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Introduction

This thesis deals mainly with the properties of final state particles produced in
high energy particle processes, in which the strong interaction is active. It is
divided into two parts — this introduction followed by five papers.

To give an example of multiparticle production in high energy particle processes
this introduction starts off with a schematic picture of the various stages in
hadronic eTe™ events. Most of the work in this thesis is based on the Lund
string fragmentation model which will be briefly described. Following this is a
motivation for studying correlations. The basic phenomenon of Bose—FEinstein
correlations is presented using a treatment analogous to quantum optics. This
introduction ends with a short summary of the five papers.

The first paper is an investigation of the analogy between multiparticle produc-
tion in the Lund string fragmentation model and the multiparticle distributions
of a classical gas. The following three papers describe a model for incorporating
Bose—FEinstein correlations in the string model. In the final paper a scenario at
the end of the parton cascades is suggested and its consequences for fragmen-
tation are discussed.

Hadron production

Essentially we investigate the high energy process q@ — hadrons. One type
of experiment in which this occurs is the collision of electrons and positrons,
also called ete™ annihilation. The process ete™ — v*,72° — qq — hadrons is
shown schematically in Fig.(1). The electron and the positron are accelerated
and when they collide they may annihilate into a photon or a Z°. The ~*
or the Z° may then split into a quark and an anti-quark. This possibility
is described by the theory for electro-weak interactions, which in particular
gives the probability for such an event. The @-pair is however not directly
observed in the experimental detector. Instead a large number of hadrons are
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hadrons

Figure 1: The various stages in a high energy particle process, in which the strong
interaction is active. Firstly, the electron and the positron come from the accelerator
and they collide. In the collision they may annihilate into a photon or a Z°, which may
split into a quark and anti-quark pair. This first part is governed by the electro-weak
interaction. Then the quark and anti-quark radiate gluons, which may radiate further
quarks and gluons, in a so-called parton cascade. Finally, there is hadronization, in
which the gluons and quarks turn into the hadrons which are observed in the detector.
The parton cascade and the hadronization are governed by the strong interaction.

measured. This final step in the process is governed by the strong interaction
and it can be divided into two parts. Firstly, there is the parton cascade,
where the quark and the anti-quark radiate gluons. The emitted gluons may
then radiate more gluons or split into new q-pairs, and so on. Secondly, there
is the hadronization, in which the produced partons, i.e. the quarks and gluons,
turn into the observed particles.

The theory for the strong interaction is called quantum chromo dynamics
(QCD). The force field between partons due to QCD is called a colour field
and the partons carry what is called colour charge. That free quarks or gluons
have never been seen suggests that colour charge is confined. QCD is such that
approximate methods have to be used to get predictions and results from the
theory.

At short distances and over short times the quarks and gluons can be considered
as free particles and the perturbative approximation of QCD (perturbative
QCD) works well. The parton cascade is a good example of a process which is
well described by perturbative QCD. At larger distances, roughly 10~ '°m, the
perturbative approximation breaks down and one has to use other approaches.

Hadronization is an example of the strong interaction which cannot be cal-
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culated using perturbative QCD. As the parton cascade evolves the distance
scales become larger. When hadronization sets in the distances are too large
for perturbative approximations. One model to describe hadronization which
has been very successful when compared with experimental data is the Lund
string fragmentation model [1].

The Lund string fragmentation model

At the end of the parton cascade there is a colour force field stretched between
the partons. The QCD vacuum surrounding the partons contains both qg-pairs
and gluons. This vacuum will make it energetically favoured to press the colour
field between two partons into a tube and the field can be thought of as a string
going from parton to parton. This confining of the field is very different from
the electro-magnetic field between two electrically charged particles where the
field spreads over all space.

Let us consider the simplest case of a quark and an anti-quark going out in
opposite directions with a colour field spanned between them. In the Lund
string model the colour field is approximated with a massless relativistic string
with constant energy-density. This means that as the quark and anti-quark
move apart, more and more energy will be stored in the string-like field between
them. To observe a free quark in an experiment would imply that it has been
completely separated from its partner. The cost of separating a quark rises due
to the constant energy-density linearly with the distance and it would therefore
cost an infinite amount of energy to release a quark. In this way, the string
picture provides an intuitive picture for why quarks not are observed directly in
an experiment. When the quarks run out of energy they will be dragged back
by the field and they will approach each other again. A q@-pair will thus yo-yo
back and forth and what is finally produced is particles made up of quarks
instead of individual quarks.

In a typical experiment the energy of the q@-pair is so large that the energy
stored in the field between them is large enough to produce new qg-pairs as
shown in Fig.(2). There will then be a region between a newly produced quark
and anti-quark where the total colour field due to all the quarks and anti-
quarks cancels. Since there is no colour field this means that the string breaks
into two independent string pieces. One going from the first quark to the new
anti-quark and one going from from the new quark to the initial anti-quark. If
these new pieces have enough energy they will also break-up. This process will
continue into smaller and smaller pieces until only ordinary hadrons remains,
as shown in Fig.(2).

The primary hadrons produced in the break-up process may be unstable and
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Figure 2: The fragmentation of the string. a) The initial quark—anti-quark pair. b)
The first break-up where a new quark—anti-quark pair is produced. ¢) After several
break-ups a set of quark—anti-quark pairs that can be treated as hadrons remains.

decay into stable hadrons. Consequently, what is finally measured is lots of
hadrons produced from an initial qg-pair. However, in the end these particles
come out essentially aligned along the initial partons and the parton configu-
ration can in general be reconstructed. Experimental data can in this way be
used to learn about the dynamics of quarks and gluons.

In the Lund fragmentation model the hadrons get small transverse momenta,
with respect to the string axis. Producing a qq-pair which is not massless costs
energy. This means that they cannot be produced in a point but have to be
separated by some distance, consequently the string piece in between them
vanishes and its energy is used for the pair production. Such a mechanism can
be described by quantum mechanical tunneling and it results in a Gaussian
distribution for the transverse momenta.

One of the nice features of the Lund string fragmentation model is that it can be
formulated stochastically as an iterative process and it is therefore well-suited
for computer implementation.

Correlations

To discriminate between various theoretical predictions and models it is often
profitable to go further in the analysis than just simply analysing single-particle
spectra. Studying the correlations between the produced hadrons can be im-
portant for learning about both parton cascades and hadronization. With the
large number of events generated at the LEP accelerator at CERN it has be-
come possible to test various models in more detail.

The correlation studies in this thesis covers aspects of both parton cascades and
hadronization. Bose-Einstein correlations is in the case of hadron production a
quantum-mechanical effect. The model for it in this thesis is based on the Lund
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string fragmentation model, which is essentially semi-classical. The incorpo-
ration of quantum-mechanical effects in the Lund model can provide further
knowledge about hadronization. The work on what happens at the end of the
QCD cascades is an example of where correlation studies of the hadrons give
information on the dynamics at parton level. The remaining part of this sec-
tion is an effort to give some background to the phenomenon of Bose—Einstein
correlations, before going into the details of the model in this thesis.

Bose—Einstein correlations

The Bose-Einstein effect, sometimes called the Hanbury-Brown-Twiss (HBT)
effect, occurs because the production amplitude for a set of particles should
be symmetrised for identical bosons. It was first used in astronomy, where one
uses the interference pattern of photons to get information about the size of the
photon emitting region, i.e. the size of a particular star [2]. In a high energy
collision most of the particles produced are pions and their interference pattern
can be analysed in a similar way [3]. Experimentally the Bose-Einstein (BE)
effect can be observed as an enhancement of the two-particle correlation func-
tion when the two particles are identical bosons and they have very similar
energy-momenta. [ will in this section give a simplified description of the BE
effect analogous to classical optics, to give some flavour of how it arises in the
production of identical final state bosons in a high energy collision.

Suppose we have a source producing pions with a space-time dependent wave-
function f(z). The total amplitude for emitting a pion with energy-momentum
kq is then given by

Aky) = / drie= 1% f(z;) (1)

and the joint amplitude for emitting two pions with k; and ks is
Akt ka) = A(ky)A(ks) = / daie= %17 f(z;) / dase= i f(z)) . (2)

It should be noted that Eq.(2) is symmetric with respect to the exchange of the
two pions, i.e. it is BE symmetric. The integrals are taken over the space—time
distribution of the source which is finite both in time and space.

The normalised two-particle correlation function Cy(k1, ko) is defined as

CPlhok)) (Al A(k) A% (k) A" (ko))
Calho ko) = B0y (Pl ~ (A A" (k) (AR A (ko)) ~ )
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The chaotic limit

The basic assumption of the BE effect is the chaotic limit. It corresponds to
assuming that the phases of the production amplitudes fluctuate wildly for each
point in space. The two-particle probability

(P(k1, ks)) = / dzydrjdede(f (2:) f (@5) £ (20) £ (@) ye ™ Fr (@immm) g mikalzi—e)
(4)

will in this limit, if the production amplitudes are Gaussian, only get contri-
butions from two cases: z; = z,x; = z; and z; = x7,2; = =z, reducing it
to

(P(k1, k) = / daidaj | f(@i) 2| () (14 ek} (5)
For the one-particle probability we get in the same limit

(P(k1)) = /dxidxj(f(l’i)f*(%))efiklzieiklz" = /dl’i|f(l’i)|2 . (6)

If we introduce the normalised intensity density of the source p(z) and its
Fourier transform p(k)

then the normalised two-particle correlation function can be written as
Cy =1+ |p(Ak)|* ®)

where Ak = ks — k1. We note in particular that Cs — 2 as Ak — 0.

The coherent case

To show the importance of chaotic phases I will consider the complete coherent
case where there are well defined phases between different production ampli-
tudes. If we let ¢; and f; denote the phase and the amplitude at the production
point z; respectively, we get

(P(k1)) = /dl‘idl’kf(xi)f*(l-k)e*“ﬁ(zifzk)
N /dxidxkei(d)i7¢k)fifk€7ik1(z"7”) 9)
and for the joint probability
(P(k1, k2)) :/ didajdxda e OH05 =0k =00 . £ g f o ik (wimak) gika(r; —m)
= (P(k) (P(k) - (10)
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We note that in the coherent case we find Cy = 1.

Some remarks

At this point it should be clear that chaotic emission of bosons is needed to give
rise to the BE effect, i.e. emission of identical bosons is not sufficient. Note
however that (P(ky,k2)) is oscillating with AkAz even in the coherent case,
but that the product of the single probabilities contains the same oscillations
in this case.

The results are based on plane-wave propagation of the bosons after production,
which is reasonable only if there are no final state interactions. This means
that the effects of final state interactions have to be taken into account to pro-
vide quantitative interpretations from the experimentally measured correlation
functions.

If we make a simple model for the source and assume that it is a sphere of
emitters with a Gaussian intensity density, described by a radius parameter o

p(x) = p(0)e ™52 (11)
it corresponds in the chaotic limit to the following C5
Co(AK) =1+ 12K (12)
To extract the radius parameter from experiment
Co(Q) =1+ Ne @ (13)

is usually fitted to the data. Q? = —(Ak)? and ) is a parameter introduced to
accommodate the fact that the measured two-particle correlation not always is
2 for Ak = 0. The parameter A has sometimes been interpreted as the degree
of incoherence in the source.

Another assumption in the derivation is that there is no correlation between
momentum and the production point in the source of the emitted particles.
This is obviously not the case in the string model where the production point
of a particle and its momentum are strongly correlated. Such a correlation
means that the f-amplitudes are k-dependent and that the 'Bose—Einstein’
term

b /dwidﬂfﬂf(wi,kl)f*(wi,kz)> (f (@ ko) f* (g, ka))em A=) (14)

will only be sensitive to a part of the source, since for a fixed small Ak the
overlap of f(z;, k1) and f*(z;, k2) will vanish rapidly as Az = ; —; increases.
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It is therefore the distance in production points for which the momentum dis-
tributions of the produced particles overlap which will be measured using the
BE effect. Thus the Bose—Einstein term is sensitive to something which not
necessarily corresponds to the overall size of the source.

The papers

The number of particles produced in a typical event is so large that straight-
forward calculation of their properties soon becomes prohibitive. The work in
this thesis therefore depends on computer implementations of the models. In
these, Monte-Carlo (MC) programs, events are generated and their properties
can be compared with real experimental events. The MC program based on the
Lund string fragmentation model is widely used and it is called JETSET [4].

Paper I

In this paper we use an analogy invented by Feynman that is usually called the
Feynman-Wilson gas (FWQG) [5]. This analogy links multiparticle production
cross-sections to the multiparticle distributions of a classical gas.

Inspired by the FWG analogy, we derive a partition function for the Lund
string fragmentation model. Furthermore, we calculate the first two terms in
the virial expansion in the density of particles. Our partition function then
yields an equation of state which is similar to that of a Van der Waal’s gas.
The gas is one-dimensional in rapidity. Particles with zero (transverse) mass
do not take up any volume in rapidity and in this case the equation of state
reduces to that of an ideal gas.

The partition function of the gas is in a simple way related to the multiplicity
distribution of its constituent particles. This provides us with a method of
investigating the partition function. For a fixed rapidity 'volume’, our partition
function corresponds to a multiplicity distribution which is very close to a
binomial distribution.

The partition function is derived assuming that the particles are ordered in
rapidity. This is true for the string break-up vertices. Therefore, we expect
that the vertices provide the optimal case to investigate the properties of the
partition function. We find that the multiplicity distribution of the vertices
is well described by the partition function. Finally, we analyse how this is
modified for the particles, both with and without decays of unstable particles.
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Paper 11

A model for incorporating Bose—Einstein correlations in the Lund model is
presented. BE interference between identical bosons produced in hadronic in-
teractions is of a purely quantum mechanical nature. This poses two prob-
lems. Firstly, the probability for a string to decay into a set of hadrons is
based on semi-classical arguments and the process therefore has to be provided
with a quantum mechanical framework. Secondly, the MC implementations of
hadronization models are formulated in the language of stochastical processes,
i.e. they are based on probabilities, while quantum mechanics is based on
amplitudes.

Based on the similarity between the probability for a string to decay into a
set of hadrons and Fermi’s golden rule, we present two quantum mechanical
processes providing similar matrix elements for the production process.

We show that the interference between identical particles can be incorporated
into the probability based MC program if each event is assigned a weight. The
weight for a given event, where the particles are produced in the order P is
given by

IRe(Mp M)
=1 E 15
e s Mo+ | Mpr|? (15)

where Mp is the matrix element for the production of the given configuration.
The sum goes over all other configurations P’ in which identical bosons are
exchanged. As emphasized in the description of the BE effect, a crucial ingre-
dient to get an enhancement in the correlation function is the chaoticity of the
phases of the emission-amplitudes. In this model the chaoticity of the phase of
the matrix element corresponds to the sum over very many interference terms
in the calculation of the event weight.

For n identical bosons the number of configurations is n!. We describe a scheme
to include only the configurations which contribute to the sum in Eq.(15). In
this way it is possible to reduce the computation time to levels where a complete
multiparticle symmetrisation of qq events at LEP energies is manageable.

The model provides an interpretation of the correlation length as a reason-
able estimate of the space—time distance, along the colour field, between the
production points of two identical bosons.

Paper III

The transverse and longitudinal properties of the particles stem in the Lund
string fragmentation model from two different production mechanisms. This is



10 Introduction

manifested in the event weight used to implement the BE correlations and it
results in a difference in the correlation length along the string and transverse
to it.

Two-dimensional correlation functions are studied and the two-particle corre-
lation length is found to be roughly a factor of two larger along the string. The
transverse momentum part of the weight provides damping and summed over
many particles it introduces Gaussian noise. We therefore find that the dif-
ference in correlation lengths is even more apparent when we analyse genuine
three-particle correlations. We conclude that two-dimensional three-particle
correlations are a sensitive tool to investigate the longitudinal stretching of the
string field.

Paper IV

In this paper, we study effects on the W mass measurements at LEP2 from BE
and colour interference during the hadronization phase.

In the reaction ete™ — WTW~ — (q,T,)(Q;Q,) we expect that normally
the two singlet systems (q,q,) and (Q,Q,) hadronize independently into two
strings. If the strings don’t interact with each other then the final state is
given by the superposition of two independently fragmenting strings. However,
if the two systems interact, either through perturbative gluon exchange or in
the hadronization phase, it naturally may have implications for the final state.

