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IntroductionThis thesis deals mainly with the properties of �nal state particles produced inhigh energy particle processes, in which the strong interaction is active. It isdivided into two parts { this introduction followed by �ve papers.To give an example of multiparticle production in high energy particle processesthis introduction starts o� with a schematic picture of the various stages inhadronic e+e� events. Most of the work in this thesis is based on the Lundstring fragmentation model which will be briey described. Following this is amotivation for studying correlations. The basic phenomenon of Bose{Einsteincorrelations is presented using a treatment analogous to quantum optics. Thisintroduction ends with a short summary of the �ve papers.The �rst paper is an investigation of the analogy between multiparticle produc-tion in the Lund string fragmentation model and the multiparticle distributionsof a classical gas. The following three papers describe a model for incorporatingBose{Einstein correlations in the string model. In the �nal paper a scenario atthe end of the parton cascades is suggested and its consequences for fragmen-tation are discussed.Hadron productionEssentially we investigate the high energy process qq ! hadrons. One typeof experiment in which this occurs is the collision of electrons and positrons,also called e+e� annihilation. The process e+e� ! �;Z0 ! qq ! hadrons isshown schematically in Fig.(1). The electron and the positron are acceleratedand when they collide they may annihilate into a photon or a Z0. The �or the Z0 may then split into a quark and an anti-quark. This possibilityis described by the theory for electro-weak interactions, which in particulargives the probability for such an event. The qq-pair is however not directlyobserved in the experimental detector. Instead a large number of hadrons are



2 Introduction
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Figure 1: The various stages in a high energy particle process, in which the stronginteraction is active. Firstly, the electron and the positron come from the acceleratorand they collide. In the collision they may annihilate into a photon or a Z0, which maysplit into a quark and anti-quark pair. This �rst part is governed by the electro-weakinteraction. Then the quark and anti-quark radiate gluons, which may radiate furtherquarks and gluons, in a so-called parton cascade. Finally, there is hadronization, inwhich the gluons and quarks turn into the hadrons which are observed in the detector.The parton cascade and the hadronization are governed by the strong interaction.measured. This �nal step in the process is governed by the strong interactionand it can be divided into two parts. Firstly, there is the parton cascade,where the quark and the anti-quark radiate gluons. The emitted gluons maythen radiate more gluons or split into new qq-pairs, and so on. Secondly, thereis the hadronization, in which the produced partons, i.e. the quarks and gluons,turn into the observed particles.The theory for the strong interaction is called quantum chromo dynamics(QCD). The force �eld between partons due to QCD is called a colour �eldand the partons carry what is called colour charge. That free quarks or gluonshave never been seen suggests that colour charge is con�ned. QCD is such thatapproximate methods have to be used to get predictions and results from thetheory.At short distances and over short times the quarks and gluons can be consideredas free particles and the perturbative approximation of QCD (perturbativeQCD) works well. The parton cascade is a good example of a process which iswell described by perturbative QCD. At larger distances, roughly 10�15m, theperturbative approximation breaks down and one has to use other approaches.Hadronization is an example of the strong interaction which cannot be cal-



Hadron production 3culated using perturbative QCD. As the parton cascade evolves the distancescales become larger. When hadronization sets in the distances are too largefor perturbative approximations. One model to describe hadronization whichhas been very successful when compared with experimental data is the Lundstring fragmentation model [1].The Lund string fragmentation modelAt the end of the parton cascade there is a colour force �eld stretched betweenthe partons. The QCD vacuum surrounding the partons contains both qq-pairsand gluons. This vacuum will make it energetically favoured to press the colour�eld between two partons into a tube and the �eld can be thought of as a stringgoing from parton to parton. This con�ning of the �eld is very di�erent fromthe electro-magnetic �eld between two electrically charged particles where the�eld spreads over all space.Let us consider the simplest case of a quark and an anti-quark going out inopposite directions with a colour �eld spanned between them. In the Lundstring model the colour �eld is approximated with a massless relativistic stringwith constant energy-density. This means that as the quark and anti-quarkmove apart, more and more energy will be stored in the string-like �eld betweenthem. To observe a free quark in an experiment would imply that it has beencompletely separated from its partner. The cost of separating a quark rises dueto the constant energy-density linearly with the distance and it would thereforecost an in�nite amount of energy to release a quark. In this way, the stringpicture provides an intuitive picture for why quarks not are observed directly inan experiment. When the quarks run out of energy they will be dragged backby the �eld and they will approach each other again. A qq-pair will thus yo-yoback and forth and what is �nally produced is particles made up of quarksinstead of individual quarks.In a typical experiment the energy of the qq-pair is so large that the energystored in the �eld between them is large enough to produce new qq-pairs asshown in Fig.(2). There will then be a region between a newly produced quarkand anti-quark where the total colour �eld due to all the quarks and anti-quarks cancels. Since there is no colour �eld this means that the string breaksinto two independent string pieces. One going from the �rst quark to the newanti-quark and one going from from the new quark to the initial anti-quark. Ifthese new pieces have enough energy they will also break-up. This process willcontinue into smaller and smaller pieces until only ordinary hadrons remains,as shown in Fig.(2).The primary hadrons produced in the break-up process may be unstable and
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Figure 2: The fragmentation of the string. a) The initial quark{anti-quark pair. b)The �rst break-up where a new quark{anti-quark pair is produced. c) After severalbreak-ups a set of quark{anti-quark pairs that can be treated as hadrons remains.decay into stable hadrons. Consequently, what is �nally measured is lots ofhadrons produced from an initial qq-pair. However, in the end these particlescome out essentially aligned along the initial partons and the parton con�gu-ration can in general be reconstructed. Experimental data can in this way beused to learn about the dynamics of quarks and gluons.In the Lund fragmentation model the hadrons get small transverse momenta,with respect to the string axis. Producing a qq-pair which is not massless costsenergy. This means that they cannot be produced in a point but have to beseparated by some distance, consequently the string piece in between themvanishes and its energy is used for the pair production. Such a mechanism canbe described by quantum mechanical tunneling and it results in a Gaussiandistribution for the transverse momenta.One of the nice features of the Lund string fragmentation model is that it can beformulated stochastically as an iterative process and it is therefore well-suitedfor computer implementation.CorrelationsTo discriminate between various theoretical predictions and models it is oftenpro�table to go further in the analysis than just simply analysing single-particlespectra. Studying the correlations between the produced hadrons can be im-portant for learning about both parton cascades and hadronization. With thelarge number of events generated at the LEP accelerator at CERN it has be-come possible to test various models in more detail.The correlation studies in this thesis covers aspects of both parton cascades andhadronization. Bose-Einstein correlations is in the case of hadron production aquantum-mechanical e�ect. The model for it in this thesis is based on the Lund



Correlations 5string fragmentation model, which is essentially semi-classical. The incorpo-ration of quantum-mechanical e�ects in the Lund model can provide furtherknowledge about hadronization. The work on what happens at the end of theQCD cascades is an example of where correlation studies of the hadrons giveinformation on the dynamics at parton level. The remaining part of this sec-tion is an e�ort to give some background to the phenomenon of Bose{Einsteincorrelations, before going into the details of the model in this thesis.Bose{Einstein correlationsThe Bose{Einstein e�ect, sometimes called the Hanbury-Brown{Twiss (HBT)e�ect, occurs because the production amplitude for a set of particles shouldbe symmetrised for identical bosons. It was �rst used in astronomy, where oneuses the interference pattern of photons to get information about the size of thephoton emitting region, i.e. the size of a particular star [2]. In a high energycollision most of the particles produced are pions and their interference patterncan be analysed in a similar way [3]. Experimentally the Bose{Einstein (BE)e�ect can be observed as an enhancement of the two-particle correlation func-tion when the two particles are identical bosons and they have very similarenergy-momenta. I will in this section give a simpli�ed description of the BEe�ect analogous to classical optics, to give some avour of how it arises in theproduction of identical �nal state bosons in a high energy collision.Suppose we have a source producing pions with a space-time dependent wave-function f(x). The total amplitude for emitting a pion with energy-momentumk1 is then given by A(k1) = Z dxie�ik1xif(xi) (1)and the joint amplitude for emitting two pions with k1 and k2 isA(k1; k2) = A(k1)A(k2) = Z dxie�ik1xif(xi) Z dxje�ik2xjf(xj) : (2)It should be noted that Eq.(2) is symmetric with respect to the exchange of thetwo pions, i.e. it is BE symmetric. The integrals are taken over the space{timedistribution of the source which is �nite both in time and space.The normalised two-particle correlation function C2(k1; k2) is de�ned asC2(k1; k2) = hP (k1; k2)ihP (k1)i hP (k2)i = hA(k1)A(k2)A�(k1)A�(k2)ihA(k1)A�(k1)i hA(k2)A�(k2)i : (3)



6 IntroductionThe chaotic limitThe basic assumption of the BE e�ect is the chaotic limit. It corresponds toassuming that the phases of the production amplitudes uctuate wildly for eachpoint in space. The two-particle probabilityhP (k1; k2)i =Z dxidxjdxkdxlhf(xi)f(xj)f�(xk)f�(xl)ie�ik1(xi�xk)e�ik2(xj�xl)(4)will in this limit, if the production amplitudes are Gaussian, only get contri-butions from two cases: xi = xk; xj = xl and xi = xl; xj = xk , reducing itto hP (k1; k2)i = Z dxidxj jf(xi)j2jf(xj)j2 �1 + ei(k2�k1)(xi�xj)� : (5)For the one-particle probability we get in the same limithP (k1)i = Z dxidxjhf(xi)f�(xj)ie�ik1xieik1xj = Z dxijf(xi)j2 : (6)If we introduce the normalised intensity density of the source �(x) and itsFourier transform ~�(k)�(x) = jf(x)j2R dxjf(x)j2 and ~�(k) = Z dx�(x)e�ikx (7)then the normalised two-particle correlation function can be written asC2 = 1+ j~�(�k)j2 (8)where �k = k2 � k1. We note in particular that C2 ! 2 as �k ! 0.The coherent caseTo show the importance of chaotic phases I will consider the complete coherentcase where there are well de�ned phases between di�erent production ampli-tudes. If we let �i and fi denote the phase and the amplitude at the productionpoint xi respectively, we gethP (k1)i = Z dxidxkf(xi)f�(xk)e�ik1(xi�xk)= Z dxidxkei(�i��k)fifke�ik1(xi�xk) (9)and for the joint probabilityhP (k1; k2)i =Z dxidxjdxkdxlei(�i+�j��k��l)fifjfkfle�ik1(xi�xk)e�ik2(xj�xl)= hP (k1)i hP (k2)i : (10)



Correlations 7We note that in the coherent case we �nd C2 = 1.Some remarksAt this point it should be clear that chaotic emission of bosons is needed to giverise to the BE e�ect, i.e. emission of identical bosons is not su�cient. Notehowever that hP (k1; k2)i is oscillating with �k�x even in the coherent case,but that the product of the single probabilities contains the same oscillationsin this case.The results are based on plane-wave propagation of the bosons after production,which is reasonable only if there are no �nal state interactions. This meansthat the e�ects of �nal state interactions have to be taken into account to pro-vide quantitative interpretations from the experimentally measured correlationfunctions.If we make a simple model for the source and assume that it is a sphere ofemitters with a Gaussian intensity density, described by a radius parameter ��(x) = �(0)e� x22�2 (11)it corresponds in the chaotic limit to the following C2C2(�k) = 1 + e�j�kj2�2 : (12)To extract the radius parameter from experimentC2(Q) = 1 + �e�Q2�2 (13)is usually �tted to the data. Q2 = �(�k)2 and � is a parameter introduced toaccommodate the fact that the measured two-particle correlation not always is2 for �k = 0. The parameter � has sometimes been interpreted as the degreeof incoherence in the source.Another assumption in the derivation is that there is no correlation betweenmomentum and the production point in the source of the emitted particles.This is obviously not the case in the string model where the production pointof a particle and its momentum are strongly correlated. Such a correlationmeans that the f -amplitudes are k-dependent and that the 'Bose{Einstein'term/ Z dxidxjhf(xi; k1)f�(xi; k2)i hf(xj ; k2)f�(xj ; k1)ie�i�k(xi�xj) (14)will only be sensitive to a part of the source, since for a �xed small �k theoverlap of f(xi; k1) and f�(xj ; k2) will vanish rapidly as �x = xi�xj increases.



8 IntroductionIt is therefore the distance in production points for which the momentum dis-tributions of the produced particles overlap which will be measured using theBE e�ect. Thus the Bose{Einstein term is sensitive to something which notnecessarily corresponds to the overall size of the source.The papersThe number of particles produced in a typical event is so large that straight-forward calculation of their properties soon becomes prohibitive. The work inthis thesis therefore depends on computer implementations of the models. Inthese, Monte-Carlo (MC) programs, events are generated and their propertiescan be compared with real experimental events. The MC program based on theLund string fragmentation model is widely used and it is called JETSET [4].Paper IIn this paper we use an analogy invented by Feynman that is usually called theFeynman{Wilson gas (FWG) [5]. This analogy links multiparticle productioncross-sections to the multiparticle distributions of a classical gas.Inspired by the FWG analogy, we derive a partition function for the Lundstring fragmentation model. Furthermore, we calculate the �rst two terms inthe virial expansion in the density of particles. Our partition function thenyields an equation of state which is similar to that of a Van der Waal's gas.The gas is one-dimensional in rapidity. Particles with zero (transverse) massdo not take up any volume in rapidity and in this case the equation of statereduces to that of an ideal gas.The partition function of the gas is in a simple way related to the multiplicitydistribution of its constituent particles. This provides us with a method ofinvestigating the partition function. For a �xed rapidity 'volume', our partitionfunction corresponds to a multiplicity distribution which is very close to abinomial distribution.The partition function is derived assuming that the particles are ordered inrapidity. This is true for the string break-up vertices. Therefore, we expectthat the vertices provide the optimal case to investigate the properties of thepartition function. We �nd that the multiplicity distribution of the verticesis well described by the partition function. Finally, we analyse how this ismodi�ed for the particles, both with and without decays of unstable particles.



The papers 9Paper IIA model for incorporating Bose{Einstein correlations in the Lund model ispresented. BE interference between identical bosons produced in hadronic in-teractions is of a purely quantum mechanical nature. This poses two prob-lems. Firstly, the probability for a string to decay into a set of hadrons isbased on semi-classical arguments and the process therefore has to be providedwith a quantum mechanical framework. Secondly, the MC implementations ofhadronization models are formulated in the language of stochastical processes,i.e. they are based on probabilities, while quantum mechanics is based onamplitudes.Based on the similarity between the probability for a string to decay into aset of hadrons and Fermi's golden rule, we present two quantum mechanicalprocesses providing similar matrix elements for the production process.We show that the interference between identical particles can be incorporatedinto the probability based MC program if each event is assigned a weight. Theweight for a given event, where the particles are produced in the order P isgiven by w = 1 + XP0 6=P 2Re(MPM�P0)jMP j2 + jMP0 j2 ; (15)whereMP is the matrix element for the production of the given con�guration.The sum goes over all other con�gurations P 0 in which identical bosons areexchanged. As emphasized in the description of the BE e�ect, a crucial ingre-dient to get an enhancement in the correlation function is the chaoticity of thephases of the emission-amplitudes. In this model the chaoticity of the phase ofthe matrix element corresponds to the sum over very many interference termsin the calculation of the event weight.For n identical bosons the number of con�gurations is n!. We describe a schemeto include only the con�gurations which contribute to the sum in Eq.(15). Inthis way it is possible to reduce the computation time to levels where a completemultiparticle symmetrisation of qq events at LEP energies is manageable.The model provides an interpretation of the correlation length as a reason-able estimate of the space{time distance, along the colour �eld, between theproduction points of two identical bosons.Paper IIIThe transverse and longitudinal properties of the particles stem in the Lundstring fragmentation model from two di�erent production mechanisms. This is



10 Introductionmanifested in the event weight used to implement the BE correlations and itresults in a di�erence in the correlation length along the string and transverseto it.Two-dimensional correlation functions are studied and the two-particle corre-lation length is found to be roughly a factor of two larger along the string. Thetransverse momentum part of the weight provides damping and summed overmany particles it introduces Gaussian noise. We therefore �nd that the dif-ference in correlation lengths is even more apparent when we analyse genuinethree-particle correlations. We conclude that two-dimensional three-particlecorrelations are a sensitive tool to investigate the longitudinal stretching of thestring �eld.Paper IVIn this paper, we study e�ects on the W mass measurements at LEP2 from BEand colour interference during the hadronization phase.In the reaction e+e� ! W+W� ! (q1q2)(Q1Q2) we expect that normallythe two singlet systems (q1q2) and (Q1Q2) hadronize independently into twostrings. If the strings don't interact with each other then the �nal state isgiven by the superposition of two independently fragmenting strings. However,if the two systems interact, either through perturbative gluon exchange or inthe hadronization phase, it naturally may have implications for the �nal state.The pairs (q1Q2) and (Q1q2) also form colour singlets with probability 1=N2cand this probability could be further enhanced by gluon exchange. We thereforeexpect that the hadronization can give "recoupled" colour strings between thesequark{anti-quark pairs. A model for colour recoupling in the hadronizationphase of W-pair decays is presented in [6]. The work on colour interferencein paper IV is based on an improved version of this model. We �nd that thepossible experimental signal proposed in [6] is ruled out for small recouplingprobabilities.The typical separation in space{time between the W+ and the W� decay ver-tices is much smaller than 0.1 fm at LEP2 energies. Since this distance is muchsmaller than typical hadronic sizes and the correlation lengths associated withBE interference, bosons from di�erent W's can be subject to BE symmetri-sation. This was �rst proposed in [7]. The model for BE correlations in theLund model presented in paper II provides an interpretation of the correlationlength between identical bosons as the distance along the colour �eld betweentheir production points. We therefore argue that there are no BE correlationsbetween bosons coming from di�erent W's.



The papers 11In summary, we conclude that the theoretical uncertainties in the W massdetermination, from interference e�ects during the hadronization phase, shouldbe smaller than the experimental statistical error.Paper VA scenario for the end of the QCD cascades is presented. The basic idea isthat the constraint imposed by helicity conservation in the emission of gluonswill lead to each gluon being surrounded by an exclusion region for furthergluon emission. This restricts the maximum number of gluons in a given totalphase space. If there is a tendency to emit as many gluons as possible thenthe azimuthal degree of freedom has to be utilized. The most close-packedcon�guration in rapidity{azimuthal-angle space corresponds to the gluons beingon a helix. This does not necessarily mean that the colour �eld is wound intoa helix since there are very many ways to colour-connect a given set of gluons.This has been investigated in a toy model containing the relevant features. We�nd that the sub-optimal con�gurations do not swamp the optimal one and anordered �eld with the characteristics of a helix emerges.We have modi�ed the Lund fragmentation scheme to incorporate a correlationbetween the rapidity and the azimuthal angle of the string break-up vertices.This modi�cation yields results which are consistent with current experimentalmeasurements, but predicts at least one signature which should be observable.Our observable for the helix colour �eld, which we call screwiness, is de�ned asfollows S(!) =Xe ������ nXj=1 exp(i(!yj � �j))������2 : (16)The �rst sum is over all the events in the analysis and the second goes over theparticles in an event.To understand how screwiness behaves we note that each term in the inner sumcan be viewed as a step in the complex plane having unit length. If the phase ofeach step is uctuating wildly the sum of several steps will have the propertiesof a random walk. The average length of a sum of n steps is then in particularpn. We conclude that screwiness for a �xed ! will, in the case of randomphases, be Nhni, where N denotes the number of analysed events. For ! = 0the inner sum is the sum of the directions of the particles transverse momenta.If the number of particles in the event is not too small we expect that the localconservation of transverse momenta will lead to screwiness being small for !close to zero. On the other hand if there is a correlation between rapidity and



12 Introductionazimuthal angles, screwiness will be enhanced for the corresponding !. In themaximum case, all the steps are in the same direction and screwiness takes thevalue Nhni2.We therefore expect screwiness to be small for ! ' 0, have a peak for the !corresponding to the close-packing of the gluons and �nally fall o� to a plateaufor large !, corresponding to the case of random phases.We �nd that this observable can survive particle production and subsequentresonance decays.AcknowledgmentsFirst, I want to thank Bo for his continuous e�orts and excellent guidance. Iwould also like to thank Patrik for numerous explanations and for surviving inthe noisy o�ce we share. A fair share of gratitude goes to Jari and Carstenfor trying to keep up with my frequent co�ee-breaks. I thank Patrik, Jari andPeter for reading this introduction. Finally, I want to thank everyone at thedepartment who has contributed to a great atmosphere during my stay.References[1] B. Andersson, G. Gustafson, G. Ingelman and T. Sj�ostrand,Phys. Rep. 97, 31 (1983)[2] R. Hanbury-Brown and R.Q. Twiss, Nature 178, 1046 (1956)[3] G. Goldhaber, S. Goldhaber, W. Lee and A. Pais,Phys. Rev. 120, 300 (1960)[4] T. Sj�ostrand, Comp. Phys. Comm. 82, 74 (1994)[5] K.G. Wilson, Cornell preprint CLNS-131, (1970)Later published in the Proc. of the XIVth Scottish Universities SummerSchool in Physics (1973), eds R.L. Crawford and R. Jennings, AcademicPress, New York (1974)[6] G. Gustafson and J. H�akkinen, Z. Phys. C64, 659 (1994)[7] L. L�onnblad and T. Sj�ostrand, Phys. Lett. B351, 293 (1995)
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The Feynman{Wilson gas and the Lund modelBo Andersson, G�osta Gustafson, Markus Ringn�er and Peter SuttonDepartment of Theoretical Physics, Lund University,S�olvegatan 14A, S-223 62 Lund, Sweden
We derive a partition function for the Lund fragmentation model and compareit with that of a classical gas. For a �xed rapidity \volume" this partitionfunction corresponds to a multiplicity distribution which is very close to a bi-nomial distribution. We compare our results with the multiplicity distributionsobtained from the JETSET Monte Carlo for several scenarios. Firstly, for thefragmentation vertices of the Lund string. Secondly, for the �nal state particlesboth with and without decays.



