,2 .

Corollary 1: If the two component encoders are equal,

then the Bhattacharyya parameters after iteration i, i =
1, . . . , I , satisfy the inequality

B
(k)
i < AF

(k)
∆

(

B
(0)
i−1, B

(2)
i−1, B

(1)
i−1

)

, k = 0, 1, 2 , (22)

from which it follows that

B
(k)
i ≤ Bmax

i < max
k

AF
(k)
∆

(

Bmax
i−1

)

, (23)



where

Bmax
i = max

k
B

(k)
i−1 ,

and

F
(k)
∆ (B)

def
= F

(k)
∆ (B0, B1, B2)

∣

∣

∣

B0=B1=B2=B
.

�

Suppose now that after some iteration I1 < I all three

Bhattacharyya parameters B
(k)
I1

are smaller than the breakout

value Bbr, defined by the equation

Bbr = max
k

AF
(k)
∆ (Bbr) . (24)

Then it follows from Corollary 1 that B
(k)
i decreases with

i = I1+1, . . . , I and converges to zero as I tends to infinity.

For two encoders equal to that in Example 1 with ∆ = 4, the

windowed path enumerators and the breakout value Bbr are

illustrated in Fig. 8. The value A was selected for a channel

with Eb/N0 = 1.1 dB, which is the estimated convergence

threshold for this code [5].

For analyzing the rate of convergence, we introduce a

majorant function

f̂∆(B)
def
= β̂Bdfree−1 ≥ max

k
AF

(k)
∆ (B) , 0 ≤ B ≤ Bbr ,

where the value β̂ = Bdfree−2
br is chosen such that equality

holds for B = Bbr (see Fig. 8). Note that dfree − 1 is the

lowest order in the windowed path enumerators F
(k)
∆ (B) if

∆ is chosen sufficiently large. Consider now Bmax
I1

< Bbr,

which is the largest of the Bhattacharyya parameters after

decoding iteration I1. It follows from (23) that

Bmax
i < f̂∆

(

Bmax
i−1

)

, (25)

and a recursive application results in

Bmax
I < Bbr

(

(

Bmax
I1

/Bbr

)dfree−1
)I−I1

. (26)

The corresponding trajectory is also illustrated in Fig. 8.

Let Pmax
i denote the maximal error probability P k

i that

results if hard decisions are made from the LLRs L
(k)
i,j . From

the definition of Bmax
I it follows that

Pb < Bmax
I <

√

4Pmax
i . (27)

The following Theorem formulates the main result of this

section, which follows from (26) and (27).

Theorem 4: Consider turbo-like iterative decoding of

braided protograph convolutional codes with two identical

component encoders, where transmission takes place over

a binary-input output-symmetric memoryless channel. Sup-

pose that a total of I independent decoding iterations are

performed and that after the first I1 < I iterations, the hard

decision error probabilites of all symbols become less than

B2
br/4. Then the decoding bit error probability Pb is upper-

bounded by

Pb < exp
(

−a(dfree − 1)I
)

, (28)

where a is a positive constant and dfree is the free distance
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Fig. 8. Upper-bounding the evolution of Bmax
i

by the majorant function

f̂∆(B).

of the component codes. �

IV. CONCLUSIONS

The distance and convergence properties of braided pro-

tograph convolutional codes have been analyzed for the case

when the size M of the lifting matrices tends to infinity.

The presented distance bounding technique generalizes some

earlier results on permutation-based regular LDPC convo-

lutional code ensembles to the case of irregular base code

graphs, and it can be applied to a wider range of code

ensembles. The convergence analysis of braided protograph

convolutional codes shows that for turbo-like decoding, like

in the case of (generalized) LDPC codes, a doubly exponen-

tial convergence rate is achieved. This is a clear advantage

compared to (multiple) turbo codes and can be prescribed

to the particular way the component convolutional codes are

concatenated, which is closely related to (G)LDPC codes.
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