The pairs (q,Q,) and (Q,T,) also form colour singlets with probability 1/N2
and this probability could be further enhanced by gluon exchange. We therefore
expect that the hadronization can give "recoupled” colour strings between these
quark—anti-quark pairs. A model for colour recoupling in the hadronization
phase of W-pair decays is presented in [6]. The work on colour interference
in paper IV is based on an improved version of this model. We find that the
possible experimental signal proposed in [6] is ruled out for small recoupling
probabilities.

The typical separation in space-time between the W and the W™ decay ver-
tices is much smaller than 0.1 fm at LEP2 energies. Since this distance is much
smaller than typical hadronic sizes and the correlation lengths associated with
BE interference, bosons from different W’s can be subject to BE symmetri-
sation. This was first proposed in [7]. The model for BE correlations in the
Lund model presented in paper II provides an interpretation of the correlation
length between identical bosons as the distance along the colour field between
their production points. We therefore argue that there are no BE correlations
between bosons coming from different W’s.
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In summary, we conclude that the theoretical uncertainties in the W mass
determination, from interference effects during the hadronization phase, should
be smaller than the experimental statistical error.

Paper V

A scenario for the end of the QCD cascades is presented. The basic idea is
that the constraint imposed by helicity conservation in the emission of gluons
will lead to each gluon being surrounded by an exclusion region for further
gluon emission. This restricts the maximum number of gluons in a given total
phase space. If there is a tendency to emit as many gluons as possible then
the azimuthal degree of freedom has to be utilized. The most close-packed
configuration in rapidity—azimuthal-angle space corresponds to the gluons being
on a helix. This does not necessarily mean that the colour field is wound into
a helix since there are very many ways to colour-connect a given set of gluons.

This has been investigated in a toy model containing the relevant features. We
find that the sub-optimal configurations do not swamp the optimal one and an
ordered field with the characteristics of a helix emerges.

We have modified the Lund fragmentation scheme to incorporate a correlation
between the rapidity and the azimuthal angle of the string break-up vertices.
This modification yields results which are consistent with current experimental
measurements, but predicts at least one signature which should be observable.
Our observable for the helix colour field, which we call screwiness, is defined as

follows
2

Sw) =Y |>_ expli(wy; — 6;))| - (16)

e |j=1

The first sum is over all the events in the analysis and the second goes over the
particles in an event.

To understand how screwiness behaves we note that each term in the inner sum
can be viewed as a step in the complex plane having unit length. If the phase of
each step is fluctuating wildly the sum of several steps will have the properties
of a random walk. The average length of a sum of n steps is then in particular
vn. We conclude that screwiness for a fixed w will, in the case of random
phases, be N(n), where N denotes the number of analysed events. For w =0
the inner sum is the sum of the directions of the particles transverse momenta.
If the number of particles in the event is not too small we expect that the local
conservation of transverse momenta will lead to screwiness being small for w
close to zero. On the other hand if there is a correlation between rapidity and
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azimuthal angles, screwiness will be enhanced for the corresponding w. In the
maximum case, all the steps are in the same direction and screwiness takes the
value N (n)2.

We therefore expect screwiness to be small for w ~ 0, have a peak for the w
corresponding to the close-packing of the gluons and finally fall off to a plateau
for large w, corresponding to the case of random phases.

We find that this observable can survive particle production and subsequent
resonance decays.
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The Feynman—Wilson gas and the Lund model

Bo Andersson, Gosta Gustafson, Markus Ringnér and Peter Sutton

Department of Theoretical Physics, Lund University,
Solvegatan 14A, S-223 62 Lund, Sweden

We derive a partition function for the Lund fragmentation model and compare
it with that of a classical gas. For a fixed rapidity “volume” this partition
function corresponds to a multiplicity distribution which is very close to a bi-
nomial distribution. We compare our results with the multiplicity distributions
obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the
fragmentation vertices of the Lund string. Secondly, for the final state particles
both with and without decays.
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1.1 Introduction

The cross-sections of QCD multiparticle production processes at high energies
have many similarites with the multiparticle distributions of a classical gas, an
analogy which was first noted by Feynman and Wilson [1]. This gas is essen-
tially one dimensional in rapidity space. In this paper we use the gas analogy
to derive a partition function for the Lund string fragmentation model [2]. We
perform a virial expansion to the second order in the density of particles. Our
partition function then yields an equation of state for a Van der Waal’s gas.
Furthermore, it reduces to that of an ideal gas when the produced particles are
massless.

The partition function of the gas is related in a simple way to the multiplicity
distribution of its constituent particles. This provides us with a method of
investigating the partition function. We show that for a fixed rapidity “volume”
our partition function corresponds to a multiplicity distribution which is very
similar to a binomial distribution.

For large rapidity intervals the major fluctuations in multiplicity stem from
gluon radiation. We will, however, neglect gluon emission. In this paper we are
only interested in comparing the Lund fragmentation model with the properties
of a classical gas.

We analyse the multiplicity distributions obtained from the JETSET Monte
Carlo [3] for several scenarios. Firstly, we investigate the string break-up ver-
tices, then the primary particles and finally we include decays. We find that all
cases are remarkably well described by distributions from the binomial family.
In the derivation of our partition function we assume that the particles are or-
dered in rapidity. Since this is true for the vertices, we expect the distributions
of vertices to be the optimal case. Indeed, these distributions are well described
by our partition function.

The transition from vertices to particles introduces some smearing in rapidity.
This results in a wider multiplicity distribution, where the width is sensitive to
the transverse mass of the produced particles. We obtain an ordinary binomial
for the primary particles. However, the strong smearing from decays ensures
that, for the final state particles, this distribution becomes a negative binomial
distribution.

We shall begin with a short presentation of the basic ideas of the Feynman—
Wilson gas (FWQG). This is followed by an introduction to the Lund model and
its relationship to the FWG. We next turn to the multiplicity distributions for
the vertices and lastly how they are modified for the final state particles.
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1.2 The Feynman—Wilson gas

The original discussion of the FWG can be found in [1]. Here we summarize
the main features of the model. We consider a multiparticle production process
where the two primary particles have four momenta p; and p, and large invari-
ant s = (p; +p2)2. The n secondary particles have four momenta ki, ks, .. ., kp,
and each is on the mass shell. In the FWG model the three remaining degrees
of freedom in each k; correspond to the “spatial” co-ordinates of a gas particle
via

T = ky
y = ky
5 o= In[(k. + ko)/my] (1.1)

where the transverse mass is defined by

my = /m?+k2+k2 . (1.2)

Note that in this picture Z corresponds to the rapidity of the relevant particle.
We will assume here that each produced particle is of the same type (each has
the same mass) but the extension to different species is straightforward.

We can write the total cross section for the production process using these
spatial variables. We first note that the invariant phase space d*k/ko becomes
d®7. The energy momentum conserving delta functions are first written in
terms of p=p1 +p2s — k1 — ... — kn.

5(p0)8° (p) = 26(p+)8(p-)5°(pL) (1.3)

with p+ = pg £ p.. This can be expressed in terms of 7 variables using the

relationship kg £ k., = m, et?.

The delta functions have the effect of introducing a fixed volume for the gas.
The transverse momenta are limited and constrain the gas to a narrow tube
of radius ~ 300 MeV. We shall instead focus on the Z co-ordinate. We first
introduce W, and W_ via

Wi =(p1+p2)+ (1.4)
so that we can write
O(pt) =6(W4 — Zmu exp(£Z;)) . (1.5)

In the following we use the Lorentz frame where W = /s. The two delta
distributions contain the requirement that the “gas volume” should be of the
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order of Ins. To see this we may integrate out the rapidities of the first and
the last particles to obtain

dz1dZ, (- )0(-++) = 1/s
o~ —%, ~ In(y/s) . (1.6)

We may in this approximation choose a number sg in such a way that

AZ

Z1 — Zp, =In(s/s0) (1.7)

and assume that all the particles are kept inside this rapidity “volume”. If the
spatial co-ordinates of the primary particles are Ry and Rs respectively then
the cross section can be written as

or(Ry,Ry) = Z [(H/dei> 26(p+)6(p-)8>(p1) On(f1y-..,7n, R, Ro)

(1.8)
For fixed Ry, Ry then op corresponds, in the FWG analogy, to the partition
function of the gas and the functions o,, are the n particle distribution functions
for the gas. Our aim is to connect these ideas to particle production within
QCD as represented by the Lund model.

1.3 The Lund model and the Feynman—W:ilson
gas

1.3.1 The Lund model

In this section we briefly review some features of the Lund model fragmenta-
tion scheme. We will mostly be concerned with the simple situation when the
colour force field from an original quark-antiquark pair (produced by ete™ an-
nihilation, for example) decays into a set of final state hadrons.

In the Lund model, the colour force field is approximated by a massless rel-
ativistic string with a quark (q) and an antiquark (q) at the endpoints. The
gluons are treated as internal excitations on the string field. This means that
there is a constant force field, k ~ 1 GeV /fm, corresponding to a linearly rising
potential, spanned between the original pair. After being produced the q and
the g are moving apart and the energy in the field can be used to produce new
qq-pairs. When a new pair is created the string is split into two pieces.

The production rate of a pair with combined internal quantum numbers corre-
sponding to the vacuum is, from quantum mechanical tunneling in a constant
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Figure 1.1: The break-up in space—time of a Lund string into n hadrons. The
fragmentation area is denoted by A.

force field, given by

P = exp (-721). (19)

Here the quarks in the pair have transverse mass u; = /pu? + Eﬁ_, mass [

and transverse momentum =+k . The final state mesons in the Lund model
correspond to isolated string pieces containing a q from one breakup vertex and
a q from the adjacent vertex together with the produced transverse momentum
and the field energy in between. The break-up of the string is illustrated in
Fig.(1.1).

One necessary requirement is that to obtain real positive (transverse) masses
all the vertices must have spacelike difference vectors. Together with Lorentz
invariance this means that all the vertices in the production process must be
treated in the same way [4]. Another consequence is that it is always the
slowest mesons that are produced first in any Lorentz frame (corresponding to
the fact that time-ordering is frame dependent). Furthermore each vertex has
the property that it will divide the event into two causally disconnected jets,
the mesons produced along the string field to the right and those produced to
the left of the vertex. This can be seen in Fig.(1.1).

A convenient ordering along the force field of the produced particles is rank
ordering. Two particles have adjacent rank if they share a qq pair created at
a vertex . The first rank meson contains the internal quantum numbers of the
original q together with those of the q produced at the vertex closest to the
endpoint q. Similarly the second rank meson contains the internal quantum
numbers of the q from this “first” vertex and the q of the “second” etc. In this
way rank ordering corresponds to an ordering along a light-cone. Alternatively
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Figure 1.2: The production, in energy—momentum space, of a particle with transverse
mass m_ . The particle is produced between the vertices 1, with the squared proper-
time 77 = T'1/k”, and 2, with 73 = T'»/k”>. The particle has fractional light-cone
components z4 and z_.

it is also possible to rank order in the direction from the original q.

The basic Lund model fragmentation process then stems from the following
two assumptions

1. In the centre of phase space (i.e. far from the endpoints) the string decay
process will reach a steady state. The probability to find a vertex is, after
many production steps along the light-cone, a finite distribution in the
proper time of the vertex. This is also the case when the total string field
energy becomes very large.

2. The decay process is the same whether it is ordered along the positive or
along the negative light-cone.

If we consider Fig.(1.2), this means that we assume that the probability to
reach the space-time point 1 at (x11,z—1), after many steps along the positive
light-cone, and to produce a meson with transverse mass m by one further
step to the vertex 2 at (z12,2_2), is equal to the probability to reach the point
2, after many steps along the negative light-cone, and by one further step to 1
produce the meson with m | .

Changing variables to the squared Lorenz invariant proper time 72 = x x_
and the rapidity y = 1/2In (x4 /2z_) the probability to reach the point 1 is
H(73)dridy;. The probability to produce one further particle with mass m
and fractional light-cone component z; is f(z4,m, )dz4. A particle with frac-
tional light-cone component z; has the positive light-cone energy-momentum
component py = z; kx4 and has, in order to stay on the mass-shell, the neg-
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Figure 1.3: The decay, in energy-momentum space, of an n-particle cluster with
invariant squared mass s. The fragmentation area of the cluster is Apegt. I' = K272 s
with respect to the proper-time 7 of the last vertex.

ative component p_ = m? /p; = z_kx_». This means that we obtain the
equation:

H(tH)dr? f(z,my)dzy = H(m3)dr3 f(z—,m1)dz_ . (1.10)

It is a nice and surprising feature of the assumptions above that there is a
unique process that fulfills Eq.(1.10) [4],

H; = O;T%exp(—bl) with T =k’

A

fir = Njpz®! (1—Z> exp(—bm? /2) . (1.11)
z

The numbers C; and N jx are normalisation constants and the particle is as-
sumed to be produced in a step from a vertex with flavour j to a vertex with
flavour k. If ny denotes the number of qg-flavours, the process has ny + 1 pa-
rameters. Although the parameter a is, in principle, flavour dependent, there
has been no need to utilize this in the Lund model as implemented in the JET-
SET Monte Carlo; except for the first rank particle in a heavy quark jet [5].
The parameter b must be flavour independent.

It is possible to construct the probability to produce a finite energy cluster of
rank-connected particles [4] from Eq.(1.11). Such a cluster is shown in Fig.(1.3).
This probability distribution is in a natural way subdivided into two parts, the
probability to obtain the cluster and the probability that the cluster decays
in a particular way. In the following we order the particles along the positive
light-cone. If the cluster has a total light-cone fraction z and a fixed total
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squared cms energy s then the (non-normalised) probability to obtain such a
cluster is

d 1—2z\" 1-
dPext = ?Zz“‘) <7Z> exp(—bI'(s,z)) with I'(s,z) =s

(1.12)

The cluster then starts at a vertex with flavour fo and ends with flavour f,.
The T value is that of the last vertex, as shown in Fig.(1.3). Thus a cluster is
produced in the same way as a single particle between the vertices with ag and
Gy Similarly we find that the (non-normalised) probability for the cluster to
decay into the particular channel with the particles {p}; is

dpint = [H depj(s(p? - m?)] 6(21’]’ - Ptot) eXp(_bArest) (113)

where A,esy is the decay area of the cluster, as shown in Fig.(1.3). Equa-
tion (1.13) is for simplicity written in the ordinary Lund model fashion with a
single a-parameter (this parameter is not explicit in the formula) and we note
the appearance of the phase space for the final state particles multiplied by the
exponential area decay law. The quantity P is the total energy momentum
of the cluster so that P2, = s. We may determine the finite energy version
of the vertex distribution, H(T"), from Eq.(1.12) by exchanging z for T". This
yields

I"an Sao —Qn

H, x (T + s)aott

exp(—bl) . (1.14)
The function Hy in Eq.(1.14) is exponentially decreasing in T' so that the power
dependence in the denominator only plays a role for small values of I and then
it is hardly noticable for large values of s. In this way the assumption 1. above is
fulfilled. That is to say when s becomes very large there is (after normalisation)
a finite distribution in the proper-time size of the decay vertices.