16 Feynman{Wilson gas1.1 IntroductionThe cross-sections of QCD multiparticle production processes at high energieshave many similarites with the multiparticle distributions of a classical gas, ananalogy which was �rst noted by Feynman and Wilson [1]. This gas is essen-tially one dimensional in rapidity space. In this paper we use the gas analogyto derive a partition function for the Lund string fragmentation model [2]. Weperform a virial expansion to the second order in the density of particles. Ourpartition function then yields an equation of state for a Van der Waal's gas.Furthermore, it reduces to that of an ideal gas when the produced particles aremassless.The partition function of the gas is related in a simple way to the multiplicitydistribution of its constituent particles. This provides us with a method ofinvestigating the partition function. We show that for a �xed rapidity \volume"our partition function corresponds to a multiplicity distribution which is verysimilar to a binomial distribution.For large rapidity intervals the major uctuations in multiplicity stem fromgluon radiation. We will, however, neglect gluon emission. In this paper we areonly interested in comparing the Lund fragmentation model with the propertiesof a classical gas.We analyse the multiplicity distributions obtained from the JETSET MonteCarlo [3] for several scenarios. Firstly, we investigate the string break-up ver-tices, then the primary particles and �nally we include decays. We �nd that allcases are remarkably well described by distributions from the binomial family.In the derivation of our partition function we assume that the particles are or-dered in rapidity. Since this is true for the vertices, we expect the distributionsof vertices to be the optimal case. Indeed, these distributions are well describedby our partition function.The transition from vertices to particles introduces some smearing in rapidity.This results in a wider multiplicity distribution, where the width is sensitive tothe transverse mass of the produced particles. We obtain an ordinary binomialfor the primary particles. However, the strong smearing from decays ensuresthat, for the �nal state particles, this distribution becomes a negative binomialdistribution.We shall begin with a short presentation of the basic ideas of the Feynman{Wilson gas (FWG). This is followed by an introduction to the Lund model andits relationship to the FWG. We next turn to the multiplicity distributions forthe vertices and lastly how they are modi�ed for the �nal state particles.



1.2 The Feynman{Wilson gas 171.2 The Feynman{Wilson gasThe original discussion of the FWG can be found in [1]. Here we summarizethe main features of the model. We consider a multiparticle production processwhere the two primary particles have four momenta p1 and p2 and large invari-ant s = (p1+p2)2. The n secondary particles have four momenta k1; k2; : : : ; kn,and each is on the mass shell. In the FWG model the three remaining degreesof freedom in each ki correspond to the \spatial" co-ordinates of a gas particlevia ~x = kx~y = ky~z = ln[(kz + k0)=m?] (1.1)where the transverse mass is de�ned bym? =qm2 + k2x + k2y : (1.2)Note that in this picture ~z corresponds to the rapidity of the relevant particle.We will assume here that each produced particle is of the same type (each hasthe same mass) but the extension to di�erent species is straightforward.We can write the total cross section for the production process using thesespatial variables. We �rst note that the invariant phase space d3k=k0 becomesd3~r. The energy momentum conserving delta functions are �rst written interms of p = p1 + p2 � k1 � : : :� kn.�(p0)�3(p) = 2�(p+)�(p�)�2(p?) (1.3)with p� = p0 � pz. This can be expressed in terms of ~r variables using therelationship k0 � kz = m?e�~z.The delta functions have the e�ect of introducing a �xed volume for the gas.The transverse momenta are limited and constrain the gas to a narrow tubeof radius � 300 MeV. We shall instead focus on the ~z co-ordinate. We �rstintroduce W+ and W� via W� � (p1 + p2)� (1.4)so that we can write �(p�) = �(W� �Xm?i exp(�~zi)) : (1.5)In the following we use the Lorentz frame where W� = ps. The two deltadistributions contain the requirement that the \gas volume" should be of the



18 Feynman{Wilson gasorder of ln s. To see this we may integrate out the rapidities of the �rst andthe last particles to obtain d~z1d~zn �(� � �)�(� � �) ' 1=s~z1 ' �~zn ' ln(ps) : (1.6)We may in this approximation choose a number s0 in such a way that�~z � ~z1 � ~zn = ln(s=s0) (1.7)and assume that all the particles are kept inside this rapidity \volume". If thespatial co-ordinates of the primary particles are R1 and R2 respectively thenthe cross section can be written as�T (R1; R2) = 1Xn=2" nYi Z d3~ri! 2�(p+)�(p�)�2(p?) �n(~r1; : : : ; ~rn; R1; R2)# :(1.8)For �xed R1; R2 then �T corresponds, in the FWG analogy, to the partitionfunction of the gas and the functions �n are the n particle distribution functionsfor the gas. Our aim is to connect these ideas to particle production withinQCD as represented by the Lund model.1.3 The Lund model and the Feynman{Wilsongas1.3.1 The Lund modelIn this section we briey review some features of the Lund model fragmenta-tion scheme. We will mostly be concerned with the simple situation when thecolour force �eld from an original quark-antiquark pair (produced by e+e� an-nihilation, for example) decays into a set of �nal state hadrons.In the Lund model, the colour force �eld is approximated by a massless rel-ativistic string with a quark (q) and an antiquark (q) at the endpoints. Thegluons are treated as internal excitations on the string �eld. This means thatthere is a constant force �eld, � ' 1 GeV=fm, corresponding to a linearly risingpotential, spanned between the original pair. After being produced the q andthe q are moving apart and the energy in the �eld can be used to produce newqq-pairs. When a new pair is created the string is split into two pieces.The production rate of a pair with combined internal quantum numbers corre-sponding to the vacuum is, from quantum mechanical tunneling in a constant
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Figure 1.1: The break-up in space{time of a Lund string into n hadrons. Thefragmentation area is denoted by A.force �eld, given by P (�?) = exp����2?� � : (1.9)Here the quarks in the pair have transverse mass �? = q�2 + ~k2?, mass �and transverse momentum �~k?. The �nal state mesons in the Lund modelcorrespond to isolated string pieces containing a q from one breakup vertex anda q from the adjacent vertex together with the produced transverse momentumand the �eld energy in between. The break-up of the string is illustrated inFig.(1.1).One necessary requirement is that to obtain real positive (transverse) massesall the vertices must have spacelike di�erence vectors. Together with Lorentzinvariance this means that all the vertices in the production process must betreated in the same way [4]. Another consequence is that it is always theslowest mesons that are produced �rst in any Lorentz frame (corresponding tothe fact that time-ordering is frame dependent). Furthermore each vertex hasthe property that it will divide the event into two causally disconnected jets,the mesons produced along the string �eld to the right and those produced tothe left of the vertex. This can be seen in Fig.(1.1).A convenient ordering along the force �eld of the produced particles is rankordering. Two particles have adjacent rank if they share a qq pair created ata vertex . The �rst rank meson contains the internal quantum numbers of theoriginal q together with those of the q produced at the vertex closest to theendpoint q. Similarly the second rank meson contains the internal quantumnumbers of the q from this \�rst" vertex and the q of the \second" etc. In thisway rank ordering corresponds to an ordering along a light-cone. Alternatively
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Figure 1.2: The production, in energy{momentum space, of a particle with transversemass m?. The particle is produced between the vertices 1, with the squared proper-time �21 = �1=�2, and 2, with � 22 = �2=�2. The particle has fractional light-conecomponents z+ and z�.it is also possible to rank order in the direction from the original q.The basic Lund model fragmentation process then stems from the followingtwo assumptions1. In the centre of phase space (i.e. far from the endpoints) the string decayprocess will reach a steady state. The probability to �nd a vertex is, aftermany production steps along the light-cone, a �nite distribution in theproper time of the vertex. This is also the case when the total string �eldenergy becomes very large.2. The decay process is the same whether it is ordered along the positive oralong the negative light-cone.If we consider Fig.(1.2), this means that we assume that the probability toreach the space-time point 1 at (x+1; x�1), after many steps along the positivelight-cone, and to produce a meson with transverse mass m? by one furtherstep to the vertex 2 at (x+2; x�2), is equal to the probability to reach the point2, after many steps along the negative light-cone, and by one further step to 1produce the meson with m?.Changing variables to the squared Lorenz invariant proper time �2 = x+x�and the rapidity y = 1=2 ln (x+=x�) the probability to reach the point 1 isH(�21 )d�21 dy1. The probability to produce one further particle with mass m?and fractional light-cone component z+ is f(z+;m?)dz+. A particle with frac-tional light-cone component z+ has the positive light-cone energy-momentumcomponent p+ = z+�x+1 and has, in order to stay on the mass-shell, the neg-
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Figure 1.3: The decay, in energy-momentum space, of an n-particle cluster withinvariant squared mass s. The fragmentation area of the cluster is Arest. � = �2� 2 iswith respect to the proper-time � of the last vertex.ative component p� = m2?=p+ = z��x�2. This means that we obtain theequation: H(�21 )d�21 f(z+;m?)dz+ = H(�22 )d�22 f(z�;m?)dz� : (1.10)It is a nice and surprising feature of the assumptions above that there is aunique process that ful�lls Eq.(1.10) [4],Hj = Cj�aj exp(�b�) with � = �2�2 ;fjk = N̂jkzaj�1�1� zz �ak exp(�bm2?=z) : (1.11)The numbers Cj and N̂jk are normalisation constants and the particle is as-sumed to be produced in a step from a vertex with avour j to a vertex withavour k. If nf denotes the number of qq-avours, the process has nf + 1 pa-rameters. Although the parameter a is, in principle, avour dependent, therehas been no need to utilize this in the Lund model as implemented in the JET-SET Monte Carlo; except for the �rst rank particle in a heavy quark jet [5].The parameter b must be avour independent.It is possible to construct the probability to produce a �nite energy cluster ofrank-connected particles [4] from Eq.(1.11). Such a cluster is shown in Fig.(1.3).This probability distribution is in a natural way subdivided into two parts, theprobability to obtain the cluster and the probability that the cluster decaysin a particular way. In the following we order the particles along the positivelight-cone. If the cluster has a total light-cone fraction z and a �xed total



22 Feynman{Wilson gassquared cms energy s then the (non-normalised) probability to obtain such acluster isdPext = dzz za0 �1� zz �an exp(�b�(s; z)) with �(s; z) = s1� zz : (1.12)The cluster then starts at a vertex with avour f0 and ends with avour fn.The � value is that of the last vertex, as shown in Fig.(1.3). Thus a cluster isproduced in the same way as a single particle between the vertices with a0 andan. Similarly we �nd that the (non-normalised) probability for the cluster todecay into the particular channel with the particles fpgj isdPint = hY N̂jdpj�(p2j �m2j )i �(X pj � Ptot) exp(�bArest) (1.13)where Arest is the decay area of the cluster, as shown in Fig.(1.3). Equa-tion (1.13) is for simplicity written in the ordinary Lund model fashion with asingle a-parameter (this parameter is not explicit in the formula) and we notethe appearance of the phase space for the �nal state particles multiplied by theexponential area decay law. The quantity Ptot is the total energy momentumof the cluster so that P 2tot = s. We may determine the �nite energy versionof the vertex distribution, H(�), from Eq.(1.12) by exchanging z for �. Thisyields Hs / �ansa0�an(� + s)a0+1 exp(�b�) : (1.14)The function Hs in Eq.(1.14) is exponentially decreasing in � so that the powerdependence in the denominator only plays a role for small values of � and thenit is hardly noticable for large values of s. In this way the assumption 1: above isful�lled. That is to say when s becomes very large there is (after normalisation)a �nite distribution in the proper-time size of the decay vertices.1.3.2 The connection between the Lund model and theFWGWe will now exhibit the decay distribution of a cluster, as given by Eq.(1.13),in terms of the partition function which is studied in statistical physics. Forsimplicity we write the formulas for a single particle transverse mass m? anda single avour and we let j denote the rank of a particle. The phase spacefactor can in analogy with the result in section 1.2 be written with the particleenergy momentum vectors pj � m?(exp(yj); exp(�yj)) asd	 � hY N̂dpj�(p2j �m2j )i �(X pj � Ptot)



1.3 The Lund model and the Feynman{Wilson gas 23= " nY1 N̂dyj# �(Xm? exp(yj)� P+)�(Xm? exp(�yj)� P�)' N̂2s n�1Y2 N̂dyj : (1.15)We have in the last line integrated out the �rst and the last rapidities in thedelta function and from now on we assume that the remaining particles areplaced in rapidities between �y=2 and ��y=2 with �y = ln(s=s0) and s0 issome suitable scale. If all the particles are ordered in rapidity we may integrateout the phase space factor and obtainZ d	 = N̂2(N̂�y)n�2s(n� 2)! : (1.16)We next consider the decay area of the cluster. Figure (1.4) shows that it canbe written in terms of the rapidities of the particlesA = m2? nXj=1 nXk=j exp(yk � yj) : (1.17)From this equation and Eq.(1.15) we note that the decay distribution in Eq.(1.13)has similarities with a partition function, Zn, and we therefore de�ne a grandpartition function Z asZ =Xn Zn= s Xn 240@ nYj=1 N̂dyj1A �(: : :)�(: : :) exp0@�bm2? nXj=1 nXk=j exp(yk � yj)1A35� s Xn 240@ nYj=1 N̂dyj1A �(: : :)�(: : :) exp0@� 1kT nXj=1 nXk=j V (yj � yk)1A35 :(1.18)(The factor of s is required in order to have a dimensionless partition function.)In this way we see that the decay distribution in Eq.(1.13) may be interpretedas the partition function for a system of n particles with co-ordinates yj in-teracting with exponential two-body potentials in a one-dimensional volumeequal to �y. We note that whilst all the particles interact in this way (\long-range interactions") the exponential decrease of the potentials ensures that thee�ective interaction is rather short ranged.If the particles are imagined as making up a gas in rapidity space and are
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1.3 The Lund model and the Feynman{Wilson gas 25multiplicity n. In the approximation that n is large, i.e. for large rapidityintervals �y, we can write the partition function in terms of two parametersc1 and c3 as Zn ' (c1�y)nn! exp��c3n2�y � : (1.21)We will comment further on the parameters c1 and c3 when we investigate towhat extent the partition function in Eq.(1.21) describes the particle produc-tion in the Lund model.1.3.3 The partition function in the Gaussian approxima-tionWe now investigate the grand partition function in the limit where the numberof particles is large, but the density is low (as in an ordinary gas). In thiscase we expect that the grand partition function can be approximated by themaximal term in the sum. To �nd the multiplicity for which the partitionfunction is maximal we �rst de�ne �n by writing Eq.(1.21) asZn = exp�n : (1.22)If we treat n as a continuous variable we can expand �n in a Taylor series as�(n) ' �(n) + (n� n) �0(n) + (n� n)22 �00(n) : (1.23)Choosing n such that �0(n) = 0, we evidently have a Gaussian approximationfor Zn Zn ' exp�(n) exp�� (n� n)22V � (1.24)where the variance, V , is given by V = �1=�00(n). It is straightforward toobtain expressions for both n and V if we use Stirlings approximation for thefactorial in �(n). We �nd n = �y2c3 ln(c1�yn )V = n�1 + 2c3n�y ��1 : (1.25)Notice that, since c3 is positive, this implies that the variance of the distribu-tion is less than the mean and the distribution is therefore narrower than aPoissonian. If we now introduce the density of particles in the rapidity volume,R = n=�y, then �(n) = (R + c3R2)�y : (1.26)



26 Feynman{Wilson gasFor large n we can approximate the grand partition function as Z � Zn and soZ � � ss0�aR (1.27)with aR = R+ c3R2 : (1.28)The grand canonical partition function, for a gas is related to the pressure, P ,temperature, T and volume, ln(s=s0), of the gas via
 � �kT lnZP = � @
@ ln(s=s0) (1.29)where k is Boltzmann's constant. For the partition function in Eq.(1.27) weobtain the following equation of state for the gasP = kT (R+ c3R2) : (1.30)Our expansion thus corresponds to the �rst two terms in the virial expansion inthe particle density of the gas. We note that the equation of state in Eq.(1.30)is similar to that of a Van der Waal's gas. For particles with zero (transverse)mass we have c3 = 0. In this case a particle does not take up any volume inrapidity and Eq.(1.30) reduces to the equation of state for an ideal gas.1.4 The vertex distributionsThe partition function is related to the multiplicity distribution, Pn, sincePn = ZnZ : (1.31)In the remaining sections we shall use this relationship to further study ourpartition function. We begin here with a study of the vertices produced in thestring fragmentation. These vertices are strongly ordered in rapidity and thussatisfy one of the assumptions used to derive our partition function. This isonly an approximation in the case of the particles. Of course, the number ofvertices corresponds directly to the number of primary particles.In what follows we outline a simple model in which all particles have the samemass (m = 0:8 GeV) and there is no transverse momenta. The e�ects ofrelaxing those constraints will be considered in the next section where we returnto the particles.



1.4 The vertex distributions 271.4.1 The distribution in rapidityWe begin by studying the separation between neighbouring vertices. In theLund model the distribution of such separations for a �xed mass, m, is givenbyP (�y) = N Z d��ae�b� Z 10 dz (1� z)az e�bm2=z���y � 12 ln�� +m2=z�(1� z) �� :(1.32)The logarithm of this distribution is plotted in Fig.(1.5) for various values of theLund model parameters a and b. We see from this �gure that there are two maincharacteristics of the distribution. The �rst is an e�ective minimum separationbetween vertices which increases with bm2, but is independent of a. Physicallythis separation arises because two vertices cannot be very close together inrapidity if they must produce a massive particle. The second characteristicis an exponential fall o� for large separations, �y, which depends only on theparameter a.We can consider a simple model which reproduces the above features very well.In this model the rapidity region is divided up into a series of N equal bins ofsize �ybin. The e�ective minimum separation between vertices can now be takeninto account by demanding that no bin may contain more than a single vertex.Each bin is assigned a probability p to contain a vertex and a probability 1� pto be empty. This allows us to compute the probability of a separation, �y,between two vertices. If �y is discretised as �y = n�ybin with n an integer thenthe probability of such a separation is given by a geometric seriesP (�y) = p(1� p)n�1 (n = 1; 2; : : :)= p(1� p) exp(���y) (1.33)with � = � ln(1� p)=�ybin. We see that large �y separations are exponentiallysuppressed. The two main features of Fig.(1.5) are thus very well reproducedby this simple model, which corresponds to distributing the vertices accordingto a binomial distribution (appendix 1.A).We can investigate the accuracy of the binomial approximation using the JET-SET Monte Carlo (for consistency we use a �xed mass (m = 0:8 GeV) andhave no transverse momentum generation). Here we generate 2-jet (qq) eventsand analyse the distribution of vertices within a rapidity range, �y. The en-ergy is chosen to be su�ciently large in order to avoid edge e�ects from theq and q fragmentation contaminating the �y region. The mean, hni, and thevariance, V , of the resulting multiplicity distributions are used to calculate thebinomial parameters N and p, as detailed in appendix 1.A. We will see laterthat binomial distributions with these N and p values do indeed reproduce the
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30 Feynman{Wilson gasdistribution for the vertices. We havePn = c0 (c1�y)nn! exp��bm2 c2n2�y � (1.35)Here c0 is a normalisation parameter and so is determined in terms of the re-maining parameters. We can relate the parameters c1 and c2 to the parametersN and p of the binomial distribution. The procedure is explained in detail inappendix 1.B. For large �y, we obtainc1 = Np�y exp� p(1� p)�c2 = �y2bm2N(1� p) (1.36)In Fig.(1.7) we show the values of c1 and c2 which we obtain from our JETSETmultiplicity distributions. For large rapidity volumes, �y, they tend to con-stant values. We noted in section 1.3.3 that it is also possible to approximateEq.(1.35) using a Gaussian distribution (with the appropriate mean and vari-ance). If we express the mean and variance of Eq.(1.25) in terms of N and pand solve for c1 and c2, then we obtain the same expressions as Eq.(1.36). Wenote, however, that in the case of a Gaussian distribution one has a symmetricdistribution. This is not true of either Eq.(1.35) or the binomial distributionsince they both contain a term n! in the denominator.Finally in Fig.(1.8) we demonstrate how well the binomial and Eq.(1.35) repro-duce the observed multiplicity distribution. We show three curves �rstly theJETSET multiplicity distribution, secondly that obtained from the binomialdistribution and �nally the distribution obtained from Eq.(1.35). At �y = 5we see very good agreement and it is di�cult to distinguish the di�erent curveswhilst at �y = 10 all of the curves lie on top of each other. We thus see thatthe vertex multiplicity distributions produced by JETSET do indeed agree verywell with our simple expression for the partition function, Zn.1.4.2 Distribution in proper timeSo far we have discussed the distribution of the vertices in terms of the rapidity,y. If pT is neglected then the position of the vertices is speci�ed by one furthervariable �, which is related to the proper time of the vertex. In this sectionwe will investigate how the vertices are distributed in �. As we discussed insection 1.3.1, we have for the vertices thatP (�) / �a exp(�b�) (1.37)
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0 2 4 6 8 10 12Figure 1.7: The values of c1 (upper plot) and c2 (lower plot) for the vertex dis-tributions produced by JETSET (for a �xed mass and no transverse momentumgeneration) as a function of the rapidity volume, �y. We show the results for �xeda = 0:3 and b = 0:4, 0.6, 0.8 and 1.which has a mean h�i = (1 + a)=b. Equation (1.37) is, however, an inclusivedistribution. If we examine vertices within a rapidity range, �y . 2, then we�nd that they are correlated. This means, for example, that if a vertex has alarge � value then nearby vertices are also likely to have large � values.We now examine how the vertices are distributed in � inside a rapidity range�y for various multiplicities, n. Motivated by the �nite energy vertex distri-bution, H(�), which we considered earlier in Eq.(1.14), we parameterize thedistributions asHn(�;�y) = C �ae�(n;�y)(� + se�(n;�y))a+1 exp(�b�) : (1.38)
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36 Feynman{Wilson gasThus we see how a larger spread of the particles around the vertices (a largerq-value) corresponds to a larger width and a smaller e�ective p-value. FromEq.(1.42) pe� must be larger than zero, but if we had allowed for a spreadbeyond the nearest bin then negative values of pe� would be possible. Thiscorresponds to a negative binomial distribution. Since the bin width is of theorder of bm2? the spread is certainly beyond neighbouring bins in the case ofpion production.We have investigated various cases of �nal state production. The multiplicitydistributions can still be well approximated by binomial distributions withconstant p-values for large rapidity intervals. In Fig.(1.11) we show N and pas a function of �y for the various cases.For a situation with only a single stable hadron, assumed to have the massm =0:8 GeV, and no transverse momentum generation, the result is as expected.Comparing the multiplicity distribution with the distribution for the vertices,we �nd that p is decreased and N is increased. The product of N and p ishowever the same for the two distributions.If we include the standard mixture of di�erent hadron masses p is furtherreduced. We obtain in this case a distribution that is very close to a Poissonian.Thus, as expected, the width of the multiplicity distribution greatly increaseswhen light pions are produced.Including transverse momentum generation increases p to positive values asshown in the �gure. The transverse mass of the pions is thus, in the case ofthe standard mixture of hadrons, not small enough to give a negative p-value.Finally, if we include the decays of unstable particles and analyse the �nalcharged particles then the width increases substantially and p becomes neg-ative (corresponding to a negative binomial distribution). Including the �naluncharged particles in the analysis results in an even more negative p-value.We can summarize our �ndings as follows. The width of the multiplicity distri-bution is very sensitive to the mass spectrum of the produced particles. Usingdefault JETSET the average transverse mass is large enough to give a binomialmultiplicity distribution. In this case the negative binomial distribution for the�nal state stems from the increased width due to decays.1.6 ConclusionsInspired by the Feynman{Wilson gas analogy we have derived an explicit formfor the grand partition function of the Lund fragmentation model. This par-



1.6 Conclusions 37tition function is described in terms of the multiplicity n. In particular, wederive an equation of state for the gas, corresponding to the �rst two terms inthe virial expansion in the particle density.The partition function is derived in the approximation that the particles areordered in rapidity. This is true for the string break-up vertices and the num-ber of vertices corresponds to the number of particles. Therefore, we haveinvestigated the properties of the partition function using the vertices. Forlarge rapidity intervals, we �nd that the average and the uctuations of themultiplicity of vertices are described by the partition function.The partition function gives a multiplicity distribution which is close to a bi-nomial distribution. We �nd that the average transverse mass of the producedparticles is su�ciently large to get a reasonable description from the approxi-mation that the particles are ordered in rapidity. Thus the multiplicity distri-bution of the particles stemming from the string is described by an ordinarybinomial. It is the decays of the unstable particles that results in a negativebinomial distribution for the number of �nal charged particles.The distribution of the vertices for di�erent rapidity volumes and di�erentmultiplicities has also been investigated in terms of the proper-time. We �ndthat the behaviour for large proper-times is determined only by the area-lawand is independent of both the volume and the multiplicity. For smaller proper-times the distribution is described by a simple parametrisation. We �nd thatthe important quantity for the parametrisation is the density of vertices inrapidity, which in turn is described by the equation of state for the gas.AcknowledgmentThis work was supported in part by the EU Fourth Framework Programme`Training and Mobility of Researchers', Network `Quantum Chromodynamicsand the Deep Structure of Elementary Particles', contract FMRX-CT98-0194(DG 12 - MIHT).



38 Feynman{Wilson gas1.A The binomial and negative binomial distri-butionsThe binomial distribution is de�ned byP (n) = � Nn � pn(1� p)N�n : (1.43)The average, hni, and the variance V = hn2i � hni2 of this distribution arerelated to N and p via hni = NpV = Np(1� p) : (1.44)The binomial distributions form a family of distributions depending on the val-ues of N and p. In the limit p! 0 for constant hni, the distribution becomes aPoisson distribution. It is also possible to continue the expressions in Eq.(1.43)to negative p-values, which for constant hni = Np implies also a negative N .In this case the distribution becomes a negative binomial distribution. Such adistribution is conventionally written in the formPk(n) = � k + n� 1k � 1 � ~pk(1� ~p)n (1.45)where ~p = � 11� p� (p < 0)k = �N (N < 0) : (1.46)Note that the relationships of Eq. (1.44) for the average and the variance remaintrue, even when p and N are both negative. Negative p-values correspond todistributions which are wider than a Poissonian. Thus the negative binomialdistributions belong to the same larger family as the (ordinary) binomial andPoisson distributions. Within this family the width can vary from zero toin�nity. Ordinary and negative binomials correspond to V smaller and largerthan hni respectively, with the Poisson distribution as the limiting case inbetween.1.B The binomial approximation of the parti-tion functionOur aim is to determine the c1 and c2 parameters of Eq.(1.35) from the N andp parameters of a binomial distribution. We begin by using Stirlings approxi-



1.B The binomial approximation of the partition function 39mation to write the binomial distribution asln(P ) = lnN2 +N lnN � (N � n) ln(N � n)� n�ln(N � n)2 +N ln(1� p) + n ln� p1� p�� ln(n!) (1.47)whilst the distribution in Eq.(1.35) can be written asln(Pn) = ln(c0)� bm2c2n2�y + n ln(c1�y)� ln(n!) : (1.48)We now express n as n = hni + x, where hni is the mean. Next we subtractEq.(1.47) from Eq.(1.48) and expand around x = 0 up to terms of order x2.Equating the series coe�cients to zero determines the parameters c1 and c2 interms of N and p. We obtainc1�y = Np exp �1� 2p+ 2Np� 2Np22N(1� p)2 �bm2c2�y = 2N(1� p)� 14N2(1� p)2 : (1.49)Which for large �y can be simpli�ed toc1�y = Np exp� p(1� p)�bm2c2�y = 12N(1� p) : (1.50)If we insert these expressions into Eq.(1.35) then we �nally obtainPn � (Np)nn! exp��n2 + n2Np2N(1� p) � : (1.51)
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By providing the Lund Model fragmentation process with a quantum-mech-anical framework we extend the results of [6] to situations where there are verymany identical bosons. We investigate the features of the weight distributions insome detail and in particular exhibit three-particle Bose{Einstein correlations,the inuence on the �-spectrum and the di�erence between charged and neutralpion correlations.



44 Bose{Einstein correlations2.1 IntroductionThe Hanbury-Brown{Twiss (HBT) e�ect [1], often called the Bose{Einsteine�ect, originated in astronomy where one uses the interference pattern of thephotons to learn about the size of the photon emission region, i.e. the size ofthe particular star, which is emitting the light. The e�ect can be described asan enhancement of the two-particle correlation function that occur when thetwo particles are identical bosons and have very similar energy-momenta. Awell-known formula [2] to relate the two-particle correlation function (in four-momenta pj ; j = 1; 2 with q = p1 � p2) to the space{time density distribution,�, of (chaotic) emission sources is,�d�12d�1d�2 = 1 + jR(q)j2 (2.1)where R is the normalized Fourier transform of the source densityR(q) = R �(x)dx exp(iqx)R �(x)dx : (2.2)This quantity is often, without very convincing reasons, parametrised in termsof a \source radius" R and a \chaoticity parameter" �,jR(q)j2 = � exp(�R2Q2) (2.3)with Q2 = �q2. The source radii obtained by this parametrisation tend to besimilar in all hadronic interactions (we exclude heavy ion interactions wherethe extensions of nuclear targets and probes will inuence the result), withR � 0:5 � 1 fm, but the chaoticity varies rather much depending upon theparticular data sample and the method of the �t. At present the knowledge ofhigher-order correlations is still limited in the experimental data, although inprinciple there should be such correlations.The HBT e�ect between identical bosons produced in hadronic interactions,being of a purely quantum mechanical nature, is not easily included in theevent generator programs used in high energy physics. Such simulation pro-grams, like HERWIG [3] (based upon the Webber{Marchesini parton cascadesand ending by cluster fragmentation) and JETSET [4] (based upon the LundModel string dynamics [7]) are built in accordance with classical stochasticalprocesses, i.e. they produce a probability weight for an event without anyquantum mechanical Bose{Einstein interference e�ects.Sj�ostrand has introduced a clever device as a subroutine to JETSET, in whichthe HBT e�ect is simulated as a mean �eld potential attraction between iden-tical bosons [5]. Thus, given a set of energy-momentum vectors of identical



2.1 Introduction 45bosons, p1; : : : ; pn, generated without any HBT e�ect, it is possible to reshuf-e the set into another set where each pair on the average has been movedrelatively closer to show a (chosen) HBT-correlation, while still keeping toenergy-momentum conservation for the whole event.In this paper we will develop a method devised in [6] to provide the LundModel with a quantum mechanical interpretation. In particular there will bea production matrix element with well-de�ned phases. This will then be usedto make a model of the HBT e�ect. Although this model stems from di�erentconsiderations it will nevertheless contain predictions which are similar to thosein the ordinary approach giving Eq.(2.1). The correlations in this model areimplemented as weights assigned to events generated by JETSET.In section 2.2 we survey those features of the Lund model, that are necessary forthe following. We have in this work extended the method from [6] to situationswhere there are many identical bosons and in section 2.3 we will exhibit thegeneral n-particle HBT-correlations in the model. The resulting expressionscontain a sum of in general n! terms, i.e. it is of exponential type from acomputational point of view. It is possible to subdivide the expressions inaccordance with the group structure of the permutation group. Although thehigher order terms provide small contributions in general the computing timesare still forbidding. In order to speed up the calculations we introduce insteadin this paper the notion of links between the particles and we show that inthis way it is possible to obtain expressions of power type from a calculationalpoint of view, which are perfectly tractable in a computer.In the last section we exhibit a set of results both in order to show the workingsof the model and to provide predictions for experiments. Since we have ex-tended the model to multiparticle permutations we show in particular that themodel exhibit three-particle BE correlations. In agreement with our �ndings insection 2.3, that our general expression is sensitive to a reasonable estimate ofthe space{time di�erence between the production points of the identical bosons,we get a di�erence between charged and neutral pion correlations. The detailsof the general event weight distribution are analysed and we also investigatethe inuence on the �-spectrumWe will in this paper be satis�ed to treat only two-jet events, i.e. we willneglect hard gluon radiation and we will come back to HBT e�ects in gluonevents in another publication.



46 Bose{Einstein correlations2.2 Some properties of the Lund modelWithin the framework of perturbative QCD it is possible to obtain many usefulformulas but all the results are expressed in a partonic language. In order tobe able to compare to the hadronic distributions, which are observed in theexperimental setups, it is necessary to supplement the perturbative results witha fragmentation process. We will in this paper be concerned with the Lundstring model [7] and we start with a brief introduction to its main properties.In the string model the con�ning colour �eld is approximated by a masslessrelativistic string. The endpoints of the string are identi�ed with quark andanti-quark properties while the gluons are assumed to behave as transverseexcitations on the string. The string can break up into smaller pieces by theproduction of qq-pairs (i.e. new endpoints). Such a pair will immediately startto separate because of the string tension, which in the rest frame of a stringsegment corresponds to a constant force �; phenomenologically � ' 1 GeV=fm.Final state mesons are formed from a q and a q from adjacent vertices, asshown in Fig.(2.1).Each breakup vertex will separate the string into two causally disconnectedparts. From the causality, together with Lorentz covariance and straightforwardkinematics, it is possible to derive a unique breakup rule for the string by meansof (semi)classical arguments [8].The unique breakup rule results in the following probability for a string todecay into hadrons (p1; : : : ; pn).dP (p1; :::; pn) = "Yi (Ndpi�(p2i �m2i ))# �(Xj pj � Ptot) exp(�bA) (2.4)where A is the area of the breakup region as indicated in Fig.(2.1) and N andb are two parameters.The similarity of the result to Fermi's Golden Rule for the probability of a quan-tum mechanical transition, i.e. the size of the �nal state phase space multipliedby the square of a matrix element jMj2 expressed by the exponential area sup-pression, provides a reasonable starting point to try to derive a correspondingquantum mechanical process. There are at least two possible mechanisms, viz.a quantum mechanical tunneling process a la Schwinger and/or the possiblerelationship to the Wilson loop operators in a gauge �eld theory. We will �ndthat they provide very similar answers to the problem.Starting with the tunneling arguments, we note that while a massless qq-pairwithout transverse momentum can be produced in a point-like way anywhere
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Figure 2.1: The decay of a Lund Model string.along the string, a massive pair or a pair with transverse momentum mustclassically be produced at a distance so that the string energy between them canbe used to ful�ll energy-momentum conservation. If the transverse momentumis conserved in the production process, i.e. the qq with masses � obtain �~k?,respectively, then the pair may classically be realised at a distance �x = 2�?=�,where �? is the transverse mass q�2 + ~k2?.The probability for a quantum mechanical uctuation of a pair, occurring with�? at the (space-like) distance �x, is in a force-free region given by the freeFeynman propagator squared:j�F (�x; �?)j2 � exp(�2�?�x) = exp��4�2?� � : (2.5)A corresponding quantum mechanical tunneling process in a constant force�eld will according to WKB methods give�����exp �2 Z �x0 q�2? � (�x)2dx!�����2 = exp����2?� � � P (�?) : (2.6)The di�erence is that in the force-free case we obtain an exponential suppres-sion 4�2?=� but when the constant force pulls the pair apart we obtain thesomewhat smaller suppression ��2?=�. Besides the mass suppression (whichphenomenologically will suppress strange quark-pairs with a factor of � 0:3compared to \massless" up and down avored pairs) we obtain the transversemomentum Gaussian suppressionexp�� 12�2 k2?� with 2�2 = �� : (2.7)



48 Bose{Einstein correlationsThe value of � as used in JETSET is a bit larger than the result in Eq.(2.7) butthis can be understood as an e�ect of soft gluon generation along the string.The transverse momentum of a hadron produced in the Lund Model is thenthe sum of the transverse momenta of its constituents.We may use the elementary result in Eq.(2.6) to calculate the persistence prob-ability of the vacuum, P , as it is de�ned in [9]. It is the probability that theno-particle vacuum will not break up, owing to pair-production, during thetime T over a transverse region A?, when a constant force � is applied alongthe longitudinal x-direction over a region L:P = Yt2(0;T );x2(0;L);~k?;s;f(1� P (�?)) = exp0@ Xt;x;~k?;s;f log(1� P )1A : (2.8)We have then assumed that the �eld couples to (fermion) pairs with spin s andavors f and we sum over all possibilities for the production. As each pair needsa longitudinal size �x = 2�?=� and, according to Heisenberg's indeterminacyrelation, will live during a time-span 2�=2�? there is at most �LT=2� pairspossible over the space-time region LT . The transverse momentum summationcan be done by Gaussian integrals from an expansion of log(1 � P ) and theintroduction of the well-known number of waves available in a transverse regionA?: (A?=(2�)2)d2k?. In this way we obtain for the persistence probabilityP = exp(��2LTA?�) with � = nfns4�3 1Xn=1 1n2 exp��n��2� � (2.9)where nf ; ns is the number of avor and spin states.There are two remarks to this result. Firstly, although the method to treat theintegration over time and longitudinal space, by close-packing reasonably sizedboxes, may not seem convincing the �nal formula [9] coincides with the oneobtained by Schwinger [10], for the case of a constant electric �eld E . Then �is identi�ed with the force of the charges in the external �eld, i.e. �! eE .Secondly, the result is in evident agreement with the formula for the decay ofthe Lund string in Eq.(2.4) if we identify LT with the (coordinate space) areasize A. In this way we also obtain the result that the parameter b isb = �2A?� (2.10)i.e. it corresponds to the transverse size of the (constant) force �eld, which wehave modeled by the string. The quantity � is 1=(12�) for two massless spin1=2-avors.