1.3.2 The connection between the Lund model and the
FWG

We will now exhibit the decay distribution of a cluster, as given by Eq.(1.13),
in terms of the partition function which is studied in statistical physics. For
simplicity we write the formulas for a single particle transverse mass m and
a single flavour and we let j denote the rank of a particle. The phase space
factor can in analogy with the result in section 1.2 be written with the particle
energy momentum vectors p; = m (exp(y;), exp(—y;)) as

v = [H Ndpjé(p? - m?)] 5(2;0]' — Piot)
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I
1

n
HNdy]] ZmJ_exp (y5) ZmJ_exp —y;) —P-)
1

N2
— [ Ney; . (1.15)

1

We have in the last line integrated out the first and the last rapidities in the
delta function and from now on we assume that the remaining particles are
placed in rapidities between Ay/2 and —Ay/2 with Ay = In(s/sg) and sp is
some suitable scale. If all the particles are ordered in rapidity we may integrate
out the phase space factor and obtain

_ NAy)” 2
/d\IJ 711_2) . (1.16)

We next consider the decay area of the cluster. Figure (1.4) shows that it can
be written in terms of the rapidities of the particles

A=mL S0 explye — ) - (1.17)
i=1k=j

From this equation and Eq.(1.15) we note that the decay distribution in Eq.(1.13)
has similarities with a partition function, Z,,, and we therefore define a grand
partition function Z as

Z:ZZn
n

=3 Z H Ndy; | 6(...)8(...)exp | —bm? Zexp Yk — Yj)
n | \Jj=1 j=1k=j
n R 1 n n
=5 > || J] Ndy; ) 6(..)5(...)exp — SN Vi — k) | |(118)
n | \g=1 =1 k=j

(The factor of s is required in order to have a dimensionless partition function.)
In this way we see that the decay distribution in Eq.(1.13) may be interpreted
as the partition function for a system of n particles with co-ordinates y; in-
teracting with exponential two-body potentials in a one-dimensional volume
equal to Ay. We note that whilst all the particles interact in this way (“long-
range interactions”) the exponential decrease of the potentials ensures that the
effective interaction is rather short ranged.

If the particles are imagined as making up a gas in rapidity space and are
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N s
mexp -y, szexp Yo

Figure 1.4: The fragmentation area partitioned into two-particle regions reveals how
the area can be expressed as in Eq.(1.17).

interacting via two-body potentials, then the Hamiltonian is

H=Y T(m)+Y V- - (1.19)
j ik

The phase space volume element is [[(dy;dr;), with 7; denoting the quantities
canonically conjugate to the co-ordinates y;. The kinetic energy factors T
are integrated out in Eq.(1.18) and incorporated into the constants N. These
constants then play the role of fugacities.

We shall now attempt to obtain a simplifed expression for the partition func-
tion, Z,. We have already seen that in the strong ordering limit the phase
space may be easily integrated according to Eq.(1.16). Using this limit may
seem drastic since two neighbours in rank may well have a different rapidity
order. However, if many pairs are not well ordered then many of the exponen-
tial potentials in the in the partition function will be strongly increasing, i.e.
the area suppression in the Lund model will make these contributions small.

We can easily find an expression for the exponential in our partition function if
we approximate the fragmentation area. Assuming that each particle lies along
the hyperbola with < v/T' >= + then each takes up a rapidity length § = my /7.
Consequently all the n particles take up the rapidity length Ay = nd =nm /v
and the total area is v?Ay = n?m? /Ay. Since the particles are produced
around the average hyperbola, we expect that this result may be modified by
a constant, ¢y, of order unity giving

N bCQmin2 B csn?

b= Ay Ay’

(1.20)

where we have introduced c¢3 = bm? c5. In this way we obtain from Eq.(1.16)
and Eq.(1.20) a description of the grand partition function in terms of the
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multiplicity n. In the approximation that n is large, i.e. for large rapidity
intervals Ay, we can write the partition function in terms of two parameters

c1 and c3 as
_ (cAy)” —c3n?
Ty~ o exp Ay . (1.21)

We will comment further on the parameters ¢; and ¢3 when we investigate to
what extent the partition function in Eq.(1.21) describes the particle produc-
tion in the Lund model.

1.3.3 The partition function in the Gaussian approxima-
tion

We now investigate the grand partition function in the limit where the number

of particles is large, but the density is low (as in an ordinary gas). In this

case we expect that the grand partition function can be approximated by the

maximal term in the sum. To find the multiplicity for which the partition
function is maximal we first define ®,, by writing Eq.(1.21) as

Z, =exp®, . (1.22)
If we treat n as a continuous variable we can expand ®,, in a Taylor series as

(n —m)

®(n) ~ ®(M@) + (n—n) (M) + 5 ' (m) . (1.23)

Choosing 7 such that ®'(m) = 0, we evidently have a Gaussian approximation
for Z,

_ (n —m)?
Ly P —_ 1.24
exp ®(7) exp< G (1.24)
where the variance, V, is given by V = —1/®"(%). It is straightforward to

obtain expressions for both @ and V if we use Stirlings approximation for the
factorial in ®(n). We find

_ Ay c1Ay
n 203 ln( n )

v

(1.25)

I

|
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—

+
|5
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Notice that, since c3 is positive, this implies that the variance of the distribu-
tion is less than the mean and the distribution is therefore narrower than a
Poissonian. If we now introduce the density of particles in the rapidity volume,
R =7m/Ay, then

®(n) = (R + c3R*)Ay . (1.26)
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For large m we can approximate the grand partition function as Z ~ Zz and so
ar
Z ~ <i> (1.27)
S0
with
ap = R+ c3R* . (1.28)

The grand canonical partition function, for a gas is related to the pressure, P,
temperature, T and volume, In(s/sq), of the gas via

Q1 = —kTlhZz
o0
T T e

where k is Boltzmann’s constant. For the partition function in Eq.(1.27) we
obtain the following equation of state for the gas

P=kT(R+c3R?) . (1.30)

Our expansion thus corresponds to the first two terms in the virial expansion in
the particle density of the gas. We note that the equation of state in Eq.(1.30)
is similar to that of a Van der Waal’s gas. For particles with zero (transverse)
mass we have c3 = 0. In this case a particle does not take up any volume in
rapidity and Eq.(1.30) reduces to the equation of state for an ideal gas.

1.4 The vertex distributions

The partition function is related to the multiplicity distribution, P,, since
P, =— . (1.31)

In the remaining sections we shall use this relationship to further study our
partition function. We begin here with a study of the vertices produced in the
string fragmentation. These vertices are strongly ordered in rapidity and thus
satisfy one of the assumptions used to derive our partition function. This is
only an approximation in the case of the particles. Of course, the number of
vertices corresponds directly to the number of primary particles.

In what follows we outline a simple model in which all particles have the same
mass (m = 0.8 GeV) and there is no transverse momenta. The effects of
relaxing those constraints will be considered in the next section where we return
to the particles.
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1.4.1 The distribution in rapidity

We begin by studying the separation between neighbouring vertices. In the
Lund model the distribution of such separations for a fixed mass, m, is given
by

P(5y) = N/dFF“e‘bF /01 dz@e—bmz/za <5y - %m (%)) .
(1.32)

The logarithm of this distribution is plotted in Fig.(1.5) for various values of the
Lund model parameters a and b. We see from this figure that there are two main
characteristics of the distribution. The first is an effective minimum separation
between vertices which increases with bm?, but is independent of a. Physically
this separation arises because two vertices cannot be very close together in
rapidity if they must produce a massive particle. The second characteristic
is an exponential fall off for large separations, dy, which depends only on the
parameter a.

We can consider a simple model which reproduces the above features very well.
In this model the rapidity region is divided up into a series of N equal bins of
size 0Ynin- The effective minimum separation between vertices can now be taken
into account by demanding that no bin may contain more than a single vertex.
Each bin is assigned a probability p to contain a vertex and a probability 1 —p
to be empty. This allows us to compute the probability of a separation, dy,
between two vertices. If dy is discretised as dy = ndyp;, with n an integer then
the probability of such a separation is given by a geometric series

P(sy) = p(1-p)"~! (n=1,2,...)

p
exp(—pBdy 1.33
Ty xp(=A) (1.33)
with 8 = —In(1 — p)/dybin. We see that large dy separations are exponentially
suppressed. The two main features of Fig.(1.5) are thus very well reproduced
by this simple model, which corresponds to distributing the vertices according
to a binomial distribution (appendix 1.A).

We can investigate the accuracy of the binomial approximation using the JET-
SET Monte Carlo (for consistency we use a fixed mass (m = 0.8 GeV) and
have no transverse momentum generation). Here we generate 2-jet (qq) events
and analyse the distribution of vertices within a rapidity range, Ay. The en-
ergy is chosen to be sufficiently large in order to avoid edge effects from the
q and q fragmentation contaminating the Ay region. The mean, (n), and the
variance, V', of the resulting multiplicity distributions are used to calculate the
binomial parameters N and p, as detailed in appendix 1.A. We will see later
that binomial distributions with these NV and p values do indeed reproduce the
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Figure 1.5: The logarithm of the distribution of the rapidity distance P(dy) between
adjacent vertices as predicted by the Lund model (Eq.(1.32)) for a fixed mass, m = 0.8
GeV, but different values of the Lund model parameters a and b. The upper plot
shows fixed a = 0.3 and b = 0.4, 0.58, 1.6. The lower plot shows fixed b = 0.58 and
a=0.1, 0.3, 0.5.

multiplicity distributions very well. Figure (1.6) shows the results as a function
of Ay, for various values of the parameter b. We see that for large rapidity vol-
umes (Ay 2 5 units) the binomial assumptions seem to work very well. That
is to say, the observed p parameter is effectively constant as a function of Ay,
whilst the parameter N is linear with Ay. This corresponds to a constant bin
size dypin- (As expected the bin size is found to be proportional to bm?.)

The behaviour of the effective JETSET N and p parameters at small values of
Ay can easily be understood. When Ay becomes smaller than the normal bin
size, dypin, we have only one bin which is now of size Ay. In Fig.(1.6) all of
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Figure 1.6: The values of N (upper plot) and p (lower plot) for the vertex dis-
tributions produced by JETSET (for a fixed mass and no transverse momentum
generation) as a function of the rapidity volume, Ay. We show the results for fixed
a=0.3 and b=0.4, 0.6, 0.8 and 1.

the N curves indeed tend to the limit N = 1. Meanwhile the observed p value
is the probability to find a vertex in this single bin

Pobs = P (Ay < dypin) - (1.34)

6ybin
Thus the observed p becomes linear with Ay when Ay is smaller than the bin
size. This effect can be seen in Fig.(1.6). Between the limits of large and small
Ay the behaviour of N and p are not so well determined. Here correlations
between closely spaced vertices will play a role.

We are now in a position to turn our attention back to the partition func-
tion. This formula should also generate a good description of the multiplicity
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distribution for the vertices. We have

(e Ay)” —bm? cyn?
P, = ¢ XD Ay (1.35)

Here ¢p is a normalisation parameter and so is determined in terms of the re-
maining parameters. We can relate the parameters ¢; and ¢, to the parameters
N and p of the binomial distribution. The procedure is explained in detail in
appendix 1.B. For large Ay, we obtain

cT = & eXp|: P ]
Ay (1-p)
Ay
¢ = IN(I—p) (1.36)

In Fig.(1.7) we show the values of ¢; and ¢, which we obtain from our JETSET
multiplicity distributions. For large rapidity volumes, Ay, they tend to con-
stant values. We noted in section 1.3.3 that it is also possible to approximate
Eq.(1.35) using a Gaussian distribution (with the appropriate mean and vari-
ance). If we express the mean and variance of Eq.(1.25) in terms of N and p
and solve for ¢; and ¢z, then we obtain the same expressions as Eq.(1.36). We
note, however, that in the case of a Gaussian distribution one has a symmetric
distribution. This is not true of either Eq.(1.35) or the binomial distribution
since they both contain a term n! in the denominator.

Finally in Fig.(1.8) we demonstrate how well the binomial and Eq.(1.35) repro-
duce the observed multiplicity distribution. We show three curves firstly the
JETSET multiplicity distribution, secondly that obtained from the binomial
distribution and finally the distribution obtained from Eq.(1.35). At Ay =5
we see very good agreement and it is difficult to distinguish the different curves
whilst at Ay = 10 all of the curves lie on top of each other. We thus see that
the vertex multiplicity distributions produced by JETSET do indeed agree very
well with our simple expression for the partition function, Z,.

1.4.2 Distribution in proper time

So far we have discussed the distribution of the vertices in terms of the rapidity,
y. If pr is neglected then the position of the vertices is specified by one further
variable I', which is related to the proper time of the vertex. In this section
we will investigate how the vertices are distributed in T'. As we discussed in
section 1.3.1, we have for the vertices that

P(T) o I'* exp(—bI) (1.37)
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Figure 1.7: The values of c¢1 (upper plot) and c» (lower plot) for the vertex dis-
tributions produced by JETSET (for a fixed mass and no transverse momentum
generation) as a function of the rapidity volume, Ay. We show the results for fixed
a=0.3 and b =0.4, 0.6, 0.8 and 1.

which has a mean (I') = (1 + a)/b. Equation (1.37) is, however, an inclusive
distribution. If we examine vertices within a rapidity range, Ay < 2, then we
find that they are correlated. This means, for example, that if a vertex has a
large ' value then nearby vertices are also likely to have large ' values.

We now examine how the vertices are distributed in T" inside a rapidity range
Ay for various multiplicities, n. Motivated by the finite energy vertex distri-
bution, H(T"), which we considered earlier in Eq.(1.14), we parameterize the
distributions as

Faeﬁ(n7Ay)

H,(T,Ay) = C
(0 89) = Ot Ayt

exp(—bl") . (1.38)
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Figure 1.8: The multiplicity distributions for the vertices for various values of the
rapidity volume Ay as obtained from JETSET (solid curve), the binomial distribution
(medium grey curve) and Eq.(1.35) (light grey curve).

Note that taking the weighted average of H,, should reproduce the inclusive
distribution of Eq.(1.37). In Fig.(1.9) we show distributions in T' obtained
from JETSET for Ay = 6. Each plot in the figure is for a different number of
vertices, n, together with the corresponding fit according to Eq.(1.38). Here
the parameters aeg and seg have been fitted for each different n value. We
see that one can find values of aeg(n,Ay) and seg(n,Ay) for which a very
reasonable description of the T' distributions is obtained. We note that the
large I" behaviour is determined only by the Lund parameter b and not by n
or Ay. Thus it is only dependent on the scale for the area law suppression.
Next we examine the dependence of both aeg and seg on the multiplicity and
the rapidity interval. We have carried out fits to the T' distribution obtained
from JETSET for a set of values of n and Ay. We find that both of these
functions depend only on the ratio R = n/Ay. This can be seen clearly in
Fig.(1.10) where we plot the results of our fits for three different values of Ay,
as a function of the density R.

This completes our study of the distribution of vertices produced in the Lund
model of fragmentation. We can summarize our findings as follows. In rapidity
the vertices are approximately distributed according to the partition function,
whilst in proper time they are distributed according to Eq.(1.38). Importantly
we find that the large T’ behaviour of the distribution in T' is determined only
by the area law. We also find that the functions aeg and seg only depend on
the density of vertices, R, which is itself the important quantity in the equation
of state for the gas in rapidity.
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Figure 1.9: The distributions H,(T", Ay) obtained from JETSET for the default
values of the Lund model parameters (¢ = 0.3 and b = 0.58). Also shown are the
continuous curves obtained from our fits based on Eq.(1.38). In this example Ay = 6
and n =3...10 . The corresponding R values are shown on each plot.

1.5 The particle distributions

For primary particles the mean multiplicity corresponds to the mean number
of vertices. The effects of going over from vertices to particles essentially means
some smearing in rapidity. Thus the rapidity ordering assumed for Eq.(1.21)
will no longer be true. However, for large Ay it should still be a good approxi-
mation. The rapidity of a particle is distributed around the average rapidity of
the two vertices from which the particle stems with a width of about one unit
of rapidity. Therefore the particle multiplicity distribution for a finite rapidity
interval Ay will have the same average as the vertices but a larger width. To
understand this effect we return to our simple binomial model. As before we
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Figure 1.10: The functions acg(R) (upper plot) and seg(R) (lower plot) versus R.
We show the results for three different rapidity ranges Ay = 4 (triangles), Ay = 5
(circles), and Ay = 6 (stars).

divide the rapidity range into IV equal bins with the probability p to contain a
vertex. Now we further assume that the presence of a vertex in any bin results
in a particle in one of the two neighbouring bins with probability ¢ or in the
original bin with the remaining probability 1 — 2¢. In order to see how this
smearing affects the mean and the variance we compute the generating func-
tion. The generating function for the original binomial distribution is given
by

G(z) =[1L+pz—1)V. (1.39)

Some straightforward algebra then shows that the generating function for the
above particle distribution is given by

G(z) =[1+p(z = DN D1+ pz — 1) +p*(z — 1)’q(1 —@)]* . (1.40)
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Figure 1.11: The values of N (upper plot) and p (lower plot) for the particle multi-
plicity distributions produced by JETSET. The four cases shown correspond to: (a)
a single mass, no decays or py; (b) complete mass spectra, but no decays or p1; (¢)
complete mass spectra, but no decays; and (d) complete mass spectra, charged final
state particles.