2.2 Some properties of the Lund model 49The second quantum mechanical approach is to note that a �nal state hadronstems from a q from one vertex j and a q from the adjoining vertex j + 1.In order to keep to gauge invariance it is then necessary that the produc-tion matrix element contains at least a gauge connector between the vertices:exp(i R j+1j gA�dx�), where g is the charge and A� the gauge �eld. Conse-quently the total production matrix element must contain a Wilson loop oper-ator: M = exp(i I gA�dx�) (2.11)with the integration around the region A (note that the �eld is singular alongthe border line and we are therefore not allowed to distort the integrationcontour inwards). The operator in Eq.(2.11) was predicted (and inside latticegauge calculations also found) to behave asM = exp(i�A) (2.12)with the real part of �, Re(�) = �. In the present situation where the force�eld region decays we expect an imaginary part, corresponding to the pairproduction rate according to the well-known Kramers-Kronig [11] relationshipfor the dielectricity in matter, in this case the QCD vacuum.The two interpretations of the area law, i.e. the Schwinger tunneling in Eq.(2.9)and the Wilson loop operator result in Eq.(2.12) can be related if we note thataccording to Gauss' law the integral over the extension of the force �eld shouldcorrespond to the charge. For a thin string we should then obtain for the areafallo� rate b / �2A? / ��. Although Gauss' law is more complicated for anon-abelian �eld with triplet and octet color-charges and similarly octet �eldsit is possible to make a case for an identi�cation of the parameter b asb = �nf ��12 (2.13)which is what we should expect from the expected imaginary part of the dielec-tricity in Eq.(2.12). �� = 3g2=(4�) is then the e�ective QCD coupling, includingthe color factors. The result is also phenomenologically supported if we con-sider a partonic cascade down to a certain transverse momentum cuto� k?cand then use the Lund model hadronization formulas to obtain the observedproperties of the �nal state. In that way we may determine the parameters inthe model as functions of the partonic cascade cuto�. A remarkably good �tto the b-parameter is given by C= log(k2?c=�2) with C given by Eq.(2.13) and� ' 0:5 GeV [12], according to the QCD coupling.Independently of the precise identi�cation of b, we obtain a possible matrixelement from Eq.(2.12) M = exp(i�� b=2)A (2.14)



50 Bose{Einstein correlationswhich not only will provide us with the Lund decay probability in Eq.(2.4), butalso can be used in accordance with [6] to provide a model for the Hanbury-Brown{Twiss e�ect for the correlations among identical bosons.2.3 A model for Bose{Einstein correlationsWe will from now on work in energy-momentum space in agreement with theusual treatment of the Lund model formulas. Further we will make use of alight-cone metric with p� = e � p` where ` denotes the longitudinal directionalong the string. The two metrics di�er by a factor of two, i.e. 2dedp` =dp+dp�. Note in particular that compared to the considerations in the earliersection this means that the area A! 2�2A and the parameter b! b=(2�2).We now consider a �nal state containing (among possibly a lot of other stu�)n identical bosons. There are n! ways to produce such a state, each corre-sponding to a di�erent permutation of the particles. According to quantummechanics the transition matrix element is to be symmetrised with respect toexchange of identical bosons. This leads to the following general expression forthe production amplitude M =XP MP (2.15)where the sum goes over all possible permutations P of the identical bosons.The cross section will then contain the square of the symmetrised amplitudeM jMj2 =XP (jMP j2(1 + XP0 6=P 2Re(MPM�P0)jMP j2 + jMP0 j2 )) : (2.16)The phenomenological models used to describe the hadronization process areformulated in a probalistic language (and not in an amplitude based lan-guage). This implies that interference between di�erent ways to produce iden-tical bosons is not included. In this case the probability for producing the stateis jMj2 =XP jMP j2 (2.17)instead of the probability in Eq.(2.16). Comparing Eq.(2.16) and Eq.(2.17)it is seen that a particular production con�guration leading to the �nal stateP can be produced according to a probalistic scheme and that the quantummechanical interference from production of identical bosons can be incorporatedby weighting the produced event withw = 1 + XP0 6=P 2Re(MPM�P0)jMP j2 + jMP0 j2 : (2.18)
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Figure 2.2: The two possible ways, (: : : ; 1; I; 2; : : :) and (: : : ; 2; I; 1; : : :), drawn withsolid and dashed lines respectively, to produce the entire state when two of the bosonsare identical. The open circles show the two di�erent production points for eachidentical boson and the arrows indicate the space-time di�erence, �x, between thetwo production points for the two production con�gurations. A and B denote thetwo vertices surrounding the identical bosons.The outer sum in Eq.(2.16) is as usual taken care of by generating many events.In order to see the main feature of symmetrising the hadron production am-plitude in the Lund Model we consider Fig.(2.2), in which two of the producedhadrons, denoted (1; 2), are assumed to be identical bosons and the state in be-tween them is denoted I . We note that there are two di�erent ways to producethe entire state corresponding to the production con�gurations (: : : ; 1; I; 2; : : :)and (: : : ; 2; I; 1; : : :), i.e. to exchanging the two identical bosons. The two pro-duction con�gurations are shown in the �gure and the main observation is thatthey in general correspond to di�erent areas!The area di�erence, �A, depends only on the energy momentum vectors p1; p2and pI , but can in a dimension-less and intuitively useful way be written�A2� = �p�x (2.19)where �p = p2 � p1 and �x = (�t; 0; 0; �z) is a reasonable estimate of thespace-time di�erence, along the surface area, between the production points ofthe two identical bosons. We note that the space-time di�erence �x is alwaysspace-like. In Fig.(2.2) �x, for the two production con�gurations, is indicatedby arrows, together with open circles showing the corresponding productionpoints. The production points are de�ned by the centres of the particles space{



52 Bose{Einstein correlationstime rectangles.We go on to consider the e�ects of transverse momentum generation in the qq-vertices. First we note that the total transverse momenta of the sub-state 1; I; 2in Fig.(2.2) stem from the q and q generated at the two surrounding vertices,A and B. This is, owing to momentum conservation, �xed by the properties ofthe hadrons generated outside of the sub-state. Using this we �nd that there isa unique way to change the transverse momenta in the vertices surrounding theintermediate state I such that every hadron has the same transverse momentain both production con�gurations.Suppose as an example that we have generated�k?A in the vertexA and�k?Bin the vertex B (i.e. so that �k?A and k?B de�nes the sub-state). Thento conserve the transverse momenta of the observed hadrons when changingproduction con�guration from (1; I; 2) to (2; I; 1) it is necessary to change thegeneration of transverse momenta in the two vertices surrounding I as follows(in an easily understood notation):�k?I ! �(k?A + k?B � k0?I ) (2.20)�k0?I ! �(k?A + k?B � k?I ) :This means that exchanging two bosons with di�erent transverse momenta willresult in a change in the amplitude as given by Eq.(2.7) for some of the vertices.From the amplitudes in Eq.(2.14) and Eq.(2.7) we get that the weight in theLund Model can be writtenw = 1 + XP0 6=P cos �A2�cosh�b�A2 + �(P p2?q)2�2p? � (2.21)where � denotes the di�erence with respect to the con�gurations P and P 0and the sum of p2?q is over all vertices. We have introduced �p? as the widthof the transverse momenta for the generated hadrons, (i.e. �2p? = 2�2).Using Eq.(2.19) for a single pair exchange one sees that the area di�erence is,for small �p, governed by the distance between the production points and that�A increases quickly with this distance. We also note that �A vanishes withthe four-momentum di�erence and that the contribution to the weight from agiven con�guration, P 0, vanishes fast with increasing area di�erence �A. Fromthese considerations it is obvious that only exchanges of pairs with a small �pand a small �x will give a contribution to the weight. In this way it is possibleto relate to the ordinary way to interpret the HBT e�ect, cf. Eq.(2.2).It is straightforward to generalise Eq.(2.19) to higher order correlations. One



2.4 MC implementation 53notes in particular that the area di�erence does not vanish if more than twoidentical bosons are permuted and only two of the bosons have identical four-momenta.Models for BE correlations have been suggested, e.g. [13], with similar weightfunctions, but it is important to note that the weight in our model has a scaleboth for the argument to the cos-function as well as for the function which worksas a cut-o� for large �p and �x (in our case a cosh-function). Further the twoscales in our model are di�erent and well-de�ned, at least phenomenologically.We will come back to the inuence of the two scales in section 2.5.2.4 MC implementationTo calculate the weight for a general event, with multiplicity n, one has to gothrough n1!n2!:::nN ! � 1 possible production con�gurations, where ni is thenumber of particles of type i and there are N di�erent kinds of bosons. For ageneral e+e� event at 90 GeV this is not possible from a computational pointof view.We know however that the vast majority of con�gurations will give large areadi�erences and they will therefore not contribute to the weight. One of our aimswith this work has been to �nd a way to approximate the sum in Eq.(2.21) witha sum over con�gurations with signi�cant contributions to the weight. Frombasic group theory we know that every group can be partitioned into its classes.Let 11111 : : :1 denote the class containing only the identity element, whereall particles are unchanged, m1m2111 : : :1 denote the class of group-elementswhere m1 particles are cyclically permuted, m2 other particles are cyclicallypermuted and the rest are unchanged, and so on. We can de�ne the order, k, ofa class as k =Pi(mi� 1). The useful feature of this ordering of classes is thatfor all group-elements contained in order k the minimum of the summed size (inpositions) of the cyclically permuted clusters , �r, is k, i.e. the minimum lengthover which particles are moved increases with the order. From the discussionat the end of section 2.3 it is then obvious that the contribution to the weightfrom a con�guration will decrease with its order. All classes up to order 4 areshown in Table 2.1.We have found that for essentially all events the weight does not change whenincluding the �fth order. But we have also found that lots of lower-ordercon�gurations give no contributions to the weight. This is not acceptable whentaking computing time into account and we have therefore abandoned using acut in order.



54 Bose{Einstein correlationsOrder 0 1 2 3 4Classes 11111. . . 1 21111. . . 1 22111. . . 1 22211. . . 1 22221. . . 131111. . . 1 32111. . . 1 32211. . . 141111. . . 1 33111. . . 142111. . . 151111. . . 1�r 0 � 1 � 2 � 3 � 4Table 2.1: The classes of the permutation group order by order up to the fourthorder. �r is the minimum length over which particles are permuted.In this work we have instead approximated the sum in Eq.(2.21) with a sumover con�gurations of all orders with signi�cant contributions to the weight.This has been done by introducing exchange-links between particles. We haveonly taken into account interference with con�gurations where all particlesare produced in positions from which there is a link to a particle's originalproduction position. De�ning a link matrix, L, as followsLij = � 1 if there is a link between particles i and j.0 otherwiseone gets a simple representation of the con�gurations to be considered. Thefunction of a link, Lij , is to enable moving particle i to particle j's position. It isimportant to note that a general link matrix enables higher order permutationseven though the links are de�ned between pairs only. If all elements in L are1, it corresponds to considering all n! permutations, while only the originalcon�guration is considered if L is the identity matrix.�A for a pair exchange increases, as previously discussed, with the four-vectordi�erence �p and with the size of the state in between. Since we know fromEq.(2.21) that the contribution to the weight for a given con�guration vanishesfast with increasing area di�erence �A, it is useful to introduce the conceptof link-size, de�ned below as the invariant four-momentum di�erence togetherwith the invariant mass of the particles produced in between the pair (in rank).By only accepting links between particles if the size of the link between themis smaller than some cut-o� link-size, �c, we get a prescription for the exchangematrix of an event. In this way, by specifying the allowed two-particle ex-changes, we get, to all orders, which con�gurations to take into account. Wehave found that for a given �c one includes all con�gurations that provide acontribution larger than some � to the weight. Taken together this means thatwe get all the important contributions to the weight if we chose �c so large thatthe neglected terms smaller than � give a negligible change for every weight.



2.5 Results 55We have used a cut-o� link-size such that there is a link between identicalbosons if one of the following conditions is ful�lled.� Q2 = �(pi � pj)2 < Q2max ' 1 GeV2.� the invariant mass of the particles produced in between (along the string)the pair is less than m2max ' (20 GeV)2.Including links larger than this give no contribution to the weight for essentiallyall events. There are a few special events for which the weights have notconverged with this �c. They are very rare and have in common that they havea cluster of particles such that exchanging any pair in the cluster will give alarge area-di�erence, but there are cyclic permutations which give a small area-di�erence. Increasing �c to include these con�gurations give no noticeable e�ectin any observable known to us (except the computing time in the simulation!).Including decaysA large fraction of all �nal-state bosons stem from decays of short-lived reso-nances with lifetimes comparable to the time scale in string decay. Thereforethey may contribute to the Bose{Einstein e�ect. To include their decay am-plitudes and phase space factors and symmetrise the total amplitude is verydi�cult and it is furthermore not known how to do that in a model-consistentway. We have included resonance decays in the following simple wayParticles with width larger than �min are assumed to decay beforeBose{Einstein symmetrisation sets in and the matrix elements are eval-uated with their decay products regarded as being produced directly,ordered in rank. We have used �min = 0:02 GeV.The signal in the two-particle correlation function goes down very much if weneglect all the pions from resonance decays when symmetrising the amplitudes.But our signals are fairly independent of �min as long as it is small enough forthe �'s to decay before the symmetrisation.An elaborate discussion on the treatment of resonances in connection with BEcorrelations can be found in [14].2.5 ResultsIn our simulations we have used the Lund string model [7] implemented in theJETSET MC [4] to hadronize qq-pairs (i.e. no gluons are considered). TheMC implementation of our model is available from the authors.
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Figure 2.3: The distribution of Bose{Einstein weights for two-jet states in JETSET.The tail of positive weights is shown in the insert.2.5.1 The weight distribution and two-particle correla-tionsThe majority of the weights are close to and centered around unity, as seenin Fig.(2.3). There is however a tail of weights far away from unity in bothdirections. The tail of positive weights is shown as an insert and the distributionlooks like a power. However if we subdivide the events into sets with similarnumber of links and study the weight distributions for these sets separately, we�nd that the weight distribution for each set is basically Gaussian. The widthof these Gaussians increases with the number of links in the corresponding set,as shown in Fig.(2.4). The power like behaviour of the weight distribution istherefore merely a consequence of summing over events with di�erent numberof links. It should be emphasized that the negative weights only are a technicalproblem. Summing over many events results in positive probabilities for allphysical observables, which is obvious from Eq.(2.16).We have taken the ratio of the two-particle probability density of pions, �2,with and without BE weights applied as the two-particle correlation function,R2, i.e. R2(p1; p2) = �2w(p1; p2)�2(p1; p2) (2.22)where the w denotes weighted distributions.As discussed in connection with Eq.(2.19) the correlation length in Q dependsinversely on the (space-like) distance between the production points of the
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Figure 2.4: The distribution of Bose{Einstein weights for two-jet events subdividedinto sets with di�erent number of links, nl. Two samples for 3 � nl � 5 and 10 �nl � 12 are plotted.identical bosons and the Bose{Einstein correlation length, that is dynamicallyimplemented, in this model can most easily be described as the avour com-pensation length, i.e. the region over which a particular avour is neutralised.Identically charged particles cannot be produced as neighbours along the stringin the Lund model while neutral particles can. This implies that identicallycharged pions which always must have a non-vanishing state in between willhave a more narrow correlation distribution in Q compared to neutral pions.This has been found as can be seen in Fig.(2.5) where the correlation distribu-tions for pairs of particles used in the symmetrisation are shown. The correla-tion functions have been normalised to unity in the region 1:0 � Q � 2:5. Thecorrelation distribution for charged pions can be approximated by the LUBOEIalgorithm [5] with radii ' 1 fm and � ' 0:8 as input parameters (Note thatthe input parameters are not exactly reproduced in the resulting correlationfunction). This is in reasonable agreement with the LEP experiments, whichmeasure sizes of the order of 0:5 � 1 fm, [15, 16, 17], even though they tendtowards values smaller than 1 fm. The correlation function depends on thedaughters of resonances and especially the decay products of �0 play a largerole. The production rate of �0 used in JETSET was questioned in [14], inconnection with BE correlations. We have used reduced production rates for� and �0 by setting the extra suppression factors in JETSET to 0.7 and 0.2respectively, in accordance with the DELPHI tuning [18]. For a more elaboratequantative comparison with data our BE Monte Carlo has to be tuned furtherand the resulting events have to be subjected to the same corrections as in the
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Figure 2.5: The ratio R(Q) of the number of pairs with invariant relative four-momentum Q with and without Bose{Einstein weights applied. The sample consistsof the particles used in the symmetrisation.experimental analysis.The general �ndings for the parameter dependence of the weight function inEq.(2.21) is that due to the smallness of b as compared to 1=�, it is for mostof the terms in the sum the decrease of the cos-function with increasing �Athat governs the behaviour. For larger �A it is the transverse momentumcontributions to the cosh-function which takes over to damp the contributionto the weight. Note that the argument of the cos-function contains � as thebasic scale and that the transverse momentum contributions also are governedessentially by � (see Eq.(2.7)). Going over to correlation functions we �ndas expected from the conclusions for the weight function that the correlationfunction is not a�ected when the b-parameter is changed �20%. The slope ofthe correlation function for small Q values and therefore the correlation lengthis very sensitive to � and it is also sensitive to the width of the transversemomenta. The transverse momentum generation acts as noise in the model sothat all weights approach unity and consequently all correlations vanish withincreasing �p? . It is however this noise which makes the weight calculationstractable. Consequently, the main parameter is the string tension, �, in thismodel for Bose{Einstein correlation weights as well as for the correlation length.Since the BE weights are depending on the space-like distance between the pro-duction points we have studied the two-particle correlation function as a func-tion of the invariant space-time distance �x = p��x2 where �x = (�t; 0; 0; �z)
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Figure 2.6: The ratio R2(�x) of the number of pion pairs with invariant relativedistance �x with and without Bose{Einstein weights applied. The sample consistsof the particles used in the symmetrisation, i.e. pions that are initially produced orstemming from short lived resonances as de�ned in section 2.4.as de�ned in Eq.(2.19). In Fig.(2.6) R2(�x), which has been normalised tounity in the region 1:0 � Q � 2:5, is plotted. The �gure illustrates that thee�ect of the Bose{Einstein symmetrisation , i.e. to pack identical bosons closertogether in phase-space, is manifest up to production point separations of about0.7 fm. It should however be noted that many con�gurations where pairs areexchanged over signi�cantly larger distances give signi�cant contributions tothe weight.We have also found that the higher order contributions to the sum in Eq.(2.21)is of importance for the two-particle correlations. That is using more thantwo-particle exchanges when calculating the weights does not only a�ect theweight distribution but also the two-particle correlation function, R2(Q).In heavy-ion collision experiments one has found that the extracted correlationlength has an approximate 1=pmt dependence [19], where mt is the transversemass,pm2 + p2t . This is in agreement with hydrodynamical models describingthe source evolution in heavy-ion collisions. Recently a similar mt dependencehas been found for Z0 hadronic decays in e+e� annihilation at LEP [24], whenthe transverse directions are de�ned with respect to the jet axis. In the LundModel the average space-like distance between pairs of identical pions increaseswith mt and one would therefore not expect a correlation length which fallso� with mt. For initially produced particles we get a correlation length which



60 Bose{Einstein correlationsis essentially independent of mt. However when analysing all �nal particleswe �nd for increasing mt that the correlation length falls o� and that the �parameter increases, as in [24]. From this we conclude that the observed mtdependence of the correlation length in data is, in our model, compatible withthe vanishing of contributions from decay products with increasing mt.2.5.2 Residual Bose{Einstein correlationsBose{Einstein correlations acting between identical bosons may have signi�-cant indirect e�ects on the phase space for pairs of non-identical bosons. Wehave studied mass distributions of �+�� systems to see how our model a�ectssystems of unlike charged pions. Many analyses use �+�� distributions toquantify the Bose{Einstein correlations, using the unlike-charged distributionsas reference samples with which to compare the like-charged pion distributions.We have found that the assumption that the two-particle phase space densitiesfor �+�� systems are relatively una�ected by Bose{Einstein symmetrisation isfairly good. Taking the ratio of the �+�� mass distributions with and withoutBose{Einstein symmetrisation applied gives that the mass distribution is notaltered much by the symmetrisation, and that the e�ect is smaller than 5% inthe entire mass range.It has however been observed experimentally that the Breit-Wigner shape foroppositely charged pions from the decay of the � resonance [20, 21, 22] isdistorted. We have therefore analysed �+�� distributions when the pair comesfrom the decay of a �0. These �+�� mass distributions, with and without BEweights applied, are shown together with the di�erence of the two in Fig.(2.7).From the di�erence it is clearly seen that the weighting depletes the regionaround the � mass and shifts the masses towards lower values as well as itslightly increases the width of the distribution. The �gure clearly shows thepotential of our model to a�ect the mass spectrum of the �0.2.5.3 Three-particle correlationsThe existence of higher order dynamical correlations, which are not a conse-quence of two-particle correlations, is of importance for the understanding ofBE correlations. There are very few experimental studies of genuine three-particle correlations, mainly because of the problem of subtracting the con-sequences of two-particle correlations and the need for high statistics of largemultiplicity events. Genuine short-range three-particle correlations have beenobserved in e+e� annihilations by the DELPHI experiment. They concludethat they can be explained as a higher order Bose{Einstein e�ect [23].
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Figure 2.7: �0 meson mass shift induced by the Bose{Einstein correlations in ourmodel. The solid curve shows the Breit-Wigner as generated by JETSET while thedashed curve is obtained after applying BE weights to the events. The curve witherror bars is the di�erence of the two (dashed-solid). The areas under the two massdistributions are normalised to unity in the shown mass range.To reduce problems with pseudo-correlations due to the summation of eventswith di�erent multiplicities we have used three-particle densities normalised tounity separately for every multiplicity in the following way~�(a;b;c)3 (p1; p2; p3) =Xn�8P (na; nb; nc)~�(na;nb;nc)3 (p1; p2; p3) (2.23)~�(na;nb;nc)3 (p1; p2; p3) = 1na(nb � �ab)(nc � �ac � �bc) 1�(na;nb;nc) d3�(na;nb;nc)dp1dp2dp3(2.24)where n is the charged multiplicity, �na;nb;nc is the semi-inclusive cross sectionfor events with ni particles of species i, andP (na; nb; nc) = �(na;nb;nc)Pna;nb;nc �(na;nb;nc) : (2.25)We have aimed to study the genuine normalised three particle correlation func-tion, ~R3, de�ned as~R3 = [~�3(p1; p2; p3)� ~�2(p1; p2)~�1(p3)� ~�2(p1; p3)~�1(p2)� ~�2(p2; p3)~�1(p1)+2~�1(p1)~�1(p2)~�1(p3)]=(~�1(p1)~�1(p2)~�1(p3)) + 1 (2.26)



62 Bose{Einstein correlationswhere we have used an abbreviated notation for the ~�3 from Eq.(2.23), and~�1 and ~�2 are the corresponding one- and two-particle densities, normalised inaccordance with Eq.(2.23) and Eq.(2.24). ~R3 is equal to one if all three-particlecorrelations are consequences of two-particle correlations.In order to calculate the ~�2~�1 and ~�1~�1~�1 terms in Eq.(2.26) the common ex-perimental procedure is to mix tracks from di�erent events. Using a mixingprocedure in our model means weighting triplets of particles with products ofevent weights. This results in large statistical uctuations and to get themunder control, with our event weights, requires generation of very many events.We have therefore taken another approach, in order to minimise the comput-ing time. We have used combinations of charged pions in the following way toapproximate Eq.(2.26)~R3 � ~�(�;�;�)3w � 3(~�(�;�;�)3w � ~�(�;�;�)3 )~�(�;�;�)3 (2.27)where w, as previously, denotes weighted distributions. There are a coupleof things to note in connection with Eq.(2.27). If there are genuine positivethree-particle correlations for (++�) and (��+) combinations, as observed bythe DELPHI collaboration [23] they will if they come from BE symmetrisationcontribute to the ~R3 in Eq.(2.27), but they will reduce the signal. Secondly,we note that there is a possible bias from two-particle correlations from (+�)combinations but that it is small as discussed previously. We also note thatusing the normalisation in Eq.(2.24) reduces problems with contributions fromlike- and unlike-charge combinations having di�erent multiplicity dependence.It should also be observed that the ~R3 in Eq.(2.27) can be studied experimen-tally since getting the ~�3w's of course is achieved by analysing single events andthe ~�3 samples can be made by mixing events.We have analysed the three-particle correlations as a function of the kinematicalvariable Q =qq212 + q213 + q223 with q2ij = �(pi � pj)2 : (2.28)Fig.(2.8) shows ~R3, the genuine three-particle correlation function for like-signtriplets, as approximated in Eq.(2.27). A strong correlation is observed forsmall Q-values. There is a dip in the curve for Q-values around 1 GeV which iscompatible with the depletion of �0's around its mass and gives an indicationof the error from using unlike-charged pions in the approximation of ~R3.
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Figure 2.8: The Q-dependence of the genuine three-particle correlation function ~R3,de�ned in the text.AcknowledgmentsWe thank T. Sj�ostrand for very valuable discussions and B. S�oderberg for dis-cussions about permutations.
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Transverse and longitudinalBose{Einstein correlationsBo Andersson and Markus Ringn�erDepartment of Theoretical Physics, Lund University,S�olvegatan 14A, S-223 62 Lund, SwedenPhysics Letters B 421, 283-288 (1998)

We show how a di�erence in the correlation length longitudinally and trans-versely, with respect to the jet axis in e+e� annihilation, arises naturally in amodel for Bose{Einstein correlations based on the Lund string model. In gen-uine three-particle correlations the di�erence is even more apparent and theyprovide therefore a good probe for the longitudinal stretching of the string �eld.The correlation length between pion pairs is found to be rather independent ofthe pion multiplicity and the kaon content of the �nal state.



68 Transverse and longitudinal BE correlations3.1 IntroductionThe Hanbury-Brown{Twiss (HBT) e�ect (popularly known as the Bose{Ein-stein e�ect) corresponds to an enhancement in the two identical boson corre-lation function when the two particles have similar energy-momenta. A well-known formula [1] to relate the two-particle correlation function (in four mo-menta pj ; j = 1; 2 with q = p1 � p2) to the space-time density, �, of (chaotic)emission sources is �d2�12d�1d�2 = 1 + jR(q)j2 (3.1)where R is the normalised Fourier transform of the source densityR(q) = R �(x) exp(iqx)R �(x)dx : (3.2)The commonly used event generators HERWIG and JETSET are based uponclassical stochastical processes and do not include HBT-e�ects (although Sj�o-strand, in JETSET, has introduced an ingenious method to simulate any givendistribution by means of a kind of mean-�eld potential attraction between thebosons in the �nal state).In this letter we will further investigate some features of the methods developedin [3] (an extension of [2] to multi-boson �nal states). We will show thatthe model predicts, due to the properties of string fragmentation, a di�erencebetween the correlation length along the string and transverse to it. In practicethis means that if we introduce the longitudinal and transverse components ofthe vector q (de�ned with respect to the thrust direction) then we obtain anoticeable di�erence in the correlation distributions. This becomes even morenoticeable when we go to the three-particle HBT e�ect (which was predictedin [3]) because in this case even more of the longitudinal stretching of the string�eld becomes obvious. Finally we will investigate the inuence of the kaon andbaryon content of the states on the HBT e�ects between the pions.3.2 Longitudinal and transversecorrelation lengthsThe starting point of our Bose{Einstein model [2, 3] is an interpretation of the(non-normalised) Lund string area fragmentation probability for an n-particlestate (cf Fig.(3.1))dP (p1; p2; : : : ; pn) = " nY1 Ndpj�(p2j �m2j )# �(X pj � Ptot) exp(�bA) (3.3)
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Figure 3.1: The decay of a Lund Model string spanning the space{time area A. Theparticles 1 and 2 are identical bosons and the particle(s) produced in between them isdenoted by I. The two possible ways, (: : : ; 1; I; 2; : : :) and (: : : ; 2; I; 1; : : :), to producethe state are shown and the area di�erence between the two cases, �A, is shaded.The two neighbouring vertices of the state with the two identical bosons are denotedby a and b, and the transverse momenta of the quarks produced in the neighbouringvertices are �k?a and �k?b, respectively.in accordance with a quantum mechanical transition probability containing the�nal state phase space multiplied by the square of a matrix element M. In [2]and in more detail in [3] a possible matrix element is suggested in accordancewith (Schwinger) tunneling and the (Wilson) loop operators necessary to ensuregauge invariance. The matrix element isM = exp(i�� b=2)A (3.4)where the area A is interpreted in coordinate space, � is the string constant(phenomenologically � ' 1 GeV=fm) and b ' 0:3 GeV=fm is the decay constant.Note that the parameter b is much smaller than �. From now on we will, as isusual in the Lund model, go over to the energy momentum space. Then thearea A! 2�2A, while b! b=2�2, as explained in [3].The transverse momentum properties are in the Lund model taken into accountby means of a Gaussian tunneling process. In this way the produced qq-pair ineach vertex will obtain �k? and the hadron stemming from the combination ofa q from one vertex and a q from the adjacent vertex obtains p? = k?j+1�k?j .In case there are two or more identical bosons the matrix element should be



70 Transverse and longitudinal BE correlationssymmetrised and in general we obtain the symmetrised production amplitudeM =XP MP (3.5)where the sum goes over all possible permutations of the identical particles.The squared amplitude occurring in Eq.(3.3) will then bejMj2 =XP jMP j20@1 + XP0 6=P 2Re(MPM�P0)jMP j2 + jMP0 j21A : (3.6)JETSET will provide the outer sum in Eq.(3.6) by the generation of manyevents but it is evident that the model predicts a quantum mechanical inter-ference weight, wP , for each given �nal state characterised by the permutationP : wP = 1 + XP0 6=P 2Re(MPM�P0)jMP j2 +MP0 j2 : (3.7)In the Lund Model we note in particular for the case exhibited in Fig.(3.1),with two identical bosons denoted 1 and 2 having a state I in between, that thedecay area is di�erent if the two identical particles are exchanged. It is evidentthat the interference between the two permutation matrices will contain thearea di�erence, �A, and the resulting general weight formula will bewP = 1 + XP0 6=P cos �A2�cosh�b�A2 + �(Pk2?j)2� � (3.8)where � stands for the di�erence between the con�gurations described by thepermutations P and P 0 and the sum is taken over all the vertices. In our MCimplementation of the weight we replace the string constant � in the transversemomentum generation with the default (in JETSET) transverse width, 2�2(which is of the order of �). The calculation of the weight function for nidentical bosons contains n!� 1 terms and it is therefore from a computationalpoint of view of exponential-type. We have in [3] introduced approximatemethods reducing it to power-type instead and we refer for details to thiswork.We have seen that the transverse and longitudinal components of the particlesmomenta stem from di�erent generation mechanisms. This is clearly mani-fested in the weight in Eq.(3.8) where they give di�erent contributions. In thefollowing we will therefore in some detail analyse the impact of this di�erence



Longitudinal and transverse correlation lengths 71on the transverse and longitudinal correlation lengths, as implemented in themodel.In order to understand the properties of the weight in Eq.(3.8) we again con-sider the simple case in Fig.(3.1). The area di�erence of the two con�gurationsdepends upon the energy momentum vectors p1; p2 and pI and can in a dimen-sionless and useful way be written as�A2� = �p�xL (3.9)where �p = p2 � p1 and �xL = (�t; 0; 0; �z) is a reasonable estimate of thespace-time di�erence, along the surface area, between the production points ofthe two identical bosons.In order to preserve the transverse momenta of the particles in the state (1; I; 2)it is necessary to change the generated k? at the two internal vertices aroundthe state I during the permutation, i.e. to change the Gaussian weights. Alsoin this case we may write a formula similar to Eq.(3.9) for the transversemomentum change: �(Pk2?j)2� = �p?�x? (3.10)where �p? is the di�erence p?2 � p?1 and �x? = (k?b � (�k?a))=�. Thetwo neighbouring vertices of the state (1; I; 2) ((2; I; 1)) are denoted by a andb and k?b + k?a corresponds to the states transverse momentum exchange tothe outside. Therefore �x? constitutes a possible estimate of the transversedistance between the production points of the pair.For the general case when the permutation P 0 is more than a two-particleexchange there are formulas similar to equations (3.9) and (3.10), althoughthey are more complex (and the expressions do not vanish when only two ofthe exchanged particles have the same energy momentum).It is evident from the considerations leading to equations (3.9) and (3.10) thatonly particles with a �nite longitudinal distance and small relative energy mo-menta will give signi�cant contributions to the weights. We also note thatwe are in this way describing longitudinal correlation lengths along the colour�elds, inside which a given avour combination is compensated. The corre-sponding transverse correlation length describes the tunneling (and in thismodel it provides a damping chaoticity).The weight distribution we obtain is discussed in [3] (and with varying kaonand baryon content also below). It is strongly centered around unity althoughthere are noticeable tails to both larger and smaller (even negative) weights.



72 Transverse and longitudinal BE correlationsThe total production probability is, however, positive and we �nd negligiblechanges in the JETSET default observables (besides the correlation functions)by this extension of the Lund model.3.3 ResultsTwo-dimensional Bose{Einstein correlations in e+e� annihilation have beenanalysed at lower energies than LEP by the TASSO collaboration [4]. Althoughthey �nd that their data is compatible with a spherically symmetric correlationfunction they conclude that at least one order of magnitude of more data isrequired to obtain more detailed information. With the large statistics availablefrom LEP we have therefore generated qq-events at the Z0 pole to investigatethe properties of our model. Short-lived resonances like the � and K� areallowed to decay before the BE-symmetrisation, while more long-lived ones arenot a�ected.We have analysed two-particle correlations in the Longitudinal Centre-of-MassSystem (LCMS). For each pair of particles the LCMS is the system in whichthe sum of the two particles momentum components along the jet axis is zero,which of course also means that the sum of their momenta is perpendicular tothe jet axis. The transverse and longitudinal momentum di�erences are thende�ned in the LCMS as qL = jpz2 � pz1j (3.11)q? =q(px2 � px1)2 + (py2 � py1)2where the jet axis is along the z-axis.We have taken the ratio of the two-particle probability density of pions, �2,with and without BE weights applied as the two-particle correlation function,R2 R2(p1; p2) = �2w(p1; p2)�2(p1; p2) (3.12)and the resulting function is shown in Fig.(3.2). It is clearly seen that it isnot symmetric in qL and q? and in particular that the correlation length, asmeasured by the inverse of the width of the correlation function, is longer inthe longitudinal than in the transverse direction. This di�erence remains forreasonable changes of the width in the transverse momentum generation. Forcomparison we have also analysed events where the Bose{Einstein e�ect hasbeen simulated by the LUBOEI algorithm implemented in JETSET [5]. InLUBOEI the BE e�ect is simulated as a mean-�eld potential between identical
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Figure 3.2: The ratio R2(qL; q?) of the number of charged pion pairs having relativefour-momentum components qL and q? with and without Bose{Einstein weights ap-plied. The sample consists of particles which are either initially produced or stemmingfrom short-lived resonances.bosons which is spherically symmetric in Q. Analysing only the initial particlesand particles stemming from short-lived decays results for the LUBOEI eventsin a correlation function with identical transverse and longitudinal correlationlengths. The correlation lengths are in agreement with the source radii input toLUBOEI. Using all the �nal pion pairs, after all decays, in the analysis resultsin a small decrease in the transverse correlation length and of course a largedecrease in the height for qL ' q? ' 0, while the longitudinal correlation lengthis rather una�ected. The pions from long lived decays a�ect the correlationlengths in the same way both for our model and for LUBOEI.In [3] it is shown that our model gives rise to genuine three-particle correlations.We will in this letter continue to investigate three-particle correlations and wewill in particular use our knowledge of the di�erent contributions to the weightfunction to study the genuine higher order correlations. We will also exhibithow the genuine higher order terms in the weight function mainly clustersparticles in the longitudinal direction.The total three-particle correlation function is in analogy with Eq.(3.12)R003 (p1; p2; p3) = �3w(p1; p2; p3)�3(p1; p2; p3) : (3.13)To get the genuine three-particle correlation function, R3, the consequences of
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Figure 3.3: R003 (Q) and R03(Q) are shown in the left �gure, while the �gure to theright shows R3(Q). The existence of genuine three-particle correlations is apparent.having two-particle correlations in the model have to be subtracted from R003 . Tothis aim we have calculated the weight taking into account only con�gurationswhere pairs are exchanged, w0 . In this way the three-particle correlations whichonly are a consequence of lower order correlations can be de�ned asR03(p1; p2; p3) = �3w0 (p1; p2; p3)�3(p1; p2; p3) : (3.14)The genuine three-particle correlation function, R3, is then given byR3 = R003 �R03 + 1 : (3.15)We have analysed R3 in one dimension as a function of the kinematical variableQ =qQ212 +Q213 +Q223 with Q2ij = �(pi � pj)2 (3.16)and in two dimensions we have used the following variables calculated in theLCMS for each triplet of identical bosonsqL =qq2L12 + q2L13 + q2L23 with q2Lij = (pzi � pzj)2 (3.17)q? =qq2?12 + q2?13 + q2?23 with q2?ij = (p?i � p?j)2where the z-axis is along the jet axis. In Fig.(3.3) the correlation functionsR003 (Q); R03(Q) and R3(Q) are shown, and the existence of genuine three-particlecorrelations in the model is clearly exhibited.This way of getting the genuine correlations is not possible in an experimentalsituation, where one has to �nd other ways to get a R03 reference sample. Wehave suggested one possible option in [3] and the results in this letter are in
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Figure 3.4: The ratio R3(qL; q?) of the number of triplets of charged pions with andwithout Bose{Einstein weights applied.
agreement with the conclusions of that investigation. In the present analysis thecontribution to the correlations from higher order con�gurations in the weightcalculation is apparent. We note that R3 attens out earlier, i.e. for lowerQ-values than R003 . This means that the genuine three-particle correlationshave a longer correlation length compared to the consequences of lower ordercorrelations. Performing the same analysis in two dimensions in the LCMSfor each triplet results in the R3(qL; q?) distribution shown in Fig.(3.4). Thee�ect of the higher order terms is to pull the triplets closer in the longitudinaldirection while the transverse direction is rather una�ected. This suggests thathigher order correlations are more sensitive to the longitudinal stretching ofthe string �eld.We have also studied the correlation length for pion pairs as a function of the�nal charged multiplicity and the kaon content of the state. Within statisticalerrors which are relatively large we see no dependence on either the chargedmultiplicity or the number of kaons. Since one might suspect that events withmany pions are premiered by the re-weighting the average baryon and kaoncontent of the events have been investigated. We �nd that the changes of theaverage multiplicity of di�erent kaon species as well as of the average multi-plicity of protons and neutrons in the �nal state are much smaller than theexperimental errors as summarised in [6].
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Bose{Einstein and Colour Interferencein W-pair DecaysJari H�akkinen and Markus Ringn�erDepartment of Theoretical Physics, Lund University,S�olvegatan 14A, S-223 62 Lund, SwedenEuropean Physical Journal C 5, 275-281 (1998)

We study e�ects on the W mass measurements at LEP2 from non-perturbativeinterference e�ects in the fully hadronic decay channel. Based on a model forBose{Einstein interference, which is in agreement with LEP1 data, we arguethat there are no Bose{Einstein correlations between bosons coming from thedi�erent W's. For small reconnection probabilities we rule out the possibleexperimental signal of colour interference at LEP2, suggested in [1]. The con-clusions from this paper are that the theoretical uncertainties in the W massdetermination should be smaller than the experimental statistical error.



80 Interference in W-pair decays4.1 IntroductionOne of the main goals of LEP2 is to perform high quality precision measure-ments of the W mass. In order to obtain the projected statistical error of 30{40 MeV, all decay channels { the leptonic, the semi-leptonic, and the hadronic{ have to be used. The purely leptonic decays will however be rare and theywill not have a large impact on the measurements. In the two cases involvinghadronic systems non-perturbative e�ects, such as colour- and Bose{Einsteininterference, can occur and the measured W mass may be a�ected. The in-terference e�ects within the hadronic system can in the semi-leptonic case beestimated from LEP1 studies. From these studies we understand the e�ectsof Bose{Einstein (BE) correlations quite well and we have also learnt that thecolour interference (CI) e�ects are probably small. This means that the semi-leptonic case can be reconstructed using a Monte Carlo tuned to LEP1 dataand that the theoretical uncertainties due to interference e�ects will only inu-ence the fully hadronic channel. These uncertainties arise since the interferencee�ects may have impact on the identity of the two decaying W's. The fullyhadronic channel is very nice since we can, in principle, observe all the momen-tum of the event. However even if LEP2 provides enough statistics for a sub30 MeV error the interference e�ects have to be taken into account, or at leastbe under theoretical control.That Bose{Einstein correlations might a�ect the measurement of the mass ofthe W at LEP2 was �rst suggested in [2]. The typical separation in spaceand time between the W+ and W� decay vertices is smaller than 0.1 fm infully hadronic events, i.e. e+e� ! W+W� ! q1q2q3q4, at LEP2 energies [3,4]. Since this distance is much smaller than typical hadronic sizes and thecorrelation lengths associated with Bose{Einstein e�ects, pions from di�erentW's are argued to be subject to Bose{Einstein symmetrisation. The e�ecton the W mass has been estimated in a number of models with widely varyingresults [2, 5, 6]. In this paper we will based on the model in [7] argue that thereare no Bose{Einstein correlations between particles stemming from di�erentW's at LEP2. We will also discuss the consequences of the symmetrisation forvarious ways of reconstructing the W mass.Colour interference can occur in the W-pair decays at LEP2 but the proba-bility for reconnections is unknown. In this study we use an improved MonteCarlo implementation of the model described in [1] to address the possibility toexperimentally detect e�ects from CI at LEP2. We will also use it to estimatethe e�ect of CI on the W mass determination.After a short description of the various mass reconstruction schemes we use, wewill in section 4.3 describe the important features of our interference models.



4.2 Mass reconstruction 81We will in particular review how the correlation length in our BE model arisesstressing the parts relevant to understand correlations between particles fromdi�erent W's. This is followed by the results for the reconstruction of the Wmass and conclusions.4.2 Mass reconstructionIf every �nal particle in the fully hadronic case can be uniquely and correctlyassigned to either the W+ or the W� decay, the W� four-momenta can bereconstructed and squared to give the W� masses. There are however manycomplications which have to be taken into account in practice. It is not ourintention to cover these complications here, but a detailed discussion can befound in [3] together with a discussion about various ways to reconstruct theW mass in order to avoid complications. Reconstruction schemes are devisedin [3] to study the e�ects of interference and we have adopted some of them inour analysis. We will only give a brief sketch of how it is done and the readeris referred to the original work for details.Four jet events are selected using the LUCLUS algorithm [8], with the jetdistance parameter djoin = 8 GeV. This rejection of events with hard gluonjets is done since they give a much worse W mass resolution. In addition, werequire the jets to have energies above 20 GeV and that the angle between anytwo jets is greater than 0.5 radians, to reduce the number of misassignments.The four jets can be paired in three di�erent ways giving di�erent results forthe W mass. We use three di�erent criteria to single out one combination.1 : The pairs are chosen so that the deviation of the average reconstructed Wmass from the used mass is minimized;min ����MW+ +MW�2 �MW���� :This is not measurable in an experimental situation since we cannot knowwith which masses the W's were produced, but it is included for comparison.2 : The pairs are chosen so that the deviation of the sum of the reconstructedmasses from a known nominal mass is minimized;min(jMW+ �MWj+ jMW� �MWj) :3 : The pairs are chosen so that the sum of their opening angles is maximized.This makes sense close to threshold where the jets from the same W shouldbe almost back-to-back.