Thus two factors of (14 p(z — 1)) have been modified. The mean is unchanged
and equal to Np, but the variance is increased from V = (n)(1 — p) to

V= (m)[1—p+4pg(1—q)/N]. (1.41)

This distribution can be rather well approximated by another binomial distri-
bution with the same mean and variance. This corresponds to effective p and
N values

pet = p[l —4q(1—q)/N]

N
Nef-f = _p
Defr

(1.42)
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Thus we see how a larger spread of the particles around the vertices (a larger
g-value) corresponds to a larger width and a smaller effective p-value. From
Eq.(1.42) pesr must be larger than zero, but if we had allowed for a spread
beyond the nearest bin then negative values of peg would be possible. This
corresponds to a negative binomial distribution. Since the bin width is of the
order of bm? the spread is certainly beyond neighbouring bins in the case of
pion production.

We have investigated various cases of final state production. The multiplicity
distributions can still be well approximated by binomial distributions with
constant p-values for large rapidity intervals. In Fig.(1.11) we show N and p
as a function of Ay for the various cases.

For a situation with only a single stable hadron, assumed to have the mass m =
0.8 GeV, and no transverse momentum generation, the result is as expected.
Comparing the multiplicity distribution with the distribution for the vertices,
we find that p is decreased and N is increased. The product of N and p is
however the same for the two distributions.

If we include the standard mixture of different hadron masses p is further
reduced. We obtain in this case a distribution that is very close to a Poissonian.
Thus, as expected, the width of the multiplicity distribution greatly increases
when light pions are produced.

Including transverse momentum generation increases p to positive values as
shown in the figure. The transverse mass of the pions is thus, in the case of
the standard mixture of hadrons, not small enough to give a negative p-value.

Finally, if we include the decays of unstable particles and analyse the final
charged particles then the width increases substantially and p becomes neg-
ative (corresponding to a negative binomial distribution). Including the final
uncharged particles in the analysis results in an even more negative p-value.

We can summarize our findings as follows. The width of the multiplicity distri-
bution is very sensitive to the mass spectrum of the produced particles. Using
default JETSET the average transverse mass is large enough to give a binomial
multiplicity distribution. In this case the negative binomial distribution for the
final state stems from the increased width due to decays.

1.6 Conclusions

Inspired by the Feynman—Wilson gas analogy we have derived an explicit form
for the grand partition function of the Lund fragmentation model. This par-
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tition function is described in terms of the multiplicity n. In particular, we
derive an equation of state for the gas, corresponding to the first two terms in
the virial expansion in the particle density.

The partition function is derived in the approximation that the particles are
ordered in rapidity. This is true for the string break-up vertices and the num-
ber of vertices corresponds to the number of particles. Therefore, we have
investigated the properties of the partition function using the vertices. For
large rapidity intervals, we find that the average and the fluctuations of the
multiplicity of vertices are described by the partition function.

The partition function gives a multiplicity distribution which is close to a bi-
nomial distribution. We find that the average transverse mass of the produced
particles is sufficiently large to get a reasonable description from the approxi-
mation that the particles are ordered in rapidity. Thus the multiplicity distri-
bution of the particles stemming from the string is described by an ordinary
binomial. It is the decays of the unstable particles that results in a negative
binomial distribution for the number of final charged particles.

The distribution of the vertices for different rapidity volumes and different
multiplicities has also been investigated in terms of the proper-time. We find
that the behaviour for large proper-times is determined only by the area-law
and is independent of both the volume and the multiplicity. For smaller proper-
times the distribution is described by a simple parametrisation. We find that
the important quantity for the parametrisation is the density of vertices in
rapidity, which in turn is described by the equation of state for the gas.
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1.A The binomial and negative binomial distri-
butions

The binomial distribution is defined by
N n -n
P(n) = < > p"(1—p)N " . (1.43)

n
The average, (n), and the variance V = (n2?) — (n)? of this distribution are
related to N and p via

(n) = Np
V. = Np(d-p) . (1.44)

The binomial distributions form a family of distributions depending on the val-
ues of N and p. In the limit p — 0 for constant (n}, the distribution becomes a
Poisson distribution. It is also possible to continue the expressions in Eq.(1.43)
to negative p-values, which for constant (n) = Np implies also a negative N.
In this case the distribution becomes a negative binomial distribution. Such a
distribution is conventionally written in the form

nw=( Tt ) ta-ar (1.45)
where
p = (%p) (p<0)
k= -N (N <0) . (1.46)

Note that the relationships of Eq. (1.44) for the average and the variance remain
true, even when p and N are both negative. Negative p-values correspond to
distributions which are wider than a Poissonian. Thus the negative binomial
distributions belong to the same larger family as the (ordinary) binomial and
Poisson distributions. Within this family the width can vary from zero to
infinity. Ordinary and negative binomials correspond to V smaller and larger
than (n) respectively, with the Poisson distribution as the limiting case in
between.

1.B The binomial approximation of the parti-
tion function

Our aim is to determine the ¢; and ¢y parameters of Eq.(1.35) from the N and
p parameters of a binomial distribution. We begin by using Stirlings approxi-
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mation to write the binomial distribution as

In(P) = IHTN—FNIHN— (N=n)In(N —n) —n—
w +Nln(l—p)+nln (%) —In(n!) (1.47)

whilst the distribution in Eq.(1.35) can be written as

2. 2
bmAﬂ +nln(c;Ay) —In(n!) . (1.48)
Y

In(P,) =1In(cy) —
We now express n as n = (n) + x, where (n) is the mean. Next we subtract
Eq.(1.47) from Eq.(1.48) and expand around z = 0 up to terms of order z?.
Equating the series coefficients to zero determines the parameters ¢; and ¢y in
terms of N and p. We obtain

1—2p+2Np —2Np?
Ay = N
bm? 2N(1—p)—1
me; _ 2N(A-p) -1 (1.49)
Ay 4N2(1 — p)?
Which for large Ay can be simplified to
p
c1Ay = Np exp [ }
' (1-p)
bm?2co 1
= . 1.50
Ay 2N(1-p) (1:50)
If we insert these expressions into Eq.(1.35) then we finally obtain
(Np)™ —n? +n2Np
P, ~ 1.51
al P TaN I - p) (1.51)
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By providing the Lund Model fragmentation process with a quantum-mech-
anical framework we extend the results of [6] to situations where there are very
many identical bosons. We investigate the features of the weight distributions in
some detail and in particular exhibit three-particle Bose—Einstein correlations,
the influence on the p-spectrum and the difference between charged and neutral
pion correlations.
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2.1 Introduction

The Hanbury-Brown—Twiss (HBT) effect [1], often called the Bose—Einstein
effect, originated in astronomy where one uses the interference pattern of the
photons to learn about the size of the photon emission region, i.e. the size of
the particular star, which is emitting the light. The effect can be described as
an enhancement of the two-particle correlation function that occur when the
two particles are identical bosons and have very similar energy-momenta. A
well-known formula [2] to relate the two-particle correlation function (in four-
momenta p;,j = 1,2 with ¢ = p1 — p2) to the space—time density distribution,
p, of (chaotic) emission sources is,

0'd0'12

_ 2

where R is the normalized Fourier transform of the source density

_ J p(z)dz exp(igz)
Rq) = T p@)da : (2.2)

This quantity is often, without very convincing reasons, parametrised in terms
of a “source radius” R and a “chaoticity parameter” A,

IR(@)]” = Aexp(~R*Q?) (2.3)

with Q% = —¢2. The source radii obtained by this parametrisation tend to be
similar in all hadronic interactions (we exclude heavy ion interactions where
the extensions of nuclear targets and probes will influence the result), with
R ~ 0.5 — 1 fm, but the chaoticity varies rather much depending upon the
particular data sample and the method of the fit. At present the knowledge of
higher-order correlations is still limited in the experimental data, although in
principle there should be such correlations.

The HBT effect between identical bosons produced in hadronic interactions,
being of a purely quantum mechanical nature, is not easily included in the
event generator programs used in high energy physics. Such simulation pro-
grams, like HERWIG [3] (based upon the Webber—-Marchesini parton cascades
and ending by cluster fragmentation) and JETSET [4] (based upon the Lund
Model string dynamics [7]) are built in accordance with classical stochastical
processes, i.e. they produce a probability weight for an event without any
quantum mechanical Bose—Einstein interference effects.

Sjostrand has introduced a clever device as a subroutine to JETSET, in which
the HBT effect is simulated as a mean field potential attraction between iden-
tical bosons [5]. Thus, given a set of energy-momentum vectors of identical
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bosons, p1, ..., pn, generated without any HBT effect, it is possible to reshuf-
fle the set into another set where each pair on the average has been moved
relatively closer to show a (chosen) HBT-correlation, while still keeping to
energy-momentum conservation for the whole event.

In this paper we will develop a method devised in [6] to provide the Lund
Model with a quantum mechanical interpretation. In particular there will be
a production matrix element with well-defined phases. This will then be used
to make a model of the HBT effect. Although this model stems from different
considerations it will nevertheless contain predictions which are similar to those
in the ordinary approach giving Eq.(2.1). The correlations in this model are
implemented as weights assigned to events generated by JETSET.

In section 2.2 we survey those features of the Lund model, that are necessary for
the following. We have in this work extended the method from [6] to situations
where there are many identical bosons and in section 2.3 we will exhibit the
general n-particle HBT-correlations in the model. The resulting expressions
contain a sum of in general n! terms, i.e. it is of exponential type from a
computational point of view. It is possible to subdivide the expressions in
accordance with the group structure of the permutation group. Although the
higher order terms provide small contributions in general the computing times
are still forbidding. In order to speed up the calculations we introduce instead
in this paper the notion of links between the particles and we show that in
this way it is possible to obtain expressions of power type from a calculational
point of view, which are perfectly tractable in a computer.

In the last section we exhibit a set of results both in order to show the workings
of the model and to provide predictions for experiments. Since we have ex-
tended the model to multiparticle permutations we show in particular that the
model exhibit three-particle BE correlations. In agreement with our findings in
section 2.3, that our general expression is sensitive to a reasonable estimate of
the space—time difference between the production points of the identical bosons,
we get a difference between charged and neutral pion correlations. The details
of the general event weight distribution are analysed and we also investigate
the influence on the p-spectrum

We will in this paper be satisfied to treat only two-jet events, i.e. we will
neglect hard gluon radiation and we will come back to HBT effects in gluon
events in another publication.
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2.2 Some properties of the Lund model

Within the framework of perturbative QCD it is possible to obtain many useful
formulas but all the results are expressed in a partonic language. In order to
be able to compare to the hadronic distributions, which are observed in the
experimental setups, it is necessary to supplement the perturbative results with
a fragmentation process. We will in this paper be concerned with the Lund
string model [7] and we start with a brief introduction to its main properties.

In the string model the confining colour field is approximated by a massless
relativistic string. The endpoints of the string are identified with quark and
anti-quark properties while the gluons are assumed to behave as transverse
excitations on the string. The string can break up into smaller pieces by the
production of q@-pairs (i.e. new endpoints). Such a pair will immediately start
to separate because of the string tension, which in the rest frame of a string
segment corresponds to a constant force x; phenomenologically x ~ 1 GeV /fm.
Final state mesons are formed from a q and a q from adjacent vertices, as
shown in Fig.(2.1).

Each breakup vertex will separate the string into two causally disconnected
parts. From the causality, together with Lorentz covariance and straightforward
kinematics, it is possible to derive a unique breakup rule for the string by means
of (semi)classical arguments [8].

The unique breakup rule results in the following probability for a string to
decay into hadrons (pi,...,pn)-

dP(py, .., pn) = | [[(Ndpid(p} —m3)) 5(ij—Ptot)exp(—bA) (2-4)

2

where A is the area of the breakup region as indicated in Fig.(2.1) and N and
b are two parameters.

The similarity of the result to Fermi’s Golden Rule for the probability of a quan-
tum mechanical transition, i.e. the size of the final state phase space multiplied
by the square of a matrix element | M|? expressed by the exponential area sup-
pression, provides a reasonable starting point to try to derive a corresponding
quantum mechanical process. There are at least two possible mechanisms, viz.
a quantum mechanical tunneling process a la Schwinger and/or the possible
relationship to the Wilson loop operators in a gauge field theory. We will find
that they provide very similar answers to the problem.

Starting with the tunneling arguments, we note that while a massless qg-pair
without transverse momentum can be produced in a point-like way anywhere
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Figure 2.1: The decay of a Lund Model string.

along the string, a massive pair or a pair with transverse momentum must
classically be produced at a distance so that the string energy between them can
be used to fulfill energy-momentum conservation. If the transverse momentum
is conserved in the production process, i.e. the qq with masses p obtain ila_,
respectively, then the pair may classically be realised at a distance 0z = 2u /k,

where p | is the transverse mass \/p? + Ef_

The probability for a quantum mechanical fluctuation of a pair, occurring with
w1 at the (space-like) distance dz, is in a force-free region given by the free
Feynman propagator squared:

4 2
|Ap(6x, 1 )|> ~ exp(—2u1 6z) = exp <—%> . (2.5)

A corresponding quantum mechanical tunneling process in a constant force
field will according to WKB methods give

exp <—2 /0595 - (Is}aj)QdCU)

The difference is that in the force-free case we obtain an exponential suppres-
sion 442 /k but when the constant force pulls the pair apart we obtain the
somewhat smaller suppression mu?% /k. Besides the mass suppression (which
phenomenologically will suppress strange quark-pairs with a factor of ~ 0.3
compared to “massless” up and down flavored pairs) we obtain the transverse
momentum Gaussian suppression

- (JT“TL) =P(u) . (26)

1
exp <—r'2ki> with 207 :; . (2.7)
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The value of o as used in JETSET is a bit larger than the result in Eq.(2.7) but
this can be understood as an effect of soft gluon generation along the string.
The transverse momentum of a hadron produced in the Lund Model is then
the sum of the transverse momenta of its constituents.

We may use the elementary result in Eq.(2.6) to calculate the persistence prob-
ability of the vacuum, P, as it is defined in [9]. It is the probability that the
no-particle vacuum will not break up, owing to pair-production, during the
time T over a transverse region A, when a constant force k is applied along
the longitudinal x-direction over a region L:

P = 1T (1-Pu))=exp| Y log(l—P)| . (28)

te(0,T),2€(0,L),kL,s,f ta,kL,s,f

We have then assumed that the field couples to (fermion) pairs with spin s and
flavors f and we sum over all possibilities for the production. As each pair needs
a longitudinal size dx = 2u /x and, according to Heisenberg’s indeterminacy
relation, will live during a time-span 27 /2u, there is at most kLT /27 pairs
possible over the space-time region LT. The transverse momentum summation
can be done by Gaussian integrals from an expansion of log(l — P) and the
introduction of the well-known number of waves available in a transverse region
Aj: (AL/(27)?)d?k, . In this way we obtain for the persistence probability

el ’
P =exp(—x’LTA,T) with TI= 71’;_713 Z 2 eXP (— m;u > (2.9)
n=1

where n¢,n, is the number of flavor and spin states.

There are two remarks to this result. Firstly, although the method to treat the
integration over time and longitudinal space, by close-packing reasonably sized
boxes, may not seem convincing the final formula [9] coincides with the one
obtained by Schwinger [10], for the case of a constant electric field £. Then &
is identified with the force of the charges in the external field, i.e. Kk — €.