82 Interference in W-pair decaysTo investigate the e�ects of the interference models we compare the recon-structed W mass with interference with the reconstructed mass without inter-ference.4.3 ModelsBefore going into the details of our models we will shortly discuss some generalfeatures of WW ! q1q2q3q4 events, which provide a motivation for some ofour assumptions. As will be made clear, our models for the interference e�ectsand in particular some of their major consequences are based upon the pictureof singlet strings fragmenting. This may however not be the full story, sincethere could be an important non-singlet component of hadronization, especiallyin the scenario when two strings are formed close to each other. The onlyhadronization model which includes a non-singlet component is that of Ellisand Geiger [5]. In the case of a non-singlet component in WW ! q1q2q3q4one would expect that the multiplicity in W-pair events is di�erent from twicethe multiplicity in single string events. This is manifested in particular in thecolour reconnection scheme of Ellis and Geiger, where not only the W mass shiftis much larger than in their singlet models, but it also results in a substantialreduction of the number of hadrons coming from the overlap region of the twoW's.Three of the LEP experiments (DELPHI/L3/OPAL) have measured the meancharged hadronic multiplicity in W+W� ! q1q2q3q4 events, hN4qch i, and inW+W� ! qql�l events, hNqql�ch i [9, 10, 11]. Summarizing their results give [12]hN4qch i2hNqql�ch i = 1:04� 0:03 (4.1)which gives no support for models leading to a reduction of the hadronic mul-tiplicity in W-pair events. This suggests that singlet strings provide a gooddescription of W+W� ! q1q2q3q4 hadronization.4.3.1 Colour interference at LEP2 energiesThe CI model in this paper is an improved Monte Carlo implementation ofthe model described in [1]. The model for recoupling is quite simple and itsfeatures are described in detail in [1]. Here we give a summary of the modelwith emphasis on the improvements.The space{time distance between the W decay points in e+e� ! W+W� !q1q2q3q4 is about 1=�W and hard gluons with energies above �W are therefore



4.3 Models 83emitted incoherently by the two quark systems early in the event [13]. Thismeans that there are two sets of partons before any possible colour interferencecan occur. The two sets q1g1g2 : : : gnq2 and q3g10 g20 : : : gm0q4 have a lot ofdi�erent recoupling possibilities since every set of particles q : : : g is a colour-triplet. Recoupling of a q : : : g with any g : : : q from the other set can occur withthe probability 1=N2c so the total probability for recoupling can in principle bevery large. The estimation of the total recoupling probability is non-trivial.In [1] a discussion is made about what kind of probabilities to expect. No realconclusion was or can be made, and the probability remains a free parameterof the model.Perturbative QCD favours states which correspond to short strings i.e. partonstates which produce few hadrons. The � measure was introduced in [14] andis a measure of the e�ective rapidity range inside which the decay products ofa particular colour-singlet string are distributed. In this way it is related to themultiplicity. In [1] it is argued that states with smaller �'s could be dynamicallyenhanced, and that this choice also gives reconnected events that di�er mostfrom non-reconnected systems. Reconnected states with the smallest � measureare therefore chosen in the model.All of this is still true in the CI model in this paper. We have however made sig-ni�cant improvements in the MC implementation. The Ariadne MC v4.08 [15]allows the user to stop the production of gluons below some given energy. Thisfeature was not available in the original work, where gluons with energy below�W where simply neglected (leading to a 3% loss of energy). Furthermore, theW-pairs were incorrectly generated in the original work since no spin informa-tion was preserved and the W's were therefore allowed to decay isotropically.In order to take the full angular correlations into account we now use Pythiav5.7 [8], where the full 2! 2! 4 matrix elements are included for the W-pairproduction and decay.These improvements will lead to consequences for the results obtained in [1]. Inaddition to studying possible experimental signals at LEP2 of recoupled eventswe also extend the analysis of [1] to study CI e�ects on W mass determination.4.3.2 Bose{Einstein correlations in W-pair productionA model for Bose{Einstein correlations based upon a possible quantum-mech-anical framework for the Lund FragmentationModel [16] has been proposed [17]and it has been extended to the multi-particle correlations needed at LEPenergies [7]. An important feature of the model is that it can be used as anextension of the probability based Lund Model, implementing the correlationsas event weights.



84 Interference in W-pair decaysThe interpretation of the Lund Fragmentation Model in [7] gives an explicitform for the transition matrix element for a string fragmenting into hadrons.The resulting matrix element depends only on the space-time history of thestring and the model therefore uniquely predicts the relative amplitudes fordi�erent particle con�gurations, and therefore also the magnitude of the Bose{Einstein e�ect. To understand how the correlation length between pions arisein the model we will in the following shortly discuss the basic steps leading tothe speci�c form of the transition matrix element.A unique breakup rule for a string can be derived inside the Lund Model,which results in the following probability for a string to decay into hadrons(p1; : : : ; pn),dP (p1; :::; pn) = "Yi (Ndpi�(p2i �m2i ))# �(Xj pj � Ptot) exp(�bA) (4.2)where A is the space-time area spanned by the string during its break-up intoqq-pairs, and N and b are two free parameters.The production of hadrons from a single string in the Lund Model can be givena quantum mechanical interpretation inside a non-Abelian �eld theory. Thetransition matrix element,M, can, to obtain the result in Eq.(4.2) be identi�edwith (note the similarity with Fermi's golden rule)M = exp(i�A) with � = 12� + ib2 (4.3)where the decay surface area, A, is in energy-momentum units in the light-conemetric. The imaginary part of the quantity � is related to the pair productionprobability. As discussed in [7] the phase for M, as given by the real part of�, is found by observing how gauge invariance will constrain the production ofqq-pairs along the colour force �elds. The main observation is that a �nal statehadron stems from a q from one vertex and a q from the adjoining vertex. Thisimplies that in order to keep gauge-invariance it is necessary that the produc-tion matrix element contains at least a gauge connector, exp (ig R j+1j A�dx�),between the two vertices, denoted j and j +1. The total matrix amplitude fora single string must contain at least one gauge connector for each hadron andwe get a Wilson Loop Operator as a minimal requirement for gauge invarianceM = exp(ig I A�dx�) (4.4)where the integral is around the decay surface of the string. Using Wilson'scon�nement criteria for the behaviour of such a loop operator we get the realpart of �, as in Eq.(4.3).
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Figure 4.1: The two possible ways, (1; I; 2) and (2; I; 1), to produce the entire statewhen 1 and 2 are identical bosons. The space-time area, A, spanned by the stringduring its break-up is shaded.The transverse momentum generation will also contribute to the total matrixelement. This contribution is discussed in detail in [7] and is found to be/ exp(� 14�2k2?) (4.5)where �k? are the compensating transverse momenta generated in a qq-vertexand � is the width of the Gaussian supression of the quarks transverse momenta.In order to see the main mechanism for BE-correlations in the Lund Model weconsider Fig.(4.1), in which two of the produced hadrons, denoted (1; 2), are as-sumed to be identical bosons and the state in between them is denoted I . Thereare two ways to produce the entire state, corresponding to exchange of the twoidentical bosons. The two con�gurations, (: : : ; 1; I; 2; : : :) and (: : : ; 2; I; 1; : : :),are shown in the �gure and in general they correspond to di�erent areas A.The area di�erence, �A, depends not only on the energy momentum vectorsp1 and p2, but also on the four-momentum of the intermediate state, pI . Thedi�erence can be written as �A2� = �p�x (4.6)where �p = p2 � p1 and �x = (�t; 0; 0; �z) is a reasonable estimate of thespace{time di�erence, along the string surface, between the production points.This means that the correlation length, which is being measured by the four-momentum di�erence between pairs, is in the model dynamically implementedas �x [7]. The correlation length is therefore not the direct distance between



86 Interference in W-pair decaysproduction points. Instead it is the distance along the string surface, i.e. thedistance along the colour force �eld. This is not surprising if we consider howthe quantum-mechanical process corresponding to the Lund Model was derived;to keep gauge-invariance we got a gauge-connector between adjacent verticesand this is what provides us with the A=(2�) factor in the matrix element, fromwhich the correlation length in the model stems.In the case of production of two strings, i.e. a q1q2q3q4 system, there is noreason for a gauge-connector between vertices belonging to di�erent strings.We will therefore assume that the distance along the gauge-�eld between themis in�nite even though the direct space{time distance may be very small. Thisimplies that there is no interference between production vertices belonging todi�erent strings. This means that in this model each string can be consid-ered a system of its own, with separate Bose{Einstein e�ects. The resultingevent weight is then of course the product of the weights for each system sep-arately. In [7] it is explained how the BE interference can be incorporated ina probabilistic event generation scheme by weighting the produced events. Inparticular using the amplitudes Eq.(4.3) and Eq.(4.5) results in the weightw = 2Yn=10BBBB@1 + XP0n 6=Pn cos �An2�cosh b�An2 + �(P(n) p2?q)2�2p? !1CCCCA (4.7)for a fully hadronic WW event, where � denotes the di�erence with respectto con�gurations Pn and P 0n of the string n and the sum of p2?q is over all thevertices of string n. We have introduced �p? as the width of the transversemomenta for the generated hadrons, (i.e. �2p? = 2�2).It should be emphasized that if only colour-singlet combinations of partonsare allowed to be formed there is no model consistent way to get correlationsbetween particles stemming from the di�erent W's. In comparison to mostof the models using event weights to implement BE-correlations [6] we havea physical picture of how the correlation length in our model arises and itdescribes data well in single string fragmentation [7]. Taken together with ourprevious discussion of multiplicities in WW events this supports our conclusionthat there are no correlations between particles from the di�erent W's.4.4 ResultsAll the results are for W-pairs generated at 170 GeV. We have checked thee�ects of our models on the mean charged multiplicity and the results are



4.4 Results 87shown in Table 4.1. We get small e�ects on the mean multiplicity and they arecompatible with the experimental result, Eq.(4.1).Model hN4qch i �hN4qch i (%)CI without 38.62 �0.01100% 36.90 �0.0110% 38.45 �0.01 -0.44BE without 24.4with 25.1 +2.7�0.3Table 4.1: The mean charged multiplicity for the two interference models. For theCI model we show the results for 100% recoupled events and for an admixture ofrecoupled and non-recoupled events of the order 10%. The lower multiplicities for theBE results are due to that no parton cascade has been used in this case.4.4.1 Colour interference resultsIt is natural to divide the CI results into two independent parts. First wediscuss the possibility to detect signals of CI at LEP2 in the same way as itwas done in [1] and then we will study mass reconstruction e�ects.CI signal search at LEP2The search for signals of CI at LEP2 in [1] give numbers which are very close towhat will be statistically signi�cant with the expected number of events fromLEP2, when a 10% recoupling probability is assumed. The improvements madehere will dilute the signal proposed in [1]. Multiplicity distributions (including�0) in the central rapidity region, jyj < 0:5, for recoupled and non-recoupledevents are shown in Fig.(4.2). Comparing these with the original results from [1]we note that the signal-to-background ratio is signi�cantly reduced. In Ta-ble 4.2 we have compiled the number of events without particles in a centralrapidity region at LEP2 using two di�erent thrust cuts and an expected 5000fully hadronic events. We note that the signal decreases and if this signal isto be seen at LEP2 there must be a larger recoupling probability than 10%.A larger recoupling probability would increase the number of events withoutparticles in the central rapidity bin. A closer examination of the improvementsof the MC implementation in this paper reveals that the conservation of energywill not change the result too much from the original work. Almost all of thesuppression of the signal comes from taking the anisotropy of the W decaysinto account.
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Figure 4.2: Multiplicity distributions for jyj < 0:5 for non-recoupled (solid line) andrecoupled events (dashed line) with thrust cuts left) T > 0:92 and right) T > 0:76.The CI results are for 100% recoupled events.Model Thrust Event fraction Events with ncentral=0 background[1] 0.92 0.04 4.3 0.680.76 0.60 13 1.9our 0.92 0.01 0.93 0.360.76 0.60 6.4 2.6Table 4.2: Expected number of events with zero particles in a central rapidity region:jyj < 0:5, denoted by ncentral, for a total of 5000 fully hadronic W-pair events. A10% recoupling probability is assumed.From this study we conclude that the statistics from LEP2 will make it hardto use the signal proposed in [1].W mass reconstruction resultsWe have studied the e�ects of CI on the W mass measurement to estimate thesize of the theoretical error on the mass implied by our model.In Fig.(4.3) we show the generated W mass and the reconstructed masses withand without CI interference. We see that the di�erence between the recon-structed distributions is small. The mass shifts for 100% reconnected eventsare shown in Table 4.3 and if the reconnection probability is assumed to be 10%the shifts should be scaled down with a factor 10. �M denotes the mass shiftdue to the reconstruction method as compared with the generated W mass andthe additional shift due to the interference is denoted by �M .Assuming a 10% reconnection probability the shifts will be small and negligible
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Figure 4.3: The distribution of the generated W mass (dashed) together with thereconstructed mass with (dotted) and without (solid) colour interference. The resultsare for reconstruction method 2.Method �M [MeV] �M [MeV]1 -279 � 15 -3 � 212 -1238 � 19 -90 � 273 -75 � 16 -27 � 23Table 4.3: Shifts in the reconstructed W masses using the di�erent methods fromsection 4.2. �M denotes the mass shift due to the reconstruction method and �Mdenotes the additional shift due to the colour interference.from the experimental mass reconstruction point of view. However, in a worsecase scenario with a 100% probability the shifts can be quite large but theexperimental signal suggested in [1] would then on the other hand be observable.4.4.2 Bose{Einstein interference resultsWe have studied how the inclusion of Bose{Einstein correlations, implementedas event weights, a�ect the results from various mass reconstruction schemes.The main concern in [2] was that the BE e�ects in the hadronization stage cancouple identical particles from the W+ and the W�. They used the LUBOEIalgorithm [2] in which the momenta of the produced bosons are reshu�edto reproduce a chosen BE-correlation. The momenta are then rescaled bya common factor to keep energy-momentum conservation for the event as awhole. This procedure might result in a redistribution of momenta in such away that the hadrons which come from the W+(W�) decay don't add up to



90 Interference in W-pair decaysthe same invariant mass as the original W+(W�) had. It should be noted thatthe rescaling procedure needed afterwards introduces shifts in the W mass evenif there are no BE-correlations between particles stemming from di�erent W's.After corrections for this 'spurious' mass shift a shift of about +100 MeV at170 c.m. energy was found in [2].The main feature of our model is that we don't expect a coupling betweenparticles coming from di�erent W's. The inclusion of correlations may howevera�ect for example multiplicities and event shape variables and therefore it maya�ect the reconstruction of the W boson mass. Such an arti�cial mass shiftis hoped to be taken into account by the tuning of the JETSET MC [8] tothe experimental LEP1 data. Using the MC implementation of our model, wehave tuned multiplicity distributions and some event shape variables to thecorresponding results as obtained from JETSET for a single string at LEP1energies. To study the e�ect of the symmetrisation we have then analysedand compared the reconstructed W mass of W's generated by Pythia with andwithout symmetrisation included. We have used our tuning to LEP1 energiesfor the symmetrised events. The events are generated without a parton cascade,i.e. pure q1q2q3q4 events, in this analysis since the MC implementation of theBE-model has not been extended to general parton con�gurations. We believethat the inclusion of gluons will a�ect the mass reconstruction, but it will doit in the same way whether BE symmetrisation is included or not.The use of event weights introduces statistical uctuations which require thegeneration of many events. We have generated a su�cient number of events inorder to get reasonable statistical errors for the mass distributions. In Fig.(4.4)we show the reconstructed mass for symmetrised and non-symmetrised events.As can be seen the di�erence between the distributions is very small.Method �M [MeV ] �M [MeV ]1 -306 � 1 -6 � 82 -83 � 1 -5 � 73 -601 � 4 -6 � 6Table 4.4: Shifts in the reconstructed W masses using the di�erent methods fromsection 4.2. �M denotes the mass shift due to the reconstruction method and �Mdenotes the additional shift due to the Bose{Einstein symmetrisation.Using the same notation for the mass shifts as in section 4.4.1 we have compiledthe results for the di�erent reconstruction schemes in Table 4.4. The mass shiftsdue to BE interference are all very small and compatible with zero. They willtherefore not a�ect the LEP2 measurement and in particular we conclude thatthe inclusion of Bose{Einstein correlations will compared to a carefully tuned
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Figure 4.4: The distribution of the reconstructed W mass with (diamonds) andwithout (solid) Bose{Einstein symmetrisation turned on. The results are for recon-struction method 2.conventional Monte-Carlo not a�ect the reconstruction of the W mass. It isimportant to note that using event weights can in principle a�ect the W masseven though we don't have any interference between the two W's. This ishowever not the case with our model.4.5 ConclusionsThe previous work on the e�ects of BE correlations on the W mass, with theexception of [18], are all based on the observation that the BE e�ect packsidentical particles closer together. The local model [2] as well as the globalevent weight models [5, 6] are all phenomenological models used to estimatethe inuence of such a close-packing on the masses of the two qq systems, if thetwo W systems cross-talk. Our model starts from a completely di�erent pointof view, i.e. with a quantum mechanical scenario for the particle productiondynamics, and at LEP1 energies the results obtained with our model are inagreement with the observables on which the other models are based. A naturalconsequence of our model is that we do not expect any cross-talk due to BEe�ects between the W's. The correlations between pions from di�erentW's havebeen investigated by two of the LEP experiments. The DELPHI experimenthas at their present level of statistics found no enhancement of the correlationsbetween pions from di�erent W's, compared to what is expected from a pair ofuncorrelated W's [19] (con�rmed in [9]) and ALEPH draws a similar conclusionfrom their data [20]. Their statistics are rather poor but if the results are



92 Interference in W-pair decayscon�rmed when more data becomes available, it would rule out mass shifts dueto cross-talk between the two W's, in agreement with our model.The reconnection probability of our CI model, as in other models, remains a freeparameter. Assuming a moderate probability of 10% the mass shift due to CIwill be very small. If we however assume a 100% probability the mass shift canbe important, but in this case the experimental signal of [1] should be visible.The magnitude of the signal is a measure of the reconnection probability inour model, and if the signal is found it can be used to estimate the theoreticaluncertainty in the mass determination.To summarize, we conclude that neither colour nor Bose{Einstein interferenceis expected to a�ect the W mass reconstruction at LEP2 and in particular thatthe theoretical uncertainties, as estimated by our models, are much smallerthan the expected experimental statistical error.
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Is there screwiness at the endof the QCD cascades?Bo Andersson, G�osta Gustafson, Jari H�akkinen,Markus Ringn�er and Peter SuttonDepartment of Theoretical Physics, Lund University,S�olvegatan 14A, S-223 62 Lund, SwedenJournal of High Energy Physics 09, 014 (1998)We discuss what happens at the end of the QCD cascades. We show that, withjust a few reasonable assumptions, the emission of soft gluons is constrainedto produce an ordered �eld in the form of a helix. We describe how to mod-ify the Lund fragmentation scheme in order to fragment such a �eld. Ourmodi�ed fragmentation scheme yields results which are consistent with currentexperimental measurements, but predicts at least one signature which shouldbe observable.



98 Screwiness5.1 IntroductionIn QCD the production of two colour charges which subsequently move apartwill lead to the production of further colour radiation. This can be describedin terms of the fundamental �eld quanta, the gluons, but it is also possibleto describe the ensuing radiation in terms of dipoles. This property arisesbecause in non-abelian theories the emission of an extra gluon from a gluon-gluon dipole can (to a very good approximation) be modelled as the destructionof the original dipole and the creation of two new dipoles. In this way the changein the colour �eld can be described as an increasing cascade of dipoles. Theend of this cascade occurs when the dipole masses are so small that helicityconservation prevents further real gluon emission. In this paper we examinewhat happens at the end of this cascade. We �nd that the conditions arefavourable for the �eld to utilize the azimuthal degree of freedom and winditself into the form of a helix. This corresponds to a close{packed con�gurationof gluons in rapidity{azimuthal-angle space.We begin by describing a toy model which contains the relevant features,namely a tendency to emit as many gluons as possible and the constraintthat gluons are not too \close" to each other (which arises from helicity con-servation). In this simple model it is clear that at the end of the cascade anordered �eld emerges with the characteristics of a helix. To progress beyondthis model we use the Lund model of QCD. In the Lund picture hard gluons arerepresented as excitations of a relativistic string which connects a quark, anti-quark pair. However, the gluons from which the helix is built up are too softto be modelled in this way. Instead we introduce a helical semi-classical �eldand thus develop a modifed version of the Lund fragmentation scheme. Ourmodi�ed fragmentation scheme enables us to study whether the consequencesof a screwy �eld can be detected in the �nal state particles. We �nd that ifevents with hard gluons are excluded then the screwiness of the �eld may beobserved.
5.2 The dipole cascades; increase and decreaseof phase spaceIn order to describe what can happen at the end of the QCD cascades we willprovide a brief description of the cascades. We will in particular discuss theconsequences of helicity conservation in the emission of partons.