Secondly, the result is in evident agreement with the formula for the decay of
the Lund string in Eq.(2.4) if we identify LT with the (coordinate space) area
size A. In this way we also obtain the result that the parameter b is

b=r>A T (2.10)

i.e. it corresponds to the transverse size of the (constant) force field, which we
have modeled by the string. The quantity IT is 1/(127) for two massless spin
1/2-flavors.
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The second quantum mechanical approach is to note that a final state hadron
stems from a q from one vertex j and a q from the adjoining vertex j + 1.
In order to keep to gauge invariance it is then necessary that the produc-
tion matrix element contains at least a gauge connector between the vertices:
exp(i fj]H gA*dzx,), where g is the charge and A" the gauge field. Conse-
quently the total production matrix element must contain a Wilson loop oper-
ator:

M =exp(i ?{gA”dmu) (2.11)

with the integration around the region A (note that the field is singular along
the border line and we are therefore not allowed to distort the integration
contour inwards). The operator in Eq.(2.11) was predicted (and inside lattice
gauge calculations also found) to behave as

M = exp(ifA) (2.12)

with the real part of £, Re(¢) = k. In the present situation where the force
field region decays we expect an imaginary part, corresponding to the pair
production rate according to the well-known Kramers-Kronig [11] relationship
for the dielectricity in matter, in this case the QCD vacuum.

The two interpretations of the area law, i.e. the Schwinger tunneling in Eq.(2.9)
and the Wilson loop operator result in Eq.(2.12) can be related if we note that
according to Gauss’ law the integral over the extension of the force field should
correspond to the charge. For a thin string we should then obtain for the area
falloff rate b ox k2A| o ka. Although Gauss’ law is more complicated for a
non-abelian field with triplet and octet color-charges and similarly octet fields
it is possible to make a case for an identification of the parameter b as

Kn o
12

which is what we should expect from the expected imaginary part of the dielec-
tricity in Eq.(2.12). a = 3¢g?/(4x) is then the effective QCD coupling, including
the color factors. The result is also phenomenologically supported if we con-
sider a partonic cascade down to a certain transverse momentum cutoff k.
and then use the Lund model hadronization formulas to obtain the observed
properties of the final state. In that way we may determine the parameters in
the model as functions of the partonic cascade cutoff. A remarkably good fit
to the b-parameter is given by C/log(k? ./A?) with C given by Eq.(2.13) and
A ~ 0.5 GeV [12], according to the QCD coupling.

b =

(2.13)

Independently of the precise identification of b, we obtain a possible matrix
element from Eq.(2.12)
M =exp(ik —b/2)A (2.14)
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which not only will provide us with the Lund decay probability in Eq.(2.4), but
also can be used in accordance with [6] to provide a model for the Hanbury-
Brown—-Twiss effect for the correlations among identical bosons.

2.3 A model for Bose—Einstein correlations

We will from now on work in energy-momentum space in agreement with the
usual treatment of the Lund model formulas. Further we will make use of a
light-cone metric with p1 = e £ py where ¢ denotes the longitudinal direction
along the string. The two metrics differ by a factor of two, i.e. 2dedp, =
dp4dp—. Note in particular that compared to the considerations in the earlier
section this means that the area A — 2k2A and the parameter b — b/(2x2).

We now consider a final state containing (among possibly a lot of other stuff)
n identical bosons. There are n! ways to produce such a state, each corre-
sponding to a different permutation of the particles. According to quantum
mechanics the transition matrix element is to be symmetrised with respect to
exchange of identical bosons. This leads to the following general expression for
the production amplitude

M= Mp (2.15)
P

where the sum goes over all possible permutations P of the identical bosons.
The cross section will then contain the square of the symmetrised amplitude

M

2 2 2Re(MPM;)!)
|M| - ;(|M7’| (1 +p§p |MP|2 + |M7>’|2)) : (2'16)

The phenomenological models used to describe the hadronization process are
formulated in a probalistic language (and not in an amplitude based lan-
guage). This implies that interference between different ways to produce iden-
tical bosons is not included. In this case the probability for producing the state
is

IMP = 3 [ Mo (2.17)
P

instead of the probability in Eq.(2.16). Comparing Eq.(2.16) and Eq.(2.17)
it is seen that a particular production configuration leading to the final state
P can be produced according to a probalistic scheme and that the quantum
mechanical interference from production of identical bosons can be incorporated
by weighting the produced event with

w=1+ 3" |2Re(M7’M7”) . (2.18)
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Figure 2.2: The two possible ways, (...,1,1,2,...) and (...,2,1,1,...), drawn with
solid and dashed lines respectively, to produce the entire state when two of the bosons
are identical. The open circles show the two different production points for each
identical boson and the arrows indicate the space-time difference, dz, between the
two production points for the two production configurations. A and B denote the
two vertices surrounding the identical bosons.

The outer sum in Eq.(2.16) is as usual taken care of by generating many events.

In order to see the main feature of symmetrising the hadron production am-
plitude in the Lund Model we consider Fig.(2.2), in which two of the produced
hadrons, denoted (1, 2), are assumed to be identical bosons and the state in be-
tween them is denoted I. We note that there are two different ways to produce
the entire state corresponding to the production configurations (...,1,7,2,...)
and (...,2,1,1,...), i.e. to exchanging the two identical bosons. The two pro-
duction configurations are shown in the figure and the main observation is that
they in general correspond to different, areas!

The area difference, A A, depends only on the energy momentum vectors py, po
and pr, but can in a dimension-less and intuitively useful way be written

AA

o = opdx (2.19)
where 0p = p» — p1 and dz = (6t;0,0,9z) is a reasonable estimate of the
space-time difference, along the surface area, between the production points of
the two identical bosons. We note that the space-time difference dz is always
space-like. In Fig.(2.2) oz, for the two production configurations, is indicated
by arrows, together with open circles showing the corresponding production
points. The production points are defined by the centres of the particles space—
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time rectangles.

We go on to consider the effects of transverse momentum generation in the qq-
vertices. First we note that the total transverse momenta of the sub-state 1, 1,2
in Fig.(2.2) stem from the q and G generated at the two surrounding vertices,
A and B. This is, owing to momentum conservation, fixed by the properties of
the hadrons generated outside of the sub-state. Using this we find that there is
a unique way to change the transverse momenta in the vertices surrounding the
intermediate state I such that every hadron has the same transverse momenta
in both production configurations.

Suppose as an example that we have generated +k 4 in the vertex A and +k, g
in the vertex B (i.e. so that —k, 4 and kg defines the sub-state). Then
to conserve the transverse momenta of the observed hadrons when changing
production configuration from (1,17,2) to (2,1,1) it is necessary to change the
generation of transverse momenta in the two vertices surrounding I as follows
(in an easily understood notation):

+k,; — :I:(klA-l-kLB—kllI) (2.20)
+k'';, —» L(kia+kig—kis) .

This means that exchanging two bosons with different transverse momenta will
result in a change in the amplitude as given by Eq.(2.7) for some of the vertices.

From the amplitudes in Eq.(2.14) and Eq.(2.7) we get that the weight in the
Lund Model can be written

AA
T
w=1+ 5 (2.21)
A 2
P'EP cosh <bA2A + %fw»
pL

where A denotes the difference with respect to the configurations P and P’
and the sum of p? , is over all vertices. We have introduced o, as the width

of the transverse momenta for the generated hadrons, (i.e. o} = 20?).

Using Eq.(2.19) for a single pair exchange one sees that the area difference is,
for small dp, governed by the distance between the production points and that
AA increases quickly with this distance. We also note that AA vanishes with
the four-momentum difference and that the contribution to the weight from a
given configuration, P’, vanishes fast with increasing area difference AA. From
these considerations it is obvious that only exchanges of pairs with a small dp
and a small dz will give a contribution to the weight. In this way it is possible
to relate to the ordinary way to interpret the HBT effect, cf. Eq.(2.2).

It is straightforward to generalise Eq.(2.19) to higher order correlations. One
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notes in particular that the area difference does not vanish if more than two
identical bosons are permuted and only two of the bosons have identical four-
momenta.

Models for BE correlations have been suggested, e.g. [13], with similar weight
functions, but it is important to note that the weight in our model has a scale
both for the argument to the cos-function as well as for the function which works
as a cut-off for large dp and dz (in our case a cosh-function). Further the two
scales in our model are different and well-defined, at least phenomenologically.
We will come back to the influence of the two scales in section 2.5.

2.4 MC implementation

To calculate the weight for a general event, with multiplicity n, one has to go
through ni!ns!...nn! — 1 possible production configurations, where n; is the
number of particles of type i and there are N different kinds of bosons. For a
general ete™ event at 90 GeV this is not possible from a computational point
of view.

We know however that the vast majority of configurations will give large area
differences and they will therefore not contribute to the weight. One of our aims
with this work has been to find a way to approximate the sum in Eq.(2.21) with
a sum over configurations with significant contributions to the weight. From
basic group theory we know that every group can be partitioned into its classes.
Let 11111...1 denote the class containing only the identity element, where
all particles are unchanged, mims111...1 denote the class of group-elements
where m; particles are cyclically permuted, mo other particles are cyclically
permuted and the rest are unchanged, and so on. We can define the order, k, of
aclass as k = ) ;(m; —1). The useful feature of this ordering of classes is that
for all group-elements contained in order & the minimum of the summed size (in
positions) of the cyclically permuted clusters , Ar, is k, i.e. the minimum length
over which particles are moved increases with the order. From the discussion
at the end of section 2.3 it is then obvious that the contribution to the weight
from a configuration will decrease with its order. All classes up to order 4 are
shown in Table 2.1.

We have found that for essentially all events the weight does not change when
including the fifth order. But we have also found that lots of lower-order
configurations give no contributions to the weight. This is not acceptable when
taking computing time into account and we have therefore abandoned using a
cut in order.
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Order 0 1 2 3 4
Classes | 11111...1 | 21111...1 | 22111...1 | 22211...1 | 22221...1
31111...1 | 32111...1 | 32211...1
41111...1 | 33111...1
42111...1
51111...1
Ar 0 >1 > 2 >3 >4

Table 2.1: The classes of the permutation group order by order up to the fourth
order. Ar is the minimum length over which particles are permuted.

In this work we have instead approximated the sum in Eq.(2.21) with a sum
over configurations of all orders with significant contributions to the weight.
This has been done by introducing exchange-links between particles. We have
only taken into account interference with configurations where all particles
are produced in positions from which there is a link to a particle’s original
production position. Defining a link matrix, £, as follows

[o— 1 if there is a link between particles ¢ and j.
“ 0 otherwise

one gets a simple representation of the configurations to be considered. The
function of a link, £;;, is to enable moving particle ¢ to particle j’s position. It is
important to note that a general link matrix enables higher order permutations
even though the links are defined between pairs only. If all elements in £ are
1, it corresponds to considering all n! permutations, while only the original
configuration is considered if £ is the identity matrix.

AA for a pair exchange increases, as previously discussed, with the four-vector
difference dp and with the size of the state in between. Since we know from
Eq.(2.21) that the contribution to the weight for a given configuration vanishes
fast with increasing area difference AA, it is useful to introduce the concept
of link-size, defined below as the invariant four-momentum difference together
with the invariant mass of the particles produced in between the pair (in rank).
By only accepting links between particles if the size of the link between them
is smaller than some cut-off link-size, ., we get a prescription for the exchange
matrix of an event. In this way, by specifying the allowed two-particle ex-
changes, we get, to all orders, which configurations to take into account. We
have found that for a given d. one includes all configurations that provide a
contribution larger than some € to the weight. Taken together this means that
we get all the important contributions to the weight if we chose §. so large that
the neglected terms smaller than e give a negligible change for every weight.
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We have used a cut-off link-size such that there is a link between identical
bosons if one of the following conditions is fulfilled.

e Q%= —(pi—p;j)? < Q%ax =~ 1 GeV?.
e the invariant mass of the particles produced in between (along the string)
the pair is less than m2 .~ (20 GeV)>.

max —

Including links larger than this give no contribution to the weight for essentially
all events. There are a few special events for which the weights have not
converged with this §.. They are very rare and have in common that they have
a cluster of particles such that exchanging any pair in the cluster will give a
large area-difference, but there are cyclic permutations which give a small area-
difference. Increasing J. to include these configurations give no noticeable effect
in any observable known to us (except the computing time in the simulation!).

Including decays

A large fraction of all final-state bosons stem from decays of short-lived reso-
nances with lifetimes comparable to the time scale in string decay. Therefore
they may contribute to the Bose—Einstein effect. To include their decay am-
plitudes and phase space factors and symmetrise the total amplitude is very
difficult and it is furthermore not known how to do that in a model-consistent
way. We have included resonance decays in the following simple way

Particles with width larger than T'y;, are assumed to decay before
Bose—Einstein symmetrisation sets in and the matrix elements are eval-
uated with their decay products regarded as being produced directly,
ordered in rank. We have used I'min = 0.02 GeV.

The signal in the two-particle correlation function goes down very much if we
neglect all the pions from resonance decays when symmetrising the amplitudes.
But our signals are fairly independent of 'y as long as it is small enough for
the p’s to decay before the symmetrisation.

An elaborate discussion on the treatment of resonances in connection with BE
correlations can be found in [14].

2.5 Results

In our simulations we have used the Lund string model [7] implemented in the
JETSET MC [4] to hadronize qg-pairs (i.e. no gluons are considered). The
MC implementation of our model is available from the authors.
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Figure 2.3: The distribution of Bose—Einstein weights for two-jet states in JETSET.
The tail of positive weights is shown in the insert.

2.5.1 The weight distribution and two-particle correla-
tions

The majority of the weights are close to and centered around unity, as seen
in Fig.(2.3). There is however a tail of weights far away from unity in both
directions. The tail of positive weights is shown as an insert and the distribution
looks like a power. However if we subdivide the events into sets with similar
number of links and study the weight distributions for these sets separately, we
find that the weight distribution for each set is basically Gaussian. The width
of these Gaussians increases with the number of links in the corresponding set,
as shown in Fig.(2.4). The power like behaviour of the weight distribution is
therefore merely a consequence of summing over events with different number
of links. It should be emphasized that the negative weights only are a technical
problem. Summing over many events results in positive probabilities for all
physical observables, which is obvious from Eq.(2.16).

We have taken the ratio of the two-particle probability density of pions, pa,
with and without BE weights applied as the two-particle correlation function,
RQ, i.e.

N p2w(P1,D2)

Ry (p1,p2) = (P ) (2.22)

where the w denotes weighted distributions.

As discussed in connection with Eq.(2.19) the correlation length in Q depends
inversely on the (space-like) distance between the production points of the
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Figure 2.4: The distribution of Bose—Einstein weights for two-jet events subdivided
into sets with different number of links, n;. Two samples for 3 < n; < 5 and 10 <
n; < 12 are plotted.

identical bosons and the Bose—Einstein correlation length, that is dynamically
implemented, in this model can most easily be described as the flavour com-
pensation length, i.e. the region over which a particular flavour is neutralised.
Identically charged particles cannot be produced as neighbours along the string
in the Lund model while neutral particles can. This implies that identically
charged pions which always must have a non-vanishing state in between will
have a more narrow correlation distribution in Q compared to neutral pions.
This has been found as can be seen in Fig.(2.5) where the correlation distribu-
tions for pairs of particles used in the symmetrisation are shown. The correla-
tion functions have been normalised to unity in the region 1.0 < @ < 2.5. The
correlation distribution for charged pions can be approximated by the LUBOEI
algorithm [5] with radii ~ 1 fm and A ~ 0.8 as input parameters (Note that
the input parameters are not exactly reproduced in the resulting correlation
function). This is in reasonable agreement with the LEP experiments, which
measure sizes of the order of 0.5 — 1 fm, [15, 16, 17], even though they tend
towards values smaller than 1 fm. The correlation function depends on the
daughters of resonances and especially the decay products of i’ play a large
role. The production rate of n' used in JETSET was questioned in [14], in
connection with BE correlations. We have used reduced production rates for
n and n' by setting the extra suppression factors in JETSET to 0.7 and 0.2
respectively, in accordance with the DELPHI tuning [18]. For a more elaborate
quantative comparison with data our BE Monte Carlo has to be tuned further
and the resulting events have to be subjected to the same corrections as in the
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Figure 2.5: The ratio R(Q) of the number of pairs with invariant relative four-
momentum @ with and without Bose—Einstein weights applied. The sample consists
of the particles used in the symmetrisation.

experimental analysis.