5.2 The dipole cascades; increase and decrease of phase space 99The well-known formula for dipole emission of bremsstrahlung isdn = ��dk2?k2? dy(d�2� )	 (5.1)where �� is the e�ective coupling, k?, y, and � are the transverse momentum,rapidity and azimuthal angle respectively, although the azimuthal angle de-pendence is usually neglected. The �nal factor, 	, corresponds to the spincouplings. We will briey consider the precise de�nitions before we considerthe implications. The e�ective coupling for QCD in the case of a gluonic dipoleis given by ��QCD = Nc�s2� ' 611 log(k2?=�2) : (5.2)The occurrence of the number of colours, Nc, and the factor 1=2 in the QCDcoupling is due to early conventions, whereas the result that the running isgoverned by 1=c = 6=11 is a basic gauge group independent result. It onlydepends upon the fact that in non-abelian gauge theories there is a three-particle coupling between vector particles, e.g. the colour-8 gluons in QCD.(The four-gluon coupling also occurs to preserve the symmetry, but it does notplay a rôle in this connection). We neglect the avour term �2nf=3 whichshould accompany 11 in the denominator because it is a small e�ect related tothe possibility of gluon splitting; g! qq.The transverse momentum and the (dipole cms) rapidity are de�ned in aLorentz invariant way in terms of the squared masses of the �nal state par-tons (the emitters are conventionally indexed 1 and 3 and the emitted �eldquantum 2):sij = (ki + kj)2 = 2kikj = 2k?ik?j [cosh(�y)ij � cos(��)ij ]s = s12 + s23 + s31s12 = s(1� x3); s23 = s(1� x1)k2? = s12s23sy = 12 log�s12s23� (5.3)Here x1 and x3 are the �nal state cms energy fractions of the emitters. Re-quiring energy momentum conservation limits the allowed emittance region tok? cosh(y) � ps2 : (5.4)This region can conveniently be approximated as jyj < (L��)=2 with the vari-ables L � log(s=�2) and � � log(k2?=�2). This means that the (approximate)



100 Screwinessphase space available for dipole emission is the interior of a triangular region inthe (y; �)-plane with the height and the baselength both equal to L. The inclu-sive density inside the triangle is, in this Leading-Log Approximation (LLA),given by the e�ective coupling �� according to Eq.(5.1). The rapidity range,L� �, is of course the length of a hyperbola spanned between the emitters inspace-time (or energy-momentum at the scale k2?).If we consider an initial qq dipole emitting a gluon then the probability for theproduced qgq system to emit a second gluon is a complicated expression [1]. Incase the transverse momenta of the �rst and second gluon are strongly ordered,k?1 � k?2, it is a very good approximation to treat the second emission asindependent emission from two dipoles [2]. For an exclusive statement, forexample the probability dP to emit the �rst gluon with a certain (�1; y1), itis necessary to multiply the inclusive formula in Eq.(5.1) with a Sudakov formfactor �s containing the probability not to emit above �1,�s(L; �1) = exp(� Z L�1 dn);dP (q; g1; q) = dn(�1; y1)�s(L; �1) : (5.5)The probability to emit two gluons is then, in the approximation that thesecond gluon is emitted by two independent dipoles, given bydP (q; g1g2; q) = dP (q; g1; q) [dP (q; g2; g1) + dP (g1; g2; q)] (5.6)in easily understood notations. The approximation in Eq.(5.6) results at mostin a percentage error over all phase space [3]. Thus, contrary to QED wherethe chargeless photons still leave the e+e�-current as the single emitter, the8-charge gluon (g1) in QCD changes the original qq dipole into two dipoleemitters, one between q and g1 and one between g1 and q, and each can inde-pendently emit the second gluon (g2). The requirement for the validity of theapproximation in Eq.(5.6) is that k?1 � k?2 or else the indices are exchanged.The two independent dipoles are moving apart (with g1 as the common parton).This means that they have together a larger e�ective rapidity range for theemission of g2, i.e. the original hyperbola length L = log(s) is exchanged fortwo hyperbolas with the combined length log(sqg1) + log(sg1q) = L+ log(k2?1).From any one of the two new dipoles we may then emit the second gluon,thereby producing three independent dipole emitters and the process can becontinued towards more dipoles; ordering the process in k? downwards. Theavailable phase space for further emission is increased after each emission, ascan be seen from the increased total length, L, after the �rst emission. Thisdescription of the QCD cascades is called the Dipole Cascade Model (DCM) [4].



5.2 The dipole cascades; increase and decrease of phase space 101We will now consider the polarisation sum contribution in Eq.(5.1). Its preciseproperties depend upon whether we are dealing with a qq, qg or a gg dipole,but it stems from the spin couplings between the emitter(s) (it is essentiallysensitive only to the closest emitter) and the new �eld quantum. These cou-plings contain the property that helicity is conserved, which is true for all gaugetheories. This means that if a spin-1=2 parton emits a spin-1 parton, the spin-1parton must go apart from the emitting particle in order to conserve helicityand angular momentum. They have to go even further apart in the case of aspin-1 parton emitting a spin-1 parton. To estimate the separation we consider(for �xed k? (or �)) the available rapidity range:Z ymaxymin 	 dy = L� �� c+O(k2?=s) (5.7)where c = (11=12+11=12), (3=4+11=12) or (3=4+3=4) depending on whetherthe emitters are gg, qg (gq) or a qq dipole [5]. The quantities c are written assums to show that a spin-1 (g) emitter and a spin-1=2 (q or q) emitter has anempty region surrounding it in rapidity of size 11=6 and 3=2, respectively. Inorder to obtain this result we note that in terms of the x-variables introducedin Eq.(5.3) the factor 	 is (xn11 + xn33 )=2 with x1;3 = 1 � k? exp(�y)=ps andn1;3 equal to 2 or 3 for q(q) and g, respectively. yfmax,ming are determined fromthe energy momentum requirement in Eq.(5.4).A note of caution should be issued at this point. For given s and k? there aretwo de�nite limits in rapidity ymin � y � ymax, and there is then a depletionof emissions due to helicity conservation, in regions close to ymin and ymax. Itis in general a poor approximation to put the factor 	 to a unit stepfunctionfor ymin + c=2 � y � ymax � c=2 although it works when the rapidities andazimuth are integrated out. A closer examination provides a y-distribution withsimilarities to a �nite temperature Fermi distribution. We will neverthelessrefer to this feature as \the excluded region" around each gluon.We note that in the process g ! qq, where the spin-1 parton emits two spin-1=2 partons, that the fermion pair \prefer" to be parallel, since there are nopoles in this decay distribution. However the process g ! qq is suppressedcompared to the process g ! gg and is in general neglected. The DCM willin this way produce a fan-like set of dipoles, which in the LLA increases thephase space (the total available e�ective rapidity range) for further emissions.However, including the inuence from the polarisation sum (which is essentiallythe approximation scheme called Modi�ed LLA) there is in each emission alsoa depleted region around an emitted parton, in practice c = 11=6, because thegluons completely dominate the process. At large energies, but not too largetransverse momenta, one may in general neglect the restrictions but they willbe very noticable at the end of the cascades. For example, with a dipole mass of



102 Screwiness3 GeV the typical rapidity range available for gluon emission is about 4 units,and it is then very noticable to exclude 11=6 units.It is interesting that the average region excluded due to helicity conservationalso occurs in connection with the properties of the running coupling. To bemore precise, we consider a change of scale in the de�nition of a �eld quantumand its interaction. A change of scale means that the �eld operator, which hasbeen normalised to a single quantum at one scale, and the coupling constant,which likewise has been normalised at the original scale, will both change.These changes can be read out from the Callan-Symanzik equations and the�-function contribution, stemming from the change in the coupling constant,can be written as��(�s)@M@�s = (116 Nc�s2� � 23 nf�s4� )�s @M@�s (5.8)where a change in a quantityM, when the observation scale is decreased fromthe level � = log(k2?) to � � d�, is considered. The decrease accounts for theminus sign on the left hand side. According to the DCM there is then at thisnew scale not only the possibility to emit new gluons but also, at the next orderin the coupling �s, the possibility to reabsorb already emitted gluons.The operator �s@=@�s works like a number operator, i.e. for any functionM = P�nsmn it provides the number n of possible insertions. The quanti-ties Nc�s=2� and nf�s=4� are the couplings for gg ! g and qq ! g (andthe inverse processes) while 11=6 and 2=3 corresponds to the e�ective (gen-eralised) rapidity ranges available in these reabsorption processes for a given�. It should be noted, however, that this interpretation is gauge-dependent;in almost all gauges there are contributions to the �-function from the vertexcorrections. However, for a particular gauge choice with the propagator givenby �(g�� � 4k�k�=k2)=k2, the vertex contributions vanish. A closer analysisreveals that the major e�ect stems from the so-called Coulomb gluons, i.e. acharged particle like a �eld quantum in a non-abelian theory is always accom-panied and interacts with its own Coulomb �eld. The 11=6 can therefore beconsidered as the region around the gluon containing its accompanying �eld.This has been utilized for an approximation of the QCD cascades where theavailable phase space for emission is discretised [6].5.3 A toy model for the end of the cascadesAfter several gluon emissions there are a set of dipoles with small masses, andthere are in general very many Feynman graphs which may contribute. Thelargest diagramatic contribution is chosen according to coherence conditions in



5.3 A toy model for the end of the cascades 103the cascade; in the Dipole Model [4] by an ordering of the gluon emissions intransverse momentum, and in the Webber-Marchesini model [7], and the modelimplemented in JETSET [8], according to a choice of kinematical variables thatfascilitates a strong angular ordering of the emitted gluons. Results from thecascade models are essentially equivalent, at least as long as su�ciently hardgluon emission is considered.The ordering of emissions in the models will lead to dipoles with small massesemitting softer gluons. These soft gluons have a transverse momentum, k?, ofthe same order as their emitter and recoils play an important rôle. At presentthere exists only a minor knowledge of how the recoils should be distributedamong the emitters. A su�ciently large recoil on one of the emitting (soft)gluons will in general imply that the chosen order is no longer in accordancewith the coherence conditions. Emitting soft gluons will evidently lead to a sit-uation where several, or even very many, paths to the �nal state are important,and many di�erent Feynman graphs may contribute and interfere.To investigate the emission of soft gluons we propose a toy model with thefollowing two properties:I We assume that the e�ective coupling �� is large enough so that there is atendency to emit as many gluons as possible, essentially with the same k?.II We assume that the emissions ful�l the requirement of helicity conserva-tion; this implies that two colour-connected gluons cannot be closer than a\distance" d = c.We will use the following combination as the probability for a given colour-connected multi-gluon state P = n�1Y1 ��sj;j+1 (5.9)where sj;j+1 is the dipole mass between the colour-connected gluons j andj+1. The factor � corresponds to the product of the coupling and the relevantphase space region, and � to the restrictions from helicity conservation, i.e.the requirement of a suitable distance between the emitted gluons. Neglectingrecoils, we obtain for any order of the emissions in the DCM, that the productof factors 1=sj;j+1 can be written in terms of the invariant dipole transversemomenta as s12s23 : : : sn�1;n = k2?2k2?3 : : : k2?n�1s12:::n (5.10)where k?j denotes the invariant k? of the dipole from which gluon j is emitted.Eq.(5.9) is therefore a simple generalisation of Eq.(5.1).



104 ScrewinessThe dipole mass can be written assj;j+1 = k2?2[cosh(�y)� cos(��)]' k2?(�y2 +��2)[1 + (�y2 ���2)=12] : (5.11)For simplicity we have set the transverse momenta of the two gluons to beidentical. �y and �� are the di�erences between the colour-connected gluonsin rapidity and azimuthal angle, respectively. We are now in a position tode�ne precisely what we mean by \distance". We therefore introduce a distancemeasure, d, which is related to the dipole mass bydj;j+1 �qsj;j+1=k2? : (5.12)When the dipole mass and the rapidity region are large the azimuthal depen-dence can be neglected and d ' �y.The emission of soft gluons has thus been reduced to the following problem;given a certain rapidity range and the full accompanying azimuthal range 0 �� < 2� how are the colour-connected gluons distributed in phase space in orderto obtain a maximum of P in Eq.(5.9), keeping in mind that the gluons cannotbe too close?From Eq.(5.9) we see that the magnitude of � controls the relative probabilitybetween di�erent gluon number states. If � is su�ciently large the number ofemitted gluons will �ll the available phase space, and P becomes maximal whenthe gluons align along a straight line in phase space. This helix-like structureis the optimal con�guration irrespective of the size of �, or of the number ofemitted gluons. For a given multi-gluon state there are many possible ways tocolour-connect the state, where the helix is only one of the possibilities. It isof course possible that the sub-optimal con�gurations are the important onesand swamp the helix-like contribution, but there are also many contributionsclose to a perfect helix.We have carried out a numerical study to test whether the contributions fromhelix-like structures survive the phase space e�ects. Our program calculatesall possible con�gurations on a discretized (y; �) phase space taking into ac-count that gluons must not be closer than c to each other. The number ofpossible con�gurations grows factorially with the number of gluons, but thenumber of gluons is restricted by the available phase space. We have studieda reasonable phase space size of three units of rapidity using a closest gluon-to-gluon distance c = 11=6 in all the calculations. Since the uctuations indipole k? are limited within a narrow range at the end of the cascades andthe dependence on dipole k? in Eq.(5.1) is rather weak, we set the transversemomenta of the gluons to be constant. In Fig.(5.1) we show the most prob-able �ve and six gluon con�gurations. The points corresponding to a given
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-2 -1 0 1 2 yFigure 5.1: The most probable con�gurations with �ve and six gluons using c = 11=6.(The cylindrical phase space has been mapped onto a plane). The gluon exclusionregion for each gluon is indicated with the ellipse-like shapes. The line segments showthe colour �eld and should form a straight line for a perfect helix. The discrepancyis due to the discrete phase space used in our numerical analysis.mass correspond to ellipse-like shapes (p(cosh(�y)� cos(��)) and in order tominimize the distance between adjacent gluon emissions these ellipses must bedisplaced so that they correspond to a helix-shaped con�guration. The caseshown corresponds to the optimal situation where it is favourable to \closepack" the gluons irrespective of the size of �.Taking into account all possible con�gurations we obtain a distribution in D2 �P d2jj+1 which is very broad, cf. Fig.(5.2), but weighting each D2 with thecorresponding P from Eq.(5.9) we obtain a large and narrow peak close tothe most probable colour-connected con�guration indicating that the gluoncon�gurations have short strings close to the optimal helix structure.Now that we have established that short strings are preferred we investigatein more detail if they are helix-like in general. To this aim we will introducea new possible observable, \screwiness". At this point it is only a theoreticalobservable, but later on we will show how to use it for the �nal state hadrons.We de�ne screwiness S from the values of (yj ; �j) for the emitted gluons inaccordance with the toy model,S(!) =Xe Pe ������Xj exp(i(!yj � �j))������2 : (5.13)The �rst sum is over all the con�gurations e found in the phase space andthe second goes over the gluons in the con�guration. For !-values close tozero, screwiness must be small if the gluons are emitted isotropically in the
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Figure 5.2: The unweighted (dashed line) and weighted (solid line) squared lengthdistributions, f , of con�gurations with six gluons.azimuthal angle. For large values of ! the phases should be close to chaoticand then screwiness only depends on the mean number of emitted gluons.In Fig.(5.3) we show the screwiness distribution including contributions fromall con�gurations with a speci�c number of gluons. Two cases are shown, �rstlycon�gurations with the maximum possible number of gluons (in a three unitrapidity phase space this is six gluons), and secondly those corresponding to�ve gluon states (the contributions corresponding to even smaller number ofgluons show similar distributions). There are two noticable broad peaks withtheir mean values close to ! = �2�=c. Since the helix structure has no pre-ferred rotational direction the distributions should be even. The small apparentasymmetry is due to numerical e�ects. We have also analysed the con�gura-tions for c = 1:5 and 3 and these results are independent of the minimumgluon-to-gluon distance.From this toy model we see that if we �ll the phase space with soft gluons,which are forbidden to be too close to one another, then they tend to line upalong a helix structure, since the colour-connection between the gluons preferto be as short as possible.5.4 Modelling the helix as an excited stringIn order to consider the consequences of the helix-like colour �eld which weobtained in Section 5.3 it is necessary to provide observables in terms of the�nal state hadrons. A �rst attempt to model such a �eld is to approximate itby the emission of a set of colour-connected gluons with the same transverse
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Figure 5.3: Screwiness in the toy model for �ve (dashed line) and six (solid line)gluon states in a rapidity region of three units with c=11/6.momentum k?. We may then consider the properties of the �nal state hadrons,as produced by the Lund string fragmentation model. We very quickly �ndthat in the competition between increasing the multiplicity versus increasingthe transverse momentum of the hadrons the model uses the �rst possibilityonly. In this section we will be content with giving the basic argument for whythe helix cannot be described as gluonic excitations on the string �eld.Suppose that a gluon with transverse momentum k? is moving transversely tothe constant (�) force �eld, then it is possible for the gluon to drag out thestring �eld the distance ` = k?=2� (a gluon experiences twice the force actingon a quark). On the other hand, in a quantum mechanical setting such a gluonis only isolated from the �eld if the wave-length of the gluon � ' 2�=k? issmaller than ` and therefore k2? � 4��`2min = �� (5.14)(this is similar to the Landau-Pomeranchuk formation time arguments). Fromthe �rst line in Eq.(5.14) we obtain the requirement that a \real" gluon musthave a transverse momentum larger than k?0 = 1:6 GeV.We conclude that the helix �eld cannot be described in terms of a �nite num-ber of gluon excitations on the Lund string. The many small-k? excitationsin the model tend to increase the �nal state particle multiplicity (with smalluctuations) rather than to produce transverse momentum for the particles.The interested reader can �nd a more thorough investigation of the problemsassociated with the fragmentation of soft gluons in appendix 5.A.