The general findings for the parameter dependence of the weight function in
Eq.(2.21) is that due to the smallness of b as compared to 1/k, it is for most
of the terms in the sum the decrease of the cos-function with increasing AA
that governs the behaviour. For larger AA it is the transverse momentum
contributions to the cosh-function which takes over to damp the contribution
to the weight. Note that the argument of the cos-function contains k as the
basic scale and that the transverse momentum contributions also are governed
essentially by k (see Eq.(2.7)). Going over to correlation functions we find
as expected from the conclusions for the weight function that the correlation
function is not affected when the b-parameter is changed +20%. The slope of
the correlation function for small @) values and therefore the correlation length
is very sensitive to k and it is also sensitive to the width of the transverse
momenta. The transverse momentum generation acts as noise in the model so
that all weights approach unity and consequently all correlations vanish with
increasing o, . It is however this noise which makes the weight calculations
tractable. Consequently, the main parameter is the string tension, k, in this
model for Bose-Einstein correlation weights as well as for the correlation length.

Since the BE weights are depending on the space-like distance between the pro-
duction points we have studied the two-particle correlation function as a func-
tion of the invariant space-time distance Az = +/—dz? where dz = (6t;0,0, 6z)
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Figure 2.6: The ratio R2(Az) of the number of pion pairs with invariant relative
distance Az with and without Bose—Einstein weights applied. The sample consists
of the particles used in the symmetrisation, i.e. pions that are initially produced or
stemming from short lived resonances as defined in section 2.4.

as defined in Eq.(2.19). In Fig.(2.6) R2(Az), which has been normalised to
unity in the region 1.0 < @ < 2.5, is plotted. The figure illustrates that the
effect of the Bose—Einstein symmetrisation , i.e. to pack identical bosons closer
together in phase-space, is manifest up to production point separations of about
0.7 fm. It should however be noted that many configurations where pairs are
exchanged over significantly larger distances give significant contributions to
the weight.

We have also found that the higher order contributions to the sum in Eq.(2.21)
is of importance for the two-particle correlations. That is using more than
two-particle exchanges when calculating the weights does not only affect the
weight distribution but also the two-particle correlation function, Ry (Q).

In heavy-ion collision experiments one has found that the extracted correlation
length has an approximate 1/,/m; dependence [19], where m, is the transverse
mass, v/m? + p?. This is in agreement with hydrodynamical models describing
the source evolution in heavy-ion collisions. Recently a similar m; dependence
has been found for Z° hadronic decays in e*e~ annihilation at LEP [24], when
the transverse directions are defined with respect to the jet axis. In the Lund
Model the average space-like distance between pairs of identical pions increases
with m; and one would therefore not expect a correlation length which falls
off with m;. For initially produced particles we get a correlation length which
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is essentially independent of m;. However when analysing all final particles
we find for increasing m; that the correlation length falls off and that the A
parameter increases, as in [24]. From this we conclude that the observed m;
dependence of the correlation length in data is, in our model, compatible with
the vanishing of contributions from decay products with increasing m;.

2.5.2 Residual Bose—Einstein correlations

Bose—Einstein correlations acting between identical bosons may have signifi-
cant indirect effects on the phase space for pairs of non-identical bosons. We
have studied mass distributions of 777~ systems to see how our model affects
systems of unlike charged pions. Many analyses use 77~ distributions to
quantify the Bose—Einstein correlations, using the unlike-charged distributions
as reference samples with which to compare the like-charged pion distributions.
We have found that the assumption that the two-particle phase space densities
for 7t~ systems are relatively unaffected by Bose-Einstein symmetrisation is
fairly good. Taking the ratio of the 777~ mass distributions with and without
Bose-Einstein symmetrisation applied gives that the mass distribution is not
altered much by the symmetrisation, and that the effect is smaller than 5% in
the entire mass range.

It has however been observed experimentally that the Breit-Wigner shape for
oppositely charged pions from the decay of the p resonance [20, 21, 22] is
distorted. We have therefore analysed 7+ 7~ distributions when the pair comes
from the decay of a p°. These 7t 7~ mass distributions, with and without BE
weights applied, are shown together with the difference of the two in Fig.(2.7).
From the difference it is clearly seen that the weighting depletes the region
around the p mass and shifts the masses towards lower values as well as it
slightly increases the width of the distribution. The figure clearly shows the
potential of our model to affect the mass spectrum of the p°.

2.5.3 Three-particle correlations

The existence of higher order dynamical correlations, which are not a conse-
quence of two-particle correlations, is of importance for the understanding of
BE correlations. There are very few experimental studies of genuine three-
particle correlations, mainly because of the problem of subtracting the con-
sequences of two-particle correlations and the need for high statistics of large
multiplicity events. Genuine short-range three-particle correlations have been
observed in ete~ anmihilations by the DELPHI experiment. They conclude
that they can be explained as a higher order Bose—Einstein effect [23].
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Figure 2.7: p° meson mass shift induced by the Bose-Einstein correlations in our
model. The solid curve shows the Breit-Wigner as generated by JETSET while the
dashed curve is obtained after applying BE weights to the events. The curve with
error bars is the difference of the two (dashed-solid). The areas under the two mass
distributions are normalised to unity in the shown mass range.

To reduce problems with pseudo-correlations due to the summation of events
with different multiplicities we have used three-particle densities normalised to
unity separately for every multiplicity in the following way

P (01, p2,ps) = > Pty nyn) 5™ (1, pa, ps) (2.23)
n>8
3
~(Na,np,ne) _ 1 1 d O(na,np,ne)
Ps (pl,p%pg) Ng (nb - 6ab)(nc — 0ac — 6bc) O(ng,np,ne) dp1dp2dps

(2.24)
where n is the charged multiplicity, o, n,.n. is the semi-inclusive cross section
for events with n; particles of species i, and

P(na,np,ne) = T(na musne) : (2.25)

Zna,nb,nc U(na.ynb’nc)
We have aimed to study the genuine normalised three particle correlation func-
tion, Rz, defined as
Ry = [p3(p1,p2.p3) — p2(p1,p2)p1(ps) — p2(p1,p3)p1 (p2) — P2 (p2,p3) i (p1)
+2p1(p1)p1(p2) 1 (p3)]/ (p1(p1)p1 (p2) 1 (p3)) + 1 (2.26)
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where we have used an abbreviated notation for the ps from Eq.(2.23), and
p1 and pa are the corresponding one- and two-particle densities, normalised in

accordance with Eq.(2.23) and Eq.(2.24). Rj3 is equal to one if all three-particle
correlations are consequences of two-particle correlations.

In order to calculate the gop1 and pyp1p1 terms in Eq.(2.26) the common ex-
perimental procedure is to mix tracks from different events. Using a mixing
procedure in our model means weighting triplets of particles with products of
event weights. This results in large statistical fluctuations and to get them
under control, with our event weights, requires generation of very many events.
We have therefore taken another approach, in order to minimise the comput-
ing time. We have used combinations of charged pions in the following way to
approximate Eq.(2.26)

Lt (4,4, (4,4,
pi(iw ) — 3(p£(3w ) pg ?))

(£, +,+
A=

Rs = (2.27)

where w, as previously, denotes weighted distributions. There are a couple
of things to note in connection with Eq.(2.27). If there are genuine positive
three-particle correlations for (++—) and (——+) combinations, as observed by
the DELPHI collaboration [23] they will if they come from BE symmetrisation
contribute to the Rs in Eq.(2.27), but they will reduce the signal. Secondly,
we note that there is a possible bias from two-particle correlations from (+-—)
combinations but that it is small as discussed previously. We also note that
using the normalisation in Eq.(2.24) reduces problems with contributions from
like- and unlike-charge combinations having different multiplicity dependence.
It should also be observed that the Rs in Eq.(2.27) can be studied experimen-
tally since getting the ps,’s of course is achieved by analysing single events and
the p3 samples can be made by mixing events.

We have analysed the three-particle correlations as a function of the kinematical

variable
Q=1 G+ as + ¢35 with gl = —(pi —p;)* . (2.28)

Fig.(2.8) shows Rs, the genuine three-particle correlation function for like-sign
triplets, as approximated in Eq.(2.27). A strong correlation is observed for
small @-values. There is a dip in the curve for Q-values around 1 GeV which is
compatible with the depletion of p°’s around its mass and gives an indication
of the error from using unlike-charged pions in the approximation of Rs.
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We show how a difference in the correlation length longitudinally and trans-
versely, with respect to the jet axis in ete™ annihilation, arises naturally in a
model for Bose—Einstein correlations based on the Lund string model. In gen-
uine three-particle correlations the difference is even more apparent and they
provide therefore a good probe for the longitudinal stretching of the string field.
The correlation length between pion pairs is found to be rather independent of
the pion multiplicity and the kaon content of the final state.
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3.1 Introduction

The Hanbury-Brown—-Twiss (HBT) effect (popularly known as the Bose-Ein-
stein effect) corresponds to an enhancement in the two identical boson corre-
lation function when the two particles have similar energy-momenta. A well-
known formula [1] to relate the two-particle correlation function (in four mo-
menta p;,j = 1,2 with ¢ = p1 — p2) to the space-time density, p, of (chaotic)
emission sources is

Ud20'12

=1 2 .1
o = L+ IR(@) (3.1)

where R is the normalised Fourier transform of the source density

[ p(z) exp(igz)
RO = e

The commonly used event generators HERWIG and JETSET are based upon
classical stochastical processes and do not include HBT-effects (although Sj6-
strand, in JETSET, has introduced an ingenious method to simulate any given
distribution by means of a kind of mean-field potential attraction between the
bosons in the final state).

(3.2)

In this letter we will further investigate some features of the methods developed
in [3] (an extension of [2] to multi-boson final states). We will show that
the model predicts, due to the properties of string fragmentation, a difference
between the correlation length along the string and transverse to it. In practice
this means that if we introduce the longitudinal and transverse components of
the vector ¢ (defined with respect to the thrust direction) then we obtain a
noticeable difference in the correlation distributions. This becomes even more
noticeable when we go to the three-particle HBT effect (which was predicted
in [3]) because in this case even more of the longitudinal stretching of the string
field becomes obvious. Finally we will investigate the influence of the kaon and
baryon content of the states on the HBT effects between the pions.

3.2 Longitudinal and transverse
correlation lengths
The starting point of our Bose—Einstein model [2, 3] is an interpretation of the

(non-normalised) Lund string area fragmentation probability for an n-particle
state (cf Fig.(3.1))

dP(p1,p2;---Pn) = [H Ndpj‘s(l’? - mf)] 5(2201' — Prot) exp(—bA)  (3.3)
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Figure 3.1: The decay of a Lund Model string spanning the space-time area A. The
particles 1 and 2 are identical bosons and the particle(s) produced in between them is
denoted by I. The two possible ways, (...,1,1,2,...)and (...,2,1,1,...), to produce
the state are shown and the area difference between the two cases, AA, is shaded.
The two neighbouring vertices of the state with the two identical bosons are denoted
by a and b, and the transverse momenta of the quarks produced in the neighbouring
vertices are £k, and +k |, respectively.

in accordance with a quantum mechanical transition probability containing the
final state phase space multiplied by the square of a matrix element M. In [2]
and in more detail in [3] a possible matrix element is suggested in accordance
with (Schwinger) tunneling and the (Wilson) loop operators necessary to ensure
gauge invariance. The matrix element is

M =exp(ik —b/2)A (3.4)

where the area A is interpreted in coordinate space, x is the string constant
(phenomenologically k ~ 1 GeV /fm) and b ~ 0.3 GeV /fm is the decay constant.
Note that the parameter b is much smaller than x. From now on we will, as is
usual in the Lund model, go over to the energy momentum space. Then the
area A — 2k?A, while b — b/2k?, as explained in [3].

The transverse momentum properties are in the Lund model taken into account
by means of a Gaussian tunneling process. In this way the produced qg-pair in
each vertex will obtain £k, and the hadron stemming from the combination of
a q from one vertex and a q from the adjacent vertex obtains p; =k 41—k .

In case there are two or more identical bosons the matrix element should be
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symmetrised and in general we obtain the symmetrised production amplitude

M= Mp (3.5)
P

where the sum goes over all possible permutations of the identical particles.
The squared amplitude occurring in Eq.(3.3) will then be

2 2 2R6M’PMPI)
M| Z|Mp| 1+PgP|MP|2+|MP’|2 : (3.6)

JETSET will provide the outer sum in Eq.(3.6) by the generation of many
events but it is evident that the model predicts a quantum mechanical inter-
ference weight, wp, for each given final state characterised by the permutation
P:

2Re MPMPI)
=1 E _ = 7~ 3.7
wp = +7>7573 Mp P + M 2 (3.7)

In the Lund Model we note in particular for the case exhibited in Fig.(3.1),
with two identical bosons denoted 1 and 2 having a state I in between, that the
decay area is different if the two identical particles are exchanged. It is evident
that the interference between the two permutation matrices will contain the
area difference, AA, and the resulting general weight formula will be

1 Z cos %/? (3.8)
wp =1+ .
A k
PIZP cosh <bAA N (%H ))

where A stands for the difference between the configurations described by the
permutations P and P’ and the sum is taken over all the vertices. In our MC
implementation of the weight we replace the string constant « in the transverse
momentum generation with the default (in JETSET) transverse width, 20>
(which is of the order of k). The calculation of the weight function for n
identical bosons contains n! — 1 terms and it is therefore from a computational
point of view of exponential-type. We have in [3] introduced approximate
methods reducing it to power-type instead and we refer for details to this
work.

We have seen that the transverse and longitudinal components of the particles
momenta stem from different generation mechanisms. This is clearly mani-
fested in the weight in Eq.(3.8) where they give different contributions. In the
following we will therefore in some detail analyse the impact of this difference
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on the transverse and longitudinal correlation lengths, as implemented in the
model.

In order to understand the properties of the weight in Eq.(3.8) we again con-
sider the simple case in Fig.(3.1). The area difference of the two configurations
depends upon the energy momentum vectors p;, p» and pr and can in a dimen-
sionless and useful way be written as

— =0pd 3.9

5 = opizL (3.9)
where dp = ps — p; and oz, = (6t;0,0,92) is a reasonable estimate of the
space-time difference, along the surface area, between the production points of
the two identical bosons.

In order to preserve the transverse momenta of the particles in the state (1, I,2)
it is necessary to change the generated k; at the two internal vertices around
the state I during the permutation, i.e. to change the Gaussian weights. Also
in this case we may write a formula similar to Eq.(3.9) for the transverse
momentum change:

A K? .
% = §pJ_6xJ_ (310)

where dp | is the difference p,> — p11 and 6x; = (kip — (—kis))/&. The
two neighbouring vertices of the state (1,1,2) ((2,1,1)) are denoted by a and
b and k,; + k, , corresponds to the states transverse momentum exchange to
the outside. Therefore dx, constitutes a possible estimate of the transverse
distance between the production points of the pair.

For the general case when the permutation P’ is more than a two-particle
exchange there are formulas similar to equations (3.9) and (3.10), although
they are more complex (and the expressions do not vanish when only two of
the exchanged particles have the same energy momentum).

It is evident from the considerations leading to equations (3.9) and (3.10) that
only particles with a finite longitudinal distance and small relative energy mo-
menta will give significant contributions to the weights. We also note that
we are in this way describing longitudinal correlation lengths along the colour
fields, inside which a given flavour combination is compensated. The corre-
sponding transverse correlation length describes the tunneling (and in this
model it provides a damping chaoticity).

The weight distribution we obtain is discussed in [3] (and with varying kaon
and baryon content also below). It is strongly centered around unity although
there are noticeable tails to both larger and smaller (even negative) weights.
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The total production probability is, however, positive and we find negligible
changes in the JETSET default observables (besides the correlation functions)
by this extension of the Lund model.

3.3 Results

Two-dimensional Bose-Einstein correlations in ete™ annihilation have been
analysed at lower energies than LEP by the TASSO collaboration [4]. Although
they find that their data is compatible with a spherically symmetric correlation
function they conclude that at least one order of magnitude of more data is
required to obtain more detailed information. With the large statistics available
from LEP we have therefore generated qg-events at the Z° pole to investigate
the properties of our model. Short-lived resonances like the p and K* are
allowed to decay before the BE-symmetrisation, while more long-lived ones are
not affected.

We have analysed two-particle correlations in the Longitudinal Centre-of-Mass
System (LCMS). For each pair of particles the LCMS is the system in which
the sum of the two particles momentum components along the jet axis is zero,
which of course also means that the sum of their momenta is perpendicular to
the jet axis. The transverse and longitudinal momentum differences are then
defined in the LCMS as

qr, = |p22 - pzl| (311)
q1L = \/(pz2 - pml)Z + (py2 - py1)2

where the jet axis is along the z-axis.

We have taken the ratio of the two-particle probability density of pions, ps,
with and without BE weights applied as the two-particle correlation function,
" (01.)
P2w\P1, P2
Ralpr,p2) p2(p1,p2) (3.12)
and the resulting function is shown in Fig.(3.2). It is clearly seen that it is
not symmetric in ¢z, and ¢, and in particular that the correlation length, as
measured by the inverse of the width of the correlation function, is longer in
the longitudinal than in the transverse direction. This difference remains for
reasonable changes of the width in the transverse momentum generation. For
comparison we have also analysed events where the Bose—Einstein effect has
been simulated by the LUBOEI algorithm implemented in JETSET [5]. In
LUBOEI the BE effect is simulated as a mean-field potential between identical
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Figure 3.2: The ratio R2(qr,q1) of the number of charged pion pairs having relative
four-momentum components g7, and ¢, with and without Bose—Einstein weights ap-
plied. The sample consists of particles which are either initially produced or stemming
from short-lived resonances.

bosons which is spherically symmetric in Q. Analysing only the initial particles
and particles stemming from short-lived decays results for the LUBOEI events
in a correlation function with identical transverse and longitudinal correlation
lengths. The correlation lengths are in agreement with the source radii input to
LUBOEI Using all the final pion pairs, after all decays, in the analysis results
in a small decrease in the transverse correlation length and of course a large
decrease in the height for q;, ~ g, ~ 0, while the longitudinal correlation length
is rather unaffected. The pions from long lived decays affect the correlation
lengths in the same way both for our model and for LUBOEIL

In [3] it is shown that our model gives rise to genuine three-particle correlations.
We will in this letter continue to investigate three-particle correlations and we
will in particular use our knowledge of the different contributions to the weight
function to study the genuine higher order correlations. We will also exhibit
how the genuine higher order terms in the weight function mainly clusters
particles in the longitudinal direction.

The total three-particle correlation function is in analogy with Eq.(3.12)

" P3w(P1, D2, D3)
R, (p1,pa, p3) = 2w P2 BS) - 3.13
3( b 3) ps(plapmps) ( )

To get the genuine three-particle correlation function, R3, the consequences of
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Figure 3.3: R, (Q) and R;(Q) are shown in the left figure, while the figure to the
right shows R3(Q). The existence of genuine three-particle correlations is apparent.

having two-particle correlations in the model have to be subtracted from Ry . To
this aim we have calculated the weight taking into account only configurations
where pairs are exchanged, w'. In this way the three-particle correlations which
only are a consequence of lower order correlations can be defined as

’ p3w' (pl’p2’p3)
o) — Pra 1220 3.14
(PP ) = 5 ) Y

The genuine three-particle correlation function, Rz, is then given by
Rs=R, —Ry+1 . (3.15)

We have analysed R3 in one dimension as a function of the kinematical variable

Q=\/Qh+@Q%+Q% with Q=-m-p) (316

and in two dimensions we have used the following variables calculated in the
LCMS for each triplet of identical bosons

qar = \/4%12 + 4713+ qiey  With Q%ij = (pai —pzj)2 (3.17)

9L = \/qiu +q7,3 + a1,  With qiij = (pLi— pL]')Q

where the z-axis is along the jet axis. In Fig.(3.3) the correlation functions
R, (Q), R;(Q) and R3((R) are shown, and the existence of genuine three-particle
correlations in the model is clearly exhibited.

This way of getting the genuine correlations is not possible in an experimental
situation, where one has to find other ways to get a R, reference sample. We
have suggested one possible option in [3] and the results in this letter are in
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Figure 3.4: The ratio Rs(qr,q.) of the number of triplets of charged pions with and
without Bose—Einstein weights applied.

agreement with the conclusions of that investigation. In the present analysis the
contribution to the correlations from higher order configurations in the weight
calculation is apparent. We note that R3 flattens out earlier, i.e. for lower
Q-values than Rg. This means that the genuine three-particle correlations
have a longer correlation length compared to the consequences of lower order
correlations. Performing the same analysis in two dimensions in the LCMS
for each triplet results in the Rs(qr,q1 ) distribution shown in Fig.(3.4). The
effect of the higher order terms is to pull the triplets closer in the longitudinal
direction while the transverse direction is rather unaffected. This suggests that
higher order correlations are more sensitive to the longitudinal stretching of
the string field.

We have also studied the correlation length for pion pairs as a function of the
final charged multiplicity and the kaon content of the state. Within statistical
errors which are relatively large we see no dependence on either the charged
multiplicity or the number of kaons. Since one might suspect that events with
many pions are premiered by the re-weighting the average baryon and kaon
content of the events have been investigated. We find that the changes of the
average multiplicity of different kaon species as well as of the average multi-
plicity of protons and neutrons in the final state are much smaller than the
experimental errors as summarised in [6].
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We study effects on the W mass measurements at LEP2 from non-perturbative
interference effects in the fully hadronic decay channel. Based on a model for
Bose—Einstein interference, which is in agreement with LEP1 data, we argue
that there are no Bose—Einstein correlations between bosons coming from the
different W’s. For small reconnection probabilities we rule out the possible
experimental signal of colour interference at LEP2, suggested in [1]. The con-
clusions from this paper are that the theoretical uncertainties in the W mass
determination should be smaller than the experimental statistical error.
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4.1 Introduction

One of the main goals of LEP2 is to perform high quality precision measure-
ments of the W mass. In order to obtain the projected statistical error of 30—
40 MeV, all decay channels — the leptonic, the semi-leptonic, and the hadronic
— have to be used. The purely leptonic decays will however be rare and they
will not have a large impact on the measurements. In the two cases involving
hadronic systems non-perturbative effects, such as colour- and Bose—Einstein
interference, can occur and the measured W mass may be affected. The in-
terference effects within the hadronic system can in the semi-leptonic case be
estimated from LEP1 studies. From these studies we understand the effects
of Bose-Einstein (BE) correlations quite well and we have also learnt that the
colour interference (CI) effects are probably small. This means that the semi-
leptonic case can be reconstructed using a Monte Carlo tuned to LEP1 data
and that the theoretical uncertainties due to interference effects will only influ-
ence the fully hadronic channel. These uncertainties arise since the interference
effects may have impact on the identity of the two decaying W’s. The fully
hadronic channel is very nice since we can, in principle, observe all the momen-
tum of the event. However even if LEP2 provides enough statistics for a sub
30 MeV error the interference effects have to be taken into account, or at least
be under theoretical control.

That Bose—FEinstein correlations might affect the measurement of the mass of
the W at LEP2 was first suggested in [2]. The typical separation in space
and time between the W* and W~ decay vertices is smaller than 0.1 fm in
fully hadronic events, i.e. ete”™ = WTW™ — q,0,4504, at LEP2 energies [3,
4]. Since this distance is much smaller than typical hadronic sizes and the
correlation lengths associated with Bose—Finstein effects, pions from different
W’s are argued to be subject to Bose—Einstein symmetrisation. The effect
on the W mass has been estimated in a number of models with widely varying
results [2, 5, 6]. In this paper we will based on the model in [7] argue that there
are no Bose—Einstein correlations between particles stemming from different
W’s at LEP2. We will also discuss the consequences of the symmetrisation for
various ways of reconstructing the W mass.

Colour interference can occur in the W-pair decays at LEP2 but the proba-
bility for reconnections is unknown. In this study we use an improved Monte
Carlo implementation of the model described in [1] to address the possibility to
experimentally detect effects from CI at LEP2. We will also use it to estimate
the effect of CI on the W mass determination.

After a short description of the various mass reconstruction schemes we use, we
will in section 4.3 describe the important features of our interference models.
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We will in particular review how the correlation length in our BE model arises
stressing the parts relevant to understand correlations between particles from
different W’s. This is followed by the results for the reconstruction of the W
mass and conclusions.

4.2 Mass reconstruction

If every final particle in the fully hadronic case can be uniquely and correctly
assigned to either the W' or the W™ decay, the W four-momenta can be
reconstructed and squared to give the W* masses. There are however many
complications which have to be taken into account in practice. It is not our
intention to cover these complications here, but a detailed discussion can be
found in [3] together with a discussion about various ways to reconstruct the
W mass in order to avoid complications. Reconstruction schemes are devised
in [3] to study the effects of interference and we have adopted some of them in
our analysis. We will only give a brief sketch of how it is done and the reader
is referred to the original work for details.

Four jet events are selected using the LUCLUS algorithm [8], with the jet
distance parameter djoin = 8 GeV. This rejection of events with hard gluon
jets is done since they give a much worse W mass resolution. In addition, we
require the jets to have energies above 20 GeV and that the angle between any
two jets is greater than 0.5 radians, to reduce the number of misassignments.
The four jets can be paired in three different ways giving different results for
the W mass. We use three different criteria to single out one combination.

1 : The pairs are chosen so that the deviation of the average reconstructed W
mass from the used mass is minimized;
M My -
min | 2w+t Mw=
2
This is not measurable in an experimental situation since we cannot know
with which masses the W’s were produced, but it is included for comparison.

2 : The pairs are chosen so that the deviation of the sum of the reconstructed
masses from a known nominal mass is minimized;

3 : The pairs are chosen so that the sum of their opening angles is maximized.

This makes sense close to threshold where the jets from the same W should
be almost back-to-back.
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To investigate the effects of the interference models we compare the recon-
structed W mass with interference with the reconstructed mass without inter-
ference.

4.3 Models

Before going into the details of our models we will shortly discuss some general
features of WW — q,q,q5d, events, which provide a motivation for some of
our assumptions. As will be made clear, our models for the interference effects
and in particular some of their major consequences are based upon the picture
of singlet strings fragmenting. This may however not be the full story, since
there could be an important non-singlet component of hadronization, especially
in the scenario when two strings are formed close to each other. The only
hadronization model which includes a non-singlet component is that of Ellis
and Geiger [5]. In the case of a non-singlet component in WW — q,q,q5qQy
one would expect that the multiplicity in W-pair events is different from twice
the multiplicity in single string events. This is manifested in particular in the
colour reconnection scheme of Ellis and Geiger, where not only the W mass shift
is much larger than in their singlet models, but it also results in a substantial
reduction of the number of hadrons coming from the overlap region of the two
W’s.

Three of the LEP experiments (DELPHI/L3/OPAL) have measured the mean

charged hadronic multiplicity in WTW~ — q,q,q5d, events, (Nf,?), and in

WHW ™ — qqlm events, (N2") [9, 10, 11]. Summarizing their results give [12]
N
WNend 044 0,03 (4.1)
2(Ngi)

which gives no support for models leading to a reduction of the hadronic mul-
tiplicity in W-pair events. This suggests that singlet strings provide a good
description of WTW ™~ — Q44,954 hadronization.

4.3.1 Colour interference at LEP2 energies

The CI model in this paper is an improved Monte Carlo implementation of
the model described in [1]. The model for recoupling is quite simple and its
features are described in detail in [1]. Here we give a summary of the model
with emphasis on the improvements.

The space-time distance between the W decay points in efe™ - WHW~ —
105030y is about 1/T'w and hard gluons with energies above I'ywy are therefore
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emitted incoherently by the two quark systems early in the event [13]. This
means that there are two sets of partons before any possible colour interference
can occur. The two sets q;g,8,--.8,0d> and q3g,' gy -..&,,’ds have a lot of
different recoupling possibilities since every set of particles q...g is a colour-
triplet. Recoupling of a q...g with any g...q from the other set can occur with
the probability 1/N? so the total probability for recoupling can in principle be
very large. The estimation of the total recoupling probability is non-trivial.
In [1] a discussion is made about what kind of probabilities to expect. No real
conclusion was or can be made, and the probability remains a free parameter
of the model.

Perturbative QCD favours states which correspond to short strings i.e. parton
states which produce few hadrons. The A measure was introduced in [14] and
is a measure of the effective rapidity range inside which the decay products of
a particular colour-singlet string are distributed. In this way it is related to the
multiplicity. In [1] it is argued that states with smaller A’s could be dynamically
enhanced, and that this choice also gives reconnected events that differ most
from non-reconnected systems. Reconnected states with the smallest A measure
are therefore chosen in the model.

All of this is still true in the CI model in this paper. We have however made sig-
nificant improvements in the MC implementation. The Ariadne MC v4.08 [15]
allows the user to stop the production of gluons below some given energy. This
feature was not available in the original work, where gluons with energy below
I'w where simply neglected (leading to a 3% loss of energy). Furthermore, the
W-pairs were incorrectly generated in the original work since no spin informa-
tion was preserved and the W’s were therefore allowed to decay isotropically.
In order to take the full angular correlations into account we now use Pythia
v5.7 [8], where the full 2 — 2 — 4 matrix elements are included for the W-pair
production and decay.

These improvements will lead to consequences for the results obtained in [1]. In
addition to studying possible experimental signals at LEP2 of recoupled events
we also extend the analysis of [1] to study CI effects on W mass determination.

4.3.2 Bose—Einstein correlations in W-pair production

A model for Bose—Einstein correlations based upon a possible quantum-mech-
anical framework for the Lund Fragmentation Model [16] has been proposed [17]
and it has been extended to the multi-particle correlations needed at LEP
energies [7]. An important feature of the model is that it can be used as an
extension of the probability based Lund Model, implementing the correlations
as event weights.
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The interpretation of the Lund Fragmentation Model in [7] gives an explicit
form for the transition matrix element for a string fragmenting into hadrons.
The resulting matrix element depends only on the space-time history of the
string and the model therefore uniquely predicts the relative amplitudes for
different particle configurations, and therefore also the magnitude of the Bose—
Einstein effect. To understand how the correlation length between pions arise
in the model we will in the following shortly discuss the basic steps leading to
the specific form of the transition matrix element.

A unique breakup rule for a string can be derived inside the Lund Model,
which results in the following probability for a string to decay into hadrons

(pla e 7pn)7

(3

dP(py, .-, pn) = | [[(Ndpid(p} —m3)) 5(ij—Ptot)exp(—bA) (4.2)

where A is the space-time area spanned by the string during its break-up into
qq-pairs, and N and b are two free parameters.

The production of hadrons from a single string in the Lund Model can be given
a quantum mechanical interpretation inside a non-Abelian field theory. The
transition matrix element, M, can, to obtain the result in Eq.(4.2) be identified
with (note the similarity with Fermi’s golden rule)
. . 1 b
M =exp(iA) with { = —+ — (4.3)
2k 2
where the decay surface area, A, is in energy-momentum units in the light-cone
metric. The imaginary part of the quantity £ is related to the pair production
probability. As discussed in [7] the phase for M, as given by the real part of
&, is found by observing how gauge invariance will constrain the production of
qq-pairs along the colour force fields. The main observation is that a final state
hadron stems from a q from one vertex and a g from the adjoining vertex. This
implies that in order to keep gauge-invariance it is necessary that the produc-
tion matrix element contains at least a gauge connector, exp (ig f] A Akdz,,),
between the two vertices, denoted j and j + 1. The total matrix amplitude for
a single string must contain at least one gauge connector for each hadron and
we get a Wilson Loop Operator as a minimal requirement for gauge invariance

M = exp(ig%Aud:U“) (4.4)

where the integral is around the decay surface of the string. Using Wilson’s
confinement criteria for the behaviour of such a loop operator we get the real
part of &, as in Eq.(4.3).
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Figure 4.1: The two possible ways, (1,,2) and (2,1,1), to produce the entire state
when 1 and 2 are identical bosons. The space-time area, A, spanned by the string
during its break-up is shaded.

The transverse momentum generation will also contribute to the total matrix
element. This contribution is discussed in detail in [7] and is found to be

1
x exp(—mki) (4.5)

where £k are the compensating transverse momenta generated in a qq-vertex
and o is the width of the Gaussian supression of the quarks transverse momenta.