108 Screwiness5.5 A semi-classical �eld at the end of the cas-cadesWe will now consider the possibility that a (semi-)classical colour �eld is pro-duced at the end of the perturbative QCD cascades that cannot be describedsolely in terms of gluonic excitations on the Lund Model string �eld. Theproperties of this �eld should be in accordance with the toy model that wasdescribed in section 5.3. Thus the internal colour quantum number should becorrelated to the external space-time (energy-momentum space) behaviour sothat the colour �eld has a helix structure, i.e. the colour �eld lines are turningaround a spacelike direction, from now on called the 1-axis.We may describe the expected �eld in terms of a wave-packet of energy-momentum space four-vectors, k�, corresponding to the colour current (theindex � stands for the parameters describing the wave-packet). We will as-sume that the vectors k� always have a constant virtuality k2� = �m2. Wefurther assume that the helix colour �eld is itself emitted from the current as acontinuous stream of gluons dk, colour-connected along each emission vector,k�. They should be obtained by di�erentiating the vector k� (we are gener-alising the physics picture from a ladder-diagram as in Fig.(5.4), where the\propagator" vectors fkgj are emitting the gluons dkj = kj � kj�1).The most general description of such a vector is (we use lightcone coordinatesalong the 01-direction and transverse coordinates in the 23-plane and we donot worry about the initial values):k� = m[cos(�)(exp(y);� exp(�y); 0; 0) + sin(�)(0; 0; cos(��); sin(��))]� m[cos(�)e1(y) + sin(�)~e?1(��)] : (5.15)Here m is a constant parameter, y is the rapidity and � the azimuthal angle.We have introduced � as a constant describing the relative motion in rapidityand azimuth. We will put � = 1=2 later in order to get � as the azimuthalangle of dk. Finally � is the variable describing, on the one hand, the size of theuctuations in the longitudinal and transverse parts, and on the other hand,the properties of the wave-packet.Assuming that the emitted �eld quanta dk are massless, we get,dk2 = 0 ) �d�d`�2 +�1� cos(2�)2 � = �dyd`�2 ;small � ) "�d�d`�2 + �2# = �dyd`�2 : (5.16)We have used the di�erential d` �pdy2 + d(��)2. Therefore, the assumptions
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Figure 5.4: A current with constant virtuality, k2j = �m2, emitting massless �eldquantas, dk2j = 0.of constant virtuality of k and the masslessness of dk imply that the variable� should ful�l the pendulum equation according to the �rst line of Eq.(5.16).In the limit of small j�j-values this becomes a harmonic oscillator equation,assuming that the quantity dy=d` is a (small) constant along each vector k�.For consistency we will then make the change d` ! �d�. This is the secondline of Eq.(5.16) and using the notation dy=d� � � we obtain as a classicaldescription (again neglecting the boundary values):� = �� cos(��) : (5.17)If we choose � = 1=2 to make � the azimuthal angle of dk, then we �nd thatthe �eld emission vectors dk=d� and the corresponding current vector k� are(in the approximation of small oscillations):dkd� = m� [e0(y) + ~e?0(�)]k� = m[e1(y) + �(~e?1(�) + ~e?1(0))] : (5.18)Here we have introduced the vectors e0 = de1=dy and ~e?0 = d~e?1=d� (note thatall the occurring vectors are orthogonal). We may evidently use the quantity� (together with suitable boundary values) to label the wave packet for thecurrent. That is to say, we may assume that there is a distribution h(�) whichdescribes the occurrence of the di�erent current lines, each with a well-de�neddirection � . This distribution, h(�), should be similar to a Gaussian. A singlecurrent line with �xed � may also be described in the transverse plane. Thecurrent turns around the 1-axis with the azimuthal angle and the corresponding�eld quanta are emitted transversely to the current at every emission point



110 Screwinessaccording to Eq.(5.18). There is one reasonable restriction: the �eld energyemitted by the current in a small angular segment should not exceed the energywhich should be available in the Lund Model string. If we use the string radiusas calculated in Eq.(5.14), `min =p�=�, then we �nd thatm� � �`min ' 0:8 GeV : (5.19)It is interesting to note that these �elds have similarities to those studied inconnection with dimensional reduction in [9].5.6 Fragmentation and screwinessWe have in the previous section described the emission of a continuous streamof colour-connected gluons having the property that the azimuthal angle ofthe stream is proportional to the rapidity, i.e. it is of a helical character. Aspreviously discussed we cannot implement this as individual gluonic excitationsof the Lund string. We will in this section instead describe a possible wayto take the transverse properties of the continuous helix into account whilstkeeping the major properties of the Lund fragmentation model. In order to dothis we will begin by presenting a few relevant parts of the Lund model. Thismodel has been described several times and a recent investigation can be foundin [10].5.6.1 The Lund fragmentation processThe following (non-normalised) probability to produce a set of hadrons hasbeen derived using semi-classical arguments in [11]dP (fpgj ;Ptot) = " nY1 Njdpj�(p2j �m2j )# �(X pj � Ptot) exp(�bA) : (5.20)Here Nj are normalisation constants, A the decay area, cf. Fig.(5.5), and b abasic colour-dynamical parameter; from comparison to experimental data weknow that b ' 0:6 GeV�2 if the area A is expressed in energy-momentum spacequantities.The constant force �eld spanned between a colour-3 quark and a colour-3 anti-quark is a simple mode of the massless relativistic string. The process has beengeneralised into a situation with multigluon emission in [12] using the Lundinterpretation that the gluons are internal excitations on the string �eld.The area decay law in Eq.(5.20) can be implemented as an iterative process, inwhich the particles are produced in a stepwise way ordered along the positive
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Figure 5.5: The break-up of a Lund string.(or negative) light-cone. If a set of hadrons is generated, each one takes afraction z of the remaining light-cone component E + pl (or E � pl, if they aregenerated along the negative light-cone), with z given by the distributionf(z) = N (1� z)az exp(�bm2?=z) : (5.21)The parameters N , a and b are related by normalisation, leaving two freeparameters. The transverse mass parameter in the fragmentation function ism2? = m2 + ~p 2?, with the transverse momentum obtained as the sum of thetransverse momenta stemming from the q and q particles generated at theneighbouring vertices, ~p? = ~k?2 � ~k?1. In the Lund model a qq-pair withtransverse momenta �k? is produced through a quantum mechanical tunnelingprocess. It results in a Gaussian distribution for the transverse momentad2k? exp(��k2?=�) : (5.22)The whole process is implemented in the Monte Carlo program JETSET [8].Consider the production of a particle with transverse massm?. Given that onevertex has the rapidity y1, the rapidity di�erence �y is not enough to specifythe position of the other vertex. One must also know the proper-time of the �rstvertex. This is shown in energy-momentum space in Fig.(5.6) where the �rstvertex is speci�ed by � which is the squared product of the proper-time and �.Of course there are two solutions in this case, but one is strongly favoured by thearea dependence in Eq.(5.20). In the Lund model the vertices, on average, lieon a hyperbola given by a typical �. That is to say, the steps in rapidity in theparticle production are related to the scale h�i as given by the model. Thereis a similar situation in the transverse momentum generation. The squared
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Figure 5.6: The longitudinal energy scale in the Lund model is h�i. The �gure showsthe production of a particle with transverse mass m?. The di�erence in rapiditybetween the constituent vertices has to be related to the � of one of the vertices inorder for the vertices to be speci�ed.transverse momentum of a particle is not only given by the azimuthal angle�� between the break-up points that generate the particle. The lengths ofthe transverse momenta of the q and the q that make up the particle are alsoneeded. In the tunneling process in Eq.(5.22) these sizes are given by the scale�=�.Thus the Lund fragmentation model provides two di�erent energy scales; onelongitudinal to relate to the rapidity di�erence between vertices and one trans-verse to relate to their di�erence in azimuthal angle.5.6.2 A modi�ed fragmentation process with screwinessThe main idea in the screwiness model is that the transverse momentum ofthe emitted particles stems from the piece of screwy gluon �eld that is inbetween the two break-up points producing the particle. Therefore we beginby summing up the transverse momentum that is emitted between two pointsalong the �eld line, cf. Eq.(5.18):Z 21 ~dk?d� d� = ~k?2 � ~k?1 = m� [~e?1(�2)� ~e?1(�1)] : (5.23)We note that the quantitym� also occurs here. We will always consider the pa-rameter m to be a suitable �xed mass parameter but according to the assumedwave function for the current the direction � may vary between the di�erentbreak-up points. To keep the presentation clear we will start o� keeping ��xed. In the end we will present the generalisation to the case of a varying � .
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3Figure 5.7: A qq-pair is produced in a break-up point with azimuthal angle �. The�gure illustrates how the screwy gluon �eld between �1 and �2 is associated withthe transverse momentum (�k?1; k?2) of the quarks produced at the two break-uppoints. This association has the property that the produced transverse momentum isconserved locally in each break-up point.If we associate �~k?i with the transverse momenta of the qq-pair producedat vertex i, the transverse momenta of the produced particles are given byEq.(5.23). The corresponding squared transverse momentum is thenp2?i = 2m2�2[1� cos(��)] (5.24)where �� = �i � �i�1. Since �� is proportional to the rapidity di�erencebetween vertices �y, it can be written as a function of the particle's light-conefraction z �� = �y� = 12� log�z +m2?=�z(1� z) � (5.25)where � is de�ned as in Fig.(5.6) and with respect to the previous break-up point i � 1. Taken together this means that we can write the transversemomentum of a particle as a function of z and �p2?(z) = 2m2�2 �1� cos��y(z)�i �� : (5.26)As explicitly manifested in Eq.(5.26) this means that the transverse and longi-tudinal components are connected in this model. Inserting p2?(z) in the Lundfragmentation function givesf(z) = N (1� z)az exp�� bz �m2h + p2?(z)�� : (5.27)



114 ScrewinessIn this way Eq.(5.27) gives the distribution of light-cone fractions for a givendirection � .This model keeps the longitudinal properties of the ordinary Lund fragmenta-tion model, but the azimuthal properties are changed. Rapidity di�erences arestill related to h�i but steps in the azimuthal angle are now correlated withsteps in rapidity. The azimuthal angles are no longer related to �=� as givenby the tunneling process, but instead to m2�2 as given by the screwy gluon�eld.When going from one vertex to the next in the case of varying � one has to keepin mind that the transverse momentum produced at the �rst vertex has beenspeci�ed by the previous step. In order to conserve the transverse momentagenerated at each vertex we therefore modify the association in Eq.(5.23), asfollows Z ii�1 ~dk?d� d� = ~k?i � �i�i�1~k?i�1 (5.28)where �i denotes the direction between break-up points i�1 and i, cf. Fig.(5.7).The transverse momenta of the produced particles are then given by~p?i = ~k?i � ~k?i�1 = m [�i~e?1(�i)� �i�1~e?1(�i�1)]p2?i = m2 ��2i + �2i�1 � 2�i�i�1 cos(��)� : (5.29)The p2? given by Eq.(5.29) can then be put into the fragmentation function.Varying � results in larger variations in the emitted transverse momenta ofthe particles. We have used a Gaussian distribution of � -directions and wehave approximated m2? in Eq.(5.25) with m2? ' m2h+ hp2?mini = m2h+2m2�2� .Wheremh is the hadron mass and �� denotes the width in the distribution of � -directions. The equations can be solved iteratively without this approximation,but we �nd that our results are una�ected by this approximation.5.7 Is screwiness observable?In this section we will address the question of whether introducing a correlationbetween y and � of the string break-up vertices has observable consequences forthe produced particles. There are two processes which in principle can destroysuch a correlation. Firstly, there is the initial particle production and secondly,there are resonance decays. The initial particle production spoils things becauseeven if the vertices lie on a perfect helix the produced particle will usuallynot lie on the line between its two constituent vertices in the (y; �)-plane.The particle production uctuations are mainly in rapidity, i.e. a particle isproduced with an azimuthal angle which roughly corresponds to the average



5.7 Is screwiness observable? 115angle of its constituent vertices, while its rapidity is distributed with widthunity around the average of the vertices.To study the consequences of the screwiness model we have generated eventswith three di�erent values h�i = 0:3; 0:5 and 0:7. For each value we have tunedthe parameters of the model to agree with the multiplicity, rapidity and trans-verse momentum distributions of default JETSET. In this way we can studythe correlations introduced by the model as compared to the ordinary Lundstring model. We have tuned m to get the default average p? of the producedparticles, utilizing the fact that the product m� is the important factor. Theparameter b has been changed from the default JETSET value to tune the mul-tiplicity, and �� has been tuned to get the �nal charged p? uctuations. Tuningwith di�erent h�i values results in the parameter values shown in Table 5.1.We note in particular that to get the multiplicity distributions of default JET-h�i 0.3 0.5 0.7m 1.0 0.71 0.61b 0.64 0.68 0.7�� 0.2 0.3 0.35Table 5.1: Parameter values. The model has been tuned to the multiplicity andcharged �nal p? distributions of default JETSET (b = 0:58).SET only minor changes of the b-parameter are needed. We also note that therestriction in Eq.(5.19) is satis�ed for all the cases since in this model only afraction of the energy available in the Lund string is used to produce transversemomenta.We have generated pure qq events and the particles in the central rapidityplateau have been included in the analysis. The plots shown are for four unitsof rapidity, but the qualitative results for observable screwiness are una�ectedfor values as low as approximately three units of central rapidity. We haveanalysed the properties of the generated events by means of the screwinessmeasure, de�ned in Eq.(5.13). Here, the second sum in the measure insteadgoes over the hadrons or over the break-up vertices. The weight Pe is of courseunity for all events.In Fig.(5.8) the screwiness for the break-up vertices is shown. It has a clearpeak for the di�erent values of h�i, and the !-values for the peaks correspondto the average � values used. The screwiness for the initially produced particlesis shown in Fig.(5.9). We note that the peak vanishes for small values of � . Ahelix where the windings are separated by two units of rapidity corresponds to� = 1=�. The vanishing of the signal for small � values is therefore in agreement
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Figure 5.8: Screwiness for the string break-up vertices. The three curves shown arefor h� i = 0:3; 0:5 and 0:7, respectively. There is a clear peak at ! ' 1=h� i in all thecases.

Figure 5.9: Screwiness for the directly produced particles. The three solid curvesare for h� i = 0:3; 0:5 and 0:7, respectively. The peak decreases as h� i is reduced. Forh� i = 0:3 the peak has vanished due to the uctuations in particle production. Thescrewiness for default JETSET (dashed line) has been included for comparison.with our �ndings for the rapidity uctuations in the particle production. Forcomparison we have included the screwiness for the initial particles producedby default JETSET in Fig.(5.9). As expected no signal is found in this case.The screwiness is further diluted by resonance decays, but it is still visible fornot too small � values as shown in Fig.(5.10).To try to enhance the signal we have investigated how the screwiness mea-sure depends on multiplicity and the transverse momentum of the particles.Selecting events with large initial multiplicity enhances the signal. However,analysing events with di�erent �nal multiplicities separately does not give an
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Figure 5.10: Screwiness for the �nal particles (�0's are set stable). The three curvesshown are for h� i = 0:3; 0:5 and 0:7, respectively. For not too small h� i-values thereis a peak at ! ' 1=h� i.enhancement of the signal. The inuence of resonance decays on the multiplic-ity is too large.Selecting events where hp2?i is large enhances the signal when decays are notincluded. This is shown for h�i = 0:3 in the left part of Fig.(5.11) where eventswith hp2?i > 0:3 GeV2 for the initial particles have been selected. As shown inthe �gure this event selection results in the signal surviving particle productioneven for small h�i-values. This event selection is also pro�table when it comesto decreasing the e�ects of resonance decays since events with many decayproducts are not likely to be selected. In the right part of Fig.(5.11) we showthe screwiness for the �nal state particles in events where hp2?i > 0:25 GeV2.The curves shown are for h�i = 0:3 to show that with event selection a signalcan be obtained even for this case. Using the same event selection of courseenhances the signal for larger h�i-values, but in those cases it was clearly visiblein the total sample.A total of 50000 qq events have been used in the analysis, except in the eventselection analysis in Fig.(5.11) where 250000 events are analysed. To be able toobserve screwiness for such a small h�i-value one needs to increase the numberof events by a factor of about �ve compared to the larger values. Since wehave only used positive h�i-values, events with a preferred rotational directionare generated. We could have included both rotational directions in the eventgeneration which would add a signal for negative !, but reduce the statisticsby a factor of two.The e�ects on the screwiness from hard gluons stemming from the parton cas-cade will be investigated in future work. However, since only a fairly small
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Figure 5.11: Screwiness for h� i = 0:3. To enhance the signal events where hp2?iis large have been selected (solid lines). We have included the corresponding curvewith no event selection (dashed lines) to indicate the improvement. Left) Initiallyproduced particles. hp2?i > 0:3 GeV2. Right) The �nal particles. �0's are set stable.hp2?i > 0:25 GeV2.number of events are needed for the results in this paper we expect that inves-tigations of experimental data, in which hard gluon activity is excluded, canbe pro�table.A speci�c property of our model is that hp2?i for directly produced pions issmaller than hp2?i for heavier particles. This feature appears to be in agreementwith experimental data on two-particle correlations [13]. A model for correla-tions in p? in the string hadronization process with similar consequences wasintroduced in [14]. The p? for directly produced pions and �'s are shown forthe screwiness model in Fig.(5.12) and the distributions are clearly di�erent.In the �gure we also show the p? distribution of the �nal pions and compare itto the default JETSET distribution. As seen the secondary pions wash out thedi�erences. The hp?i for various avours at the initial production level dependon the screwiness parameters, but the qualitative di�erence remains.5.8 ConclusionsIt is perhaps surprising that such an ordered structure as a helix could emergeat the end of the QCD cascade. However, when we consider the constraintimposed by helicity conservation, we see that purely random con�gurations ofgluons are disfavoured. This is because the exclusion region around each gluonrestricts the maximum number of allowed gluons. Instead we see that the gluonscan achieve the maximum concentration by close packing themselves into theform of a helix. The fragmentation of this screwy �eld has consequences forthe �nal state particles. Although the fragmentation cannot be described in
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Figure 5.12: Left) The p? (GeV) distributions for the directly produced �'s (solid)and �'s (dashed). The curves shown are for � = 0:5. Right) The p? (GeV) distri-butions for the all �nal pions (solid), �0's are set stable, as compared with defaultJETSET (dashed).terms of gluon excitations of the Lund string, we have instead modi�ed theLund fragmentation scheme. If the winding is within reasonable limits then weexpect \screwiness" to be an observable feature of the QCD cascade.AcknowledgmentsWe thank Patrik Ed�en for very many valuable discussions. This work was sup-ported in part by the EU Fourth Framework Programme `Training and Mobilityof Researchers', Network `Quantum Chromodynamics and the Deep Structureof Elementary Particles', contract FMRX-CT98-0194 (DG 12 - MIHT).5.A Problems with fragmenting soft gluonsIn section 5.4 we claimed that the helix colour-�eld cannot be implemented asan excited string, since gluons softer than k?0 = 1:6 GeV cannot be consideredas excitations of the string.To illustrate the problems with fragmentation of soft gluons we have investi-gated JETSET fragmentation of parton con�gurations with soft gluons emit-ted according to the Dipole Cascade Model as implemented in the ARIADNEMonte Carlo [15]. The allowed k? range for emissions from the colour dipolesis normally between an upper value, given by phase-space limits, and a lowerinfra-red cut-o�, k?c. We have instead used a small maximum allowed k?value (denoted k?max) to restrict the hardness of the emitted gluons. This
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Figure 5.13: The multiplicity in central rapidity per unit of rapidty n and thecorresponding variance �2n depends on the upper cut-o� in the cascade k?max (GeV)as shown. Default JETSET has been used for fragmentation and �2n=n does not startto increase until k?max is roughly 1.6 GeVsoft cascade has been applied to qq-dipoles oriented along the z-axis. The softgluons have a negligible impact on the event topology and for our purposes ittherefore makes sense to de�ne rapidity with respect to the z-axis. We haveanalysed the resulting hadrons in the central rapidity plateau of the events. Toemphasize the features of fragmentation of soft gluons we have not includedresonance decays in our analysis.In Fig.(5.13) we show how the average and the squared width of the centralmultiplicity distribution depend on k?max. The e�ect of the soft gluons is anincrease of the average multiplicity while the multiplicity uctuations remainconstant or even decrease until k?max is above k?0. The hp?i with respect tothe z-axis of the hadrons only increases from 0.46 GeV for a at string with nogluon excitations to 0.56 GeV for k?max = 3 GeV. Changing the generated hp?iby such a small factor has a minor e�ect (� 5%) on the average multiplicity inpure qq events whilst adding the soft gluons increases the average multiplicityby roughly 40%, as shown in the �gure. As mentioned in section 5.4, we�nd that the soft gluons essentially only increase the hadron multiplicity. Thenumber of gluons per rapidity unit varies from 0.25 for k?max = 1 GeV to 0.7for k?max = 5 GeV. The situation is even worse in the case of the helix �eldwhere the expected number of soft gluons per unit of rapidity is signi�cantlylarger. We conclude that gluons softer than k?0 cannot be implemented insidethe Lund Model as individual gluonic excitations of the string.We will end this appendix with an interpretation of the Lund fragmentationmodel, which provides us with the possibility to relate k?0 to the b-parameter in



5.A Problems with fragmenting soft gluons 121the model. The result in Eq.(5.20) (although derived semi-classically) can beinterpreted quantum-mechanically by a comparison to Fermi's Golden Rule.It equals the �nal state phase space times the square of a transition matrixelement jMj2 = exp(�bA). There are two such quantum-mechanical processes,Schwinger tunneling and the Wilson loop integrals, which can be used in thisconnection (and they result in very similar interpretations of the parameters).For the Schwinger tunneling case we note that if a constant (�) force �eld isspanned across the longitudinal region X during the time T with a transversesize A? then the persistence probability of the vacuum (i.e. the probabilitythat the vacuum should not decay by the production of new quanta) is [16]jMj2 = exp(��2XTA?�) : (5.30)Here the number � only depends upon the properties of the quanta coupledto the �eld; for two massless spin 1=2 avours it is � = 1=12�. Comparingthe result in Eq.(5.30) to Eq.(5.20) we �nd that the parameter b = A?=24�(taking into account that the Lund model area is counted in lightcone units).From Eq.(5.14) we obtain the minimum transverse size of the �eld from whichit then follows that the b-parameter in the Lund model must be b � �=24� '0:6 GeV�2. This is evidently just in accordance with the phenomenological�ndings in the Lund model for the parameter b. Further, considering thedistribution in Eq.(5.22) for the transverse momentum of a produced qq-pairbreaking the string we recognise the quantity `2min in the exponential fall-o�.We may conclude that there is a wave-function for the Lund string in transversespace with just the right transverse size to allow the \ordinary" transverseuctuations in momenta.
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