In order to see the main mechanism for BE-correlations in the Lund Model we
consider Fig.(4.1), in which two of the produced hadrons, denoted (1, 2), are as-
sumed to be identical bosons and the state in between them is denoted I. There
are two ways to produce the entire state, corresponding to exchange of the two
identical bosons. The two configurations, (...,1,1,2,...) and (...,2,1,1,...),
are shown in the figure and in general they correspond to different areas A.

The area difference, AA, depends not only on the energy momentum vectors
p1 and ps, but also on the four-momentum of the intermediate state, p;. The
difference can be written as

— = dpdx 4.6

5 = P (4.6)
where 0p = p» — p1 and dz = (6t,0,0,9z) is a reasonable estimate of the
space—time difference, along the string surface, between the production points.
This means that the correlation length, which is being measured by the four-
momentum difference between pairs, is in the model dynamically implemented
as dz [7]. The correlation length is therefore not the direct distance between
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production points. Instead it is the distance along the string surface, i.e. the
distance along the colour force field. This is not surprising if we consider how
the quantum-mechanical process corresponding to the Lund Model was derived;
to keep gauge-invariance we got a gauge-connector between adjacent vertices
and this is what provides us with the A/(2k) factor in the matrix element, from
which the correlation length in the model stems.

In the case of production of two strings, i.e. a q;q,q5d, system, there is no
reason for a gauge-connector between vertices belonging to different strings.
We will therefore assume that the distance along the gauge-field between them
is infinite even though the direct space—time distance may be very small. This
implies that there is no interference between production vertices belonging to
different strings. This means that in this model each string can be consid-
ered a system of its own, with separate Bose—Einstein effects. The resulting
event weight is then of course the product of the weights for each system sep-
arately. In [7] it is explained how the BE interference can be incorporated in
a probabilistic event generation scheme by weighting the produced events. In
particular using the amplitudes Eq.(4.3) and Eq.(4.5) results in the weight

AA,
cos

w=][ |1+ 3 2r (4.7)

: AAn A (n) 2
Pl #Pn cosh (b > + (Z qu)

3
QUpL

for a fully hadronic WW event, where A denotes the difference with respect
to configurations P, and P}, of the string n and the sum of piq is over all the
vertices of string n. We have introduced o,, as the width of the transverse

momenta for the generated hadrons, (i.e. 05 = 20?).

It should be emphasized that if only colour-singlet combinations of partons
are allowed to be formed there is no model consistent way to get correlations
between particles stemming from the different W’s. In comparison to most
of the models using event weights to implement BE-correlations [6] we have
a physical picture of how the correlation length in our model arises and it
describes data well in single string fragmentation [7]. Taken together with our
previous discussion of multiplicities in WW events this supports our conclusion
that there are no correlations between particles from the different W’s.

4.4 Results

All the results are for W-pairs generated at 170 GeV. We have checked the
effects of our models on the mean charged multiplicity and the results are
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shown in Table 4.1. We get small effects on the mean multiplicity and they are
compatible with the experimental result, Eq.(4.1).

Model (Vo) [ AN (%)
CI without | 38.62 +0.01
100% 36.90 +0.01

10% 38.45 +0.01 -0.44
BE without 24.4
with 25.1 +2.74+0.3

Table 4.1: The mean charged multiplicity for the two interference models. For the
CI model we show the results for 100% recoupled events and for an admixture of
recoupled and non-recoupled events of the order 10%. The lower multiplicities for the
BE results are due to that no parton cascade has been used in this case.

4.4.1 Colour interference results

It is natural to divide the CI results into two independent parts. First we
discuss the possibility to detect signals of CI at LEP2 in the same way as it
was done in [1] and then we will study mass reconstruction effects.

CI signal search at LEP2

The search for signals of CI at LEP2 in [1] give numbers which are very close to
what will be statistically significant with the expected number of events from
LEP2, when a 10% recoupling probability is assumed. The improvements made
here will dilute the signal proposed in [1]. Multiplicity distributions (including
7%) in the central rapidity region, |y| < 0.5, for recoupled and non-recoupled
events are shown in Fig.(4.2). Comparing these with the original results from [1]
we note that the signal-to-background ratio is significantly reduced. In Ta-
ble 4.2 we have compiled the number of events without particles in a central
rapidity region at LEP2 using two different thrust cuts and an expected 5000
fully hadronic events. We note that the signal decreases and if this signal is
to be seen at LEP2 there must be a larger recoupling probability than 10%.
A larger recoupling probability would increase the number of events without
particles in the central rapidity bin. A closer examination of the improvements
of the MC implementation in this paper reveals that the conservation of energy
will not change the result too much from the original work. Almost all of the
suppression of the signal comes from taking the anisotropy of the W decays
into account.
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Figure 4.2: Multiplicity distributions for |y| < 0.5 for non-recoupled (solid line) and
recoupled events (dashed line) with thrust cuts left) T > 0.92 and right) T > 0.76.

0.00

The CI results are for 100% recoupled events.

Model | Thrust | Event fraction | Events with n¢entra1=0 | background
[1] 0.92 0.04 4.3 0.68
0.76 0.60 13 1.9
our 0.92 0.01 0.93 0.36
0.76 0.60 6.4 2.6

Table 4.2: Expected number of events with zero particles in a central rapidity region:
ly| < 0.5, denoted by n¢entrar, for a total of 5000 fully hadronic W-pair events. A
10% recoupling probability is assumed.

From this study we conclude that the statistics from LEP2 will make it hard
to use the signal proposed in [1].

W mass reconstruction results

We have studied the effects of CI on the W mass measurement to estimate the
size of the theoretical error on the mass implied by our model.

In Fig.(4.3) we show the generated W mass and the reconstructed masses with
and without CI interference. We see that the difference between the recon-
structed distributions is small. The mass shifts for 100% reconnected events
are shown in Table 4.3 and if the reconnection probability is assumed to be 10%
the shifts should be scaled down with a factor 10. AM denotes the mass shift
due to the reconstruction method as compared with the generated W mass and
the additional shift due to the interference is denoted by dM.

Assuming a 10% reconnection probability the shifts will be small and negligible
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Figure 4.3: The distribution of the generated W mass (dashed) together with the
reconstructed mass with (dotted) and without (solid) colour interference. The results
are for reconstruction method 2.

Method | AM [MeV] | M [MeV]
1 -279 + 15 -3+ 21
2 -1238 + 19 -90 + 27
3 -75 + 16 -27 £ 23

Table 4.3: Shifts in the reconstructed W masses using the different methods from
section 4.2. AM denotes the mass shift due to the reconstruction method and M
denotes the additional shift due to the colour interference.

from the experimental mass reconstruction point of view. However, in a worse
case scenario with a 100% probability the shifts can be quite large but the
experimental signal suggested in [1] would then on the other hand be observable.

4.4.2 Bose—Einstein interference results

We have studied how the inclusion of Bose—Einstein correlations, implemented
as event weights, affect the results from various mass reconstruction schemes.
The main concern in [2] was that the BE effects in the hadronization stage can
couple identical particles from the Wt and the W~. They used the LUBOEI
algorithm [2] in which the momenta of the produced bosons are reshuffled
to reproduce a chosen BE-correlation. The momenta are then rescaled by
a common factor to keep energy-momentum conservation for the event as a
whole. This procedure might result in a redistribution of momenta in such a
way that the hadrons which come from the W (W™) decay don’t add up to
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the same invariant mass as the original W (W ™) had. It should be noted that
the rescaling procedure needed afterwards introduces shifts in the W mass even
if there are no BE-correlations between particles stemming from different W's.
After corrections for this ’spurious’ mass shift a shift of about +100 MeV at
170 c.m. energy was found in [2].

The main feature of our model is that we don’t expect a coupling between
particles coming from different W’s. The inclusion of correlations may however
affect for example multiplicities and event shape variables and therefore it may
affect the reconstruction of the W boson mass. Such an artificial mass shift
is hoped to be taken into account by the tuning of the JETSET MC [8] to
the experimental LEP1 data. Using the MC implementation of our model, we
have tuned multiplicity distributions and some event shape variables to the
corresponding results as obtained from JETSET for a single string at LEP1
energies. To study the effect of the symmetrisation we have then analysed
and compared the reconstructed W mass of W’s generated by Pythia with and
without symmetrisation included. We have used our tuning to LEP1 energies
for the symmetrised events. The events are generated without a parton cascade,
i.e. pure q;q,q5q, events, in this analysis since the MC implementation of the
BE-model has not been extended to general parton configurations. We believe
that the inclusion of gluons will affect the mass reconstruction, but it will do
it in the same way whether BE symmetrisation is included or not.

The use of event weights introduces statistical fluctuations which require the
generation of many events. We have generated a sufficient number of events in
order to get reasonable statistical errors for the mass distributions. In Fig.(4.4)
we show the reconstructed mass for symmetrised and non-symmetrised events.
As can be seen the difference between the distributions is very small.

Method | AM [MeV] | 6M [MeV]
1 2306 + 1 6 + 8
2 83 & 1 547
3 601 + 4 6+6

Table 4.4: Shifts in the reconstructed W masses using the different methods from
section 4.2. AM denotes the mass shift due to the reconstruction method and 6 M
denotes the additional shift due to the Bose-Einstein symmetrisation.

Using the same notation for the mass shifts as in section 4.4.1 we have compiled
the results for the different reconstruction schemes in Table 4.4. The mass shifts
due to BE interference are all very small and compatible with zero. They will
therefore not affect the LEP2 measurement and in particular we conclude that
the inclusion of Bose—Einstein correlations will compared to a carefully tuned
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Figure 4.4: The distribution of the reconstructed W mass with (diamonds) and
without (solid) Bose-Einstein symmetrisation turned on. The results are for recon-
struction method 2.

conventional Monte-Carlo not affect the reconstruction of the W mass. It is
important to note that using event weights can in principle affect the W mass
even though we don’t have any interference between the two W’s. This is
however not the case with our model.

4.5 Conclusions

The previous work on the effects of BE correlations on the W mass, with the
exception of [18], are all based on the observation that the BE effect packs
identical particles closer together. The local model [2] as well as the global
event weight models [5, 6] are all phenomenological models used to estimate
the influence of such a close-packing on the masses of the two qq systems, if the
two W systems cross-talk. Our model starts from a completely different point
of view, i.e. with a quantum mechanical scenario for the particle production
dynamics, and at LEP1 energies the results obtained with our model are in
agreement with the observables on which the other models are based. A natural
consequence of our model is that we do not expect any cross-talk due to BE
effects between the W’s. The correlations between pions from different W’s have
been investigated by two of the LEP experiments. The DELPHI experiment
has at their present level of statistics found no enhancement of the correlations
between pions from different W’s, compared to what is expected from a pair of
uncorrelated W’s [19] (confirmed in [9]) and ALEPH draws a similar conclusion
from their data [20]. Their statistics are rather poor but if the results are
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confirmed when more data becomes available, it would rule out mass shifts due
to cross-talk between the two W’s, in agreement with our model.

The reconnection probability of our CI model, as in other models, remains a free
parameter. Assuming a moderate probability of 10% the mass shift due to CI
will be very small. If we however assume a 100% probability the mass shift can
be important, but in this case the experimental signal of [1] should be visible.
The magnitude of the signal is a measure of the reconnection probability in
our model, and if the signal is found it can be used to estimate the theoretical
uncertainty in the mass determination.

To summarize, we conclude that neither colour nor Bose-Einstein interference
is expected to affect the W mass reconstruction at LEP2 and in particular that
the theoretical uncertainties, as estimated by our models, are much smaller
than the expected experimental statistical error.
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We discuss what happens at the end of the QCD cascades. We show that, with
just a few reasonable assumptions, the emission of soft gluons is constrained
to produce an ordered field in the form of a helix. We describe how to mod-
ify the Lund fragmentation scheme in order to fragment such a field. Our
modified fragmentation scheme yields results which are consistent with current
experimental measurements, but predicts at least one signature which should
be observable.



98 Screwiness

5.1 Introduction

In QCD the production of two colour charges which subsequently move apart
will lead to the production of further colour radiation. This can be described
in terms of the fundamental field quanta, the gluons, but it is also possible
to describe the ensuing radiation in terms of dipoles. This property arises
because in non-abelian theories the emission of an extra gluon from a gluon-
gluon dipole can (to a very good approximation) be modelled as the destruction
of the original dipole and the creation of two new dipoles. In this way the change
in the colour field can be described as an increasing cascade of dipoles. The
end of this cascade occurs when the dipole masses are so small that helicity
conservation prevents further real gluon emission. In this paper we examine
what happens at the end of this cascade. We find that the conditions are
favourable for the field to utilize the azimuthal degree of freedom and wind
itself into the form of a helix. This corresponds to a close—packed configuration
of gluons in rapidity—azimuthal-angle space.

We begin by describing a toy model which contains the relevant features,
namely a tendency to emit as many gluons as possible and the constraint
that gluons are not too “close” to each other (which arises from helicity con-
servation). In this simple model it is clear that at the end of the cascade an
ordered field emerges with the characteristics of a helix. To progress beyond
this model we use the Lund model of QCD. In the Lund picture hard gluons are
represented as excitations of a relativistic string which connects a quark, anti-
quark pair. However, the gluons from which the helix is built up are too soft
to be modelled in this way. Instead we introduce a helical semi-classical field
and thus develop a modifed version of the Lund fragmentation scheme. Our
modified fragmentation scheme enables us to study whether the consequences
of a screwy field can be detected in the final state particles. We find that if
events with hard gluons are excluded then the screwiness of the field may be
observed.

5.2 The dipole cascades; increase and decrease
of phase space

In order to describe what can happen at the end of the QCD cascades we will
provide a brief description of the cascades. We will in particular discuss the
consequences of helicity conservation in the emission of partons.
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The well-known formula for dipole emission of bremsstrahlung is

_dk3 | do
dn = a 2 dy(zﬂ)\lf (5.1)
where @& is the effective coupling, k, , y, and ¢ are the transverse momentum,
rapidity and azimuthal angle respectively, although the azimuthal angle de-
pendence is usually neglected. The final factor, ¥, corresponds to the spin
couplings. We will briefly consider the precise definitions before we consider
the implications. The effective coupling for QCD in the case of a gluonic dipole
is given by
Neas 6
2r— 11log(k3 /A?)

The occurrence of the number of colours, N,, and the factor 1/2 in the QCD
coupling is due to early conventions, whereas the result that the running is
governed by 1/c = 6/11 is a basic gauge group independent result. It only
depends upon the fact that in non-abelian gauge theories there is a three-
particle coupling between vector particles, e.g. the colour-8 gluons in QCD.
(The four-gluon coupling also occurs to preserve the symmetry, but it does not
play a role in this connection). We neglect the flavour term —2n;/3 which
should accompany 11 in the denominator because it is a small effect related to
the possibility of gluon splitting; g — qq.

dQCD = (52)

The transverse momentum and the (dipole cms) rapidity are defined in a
Lorentz invariant way in terms of the squared masses of the final state par-
tons (the emitters are conventionally indexed 1 and 3 and the emitted field
quantum 2):

Sij = (kl + kj)2 = Qk,kj = sz_ikJ_j [COSh(Ay)iJ’ — COS(Agf))iJ’]

S = 812+ S23 + 831
S12 = 8(1—1'3), 523 28(1—1'1)
R - 512523

+ S

1 512
= -1 — 5.3
y 2 Og <823> ( )

Here x; and x3 are the final state cms energy fractions of the emitters. Re-
quiring energy momentum conservation limits the allowed emittance region to

k1 cosh(y) < g . (5.4)

This region can conveniently be approximated as |y| < (L — k)/2 with the vari-
ables L = log(s/A?) and k = log(k? /A?). This means that the (approximate)
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phase space available for dipole emission is the interior of a triangular region in
the (y, k)-plane with the height and the baselength both equal to L. The inclu-
sive density inside the triangle is, in this Leading-Log Approximation (LLA),
given by the effective coupling @ according to Eq.(5.1). The rapidity range,
L — k, is of course the length of a hyperbola spanned between the emitters in
space-time (or energy-momentum at the scale k?% ).

If we consider an initial qq dipole emitting a gluon then the probability for the
produced qgq system to emit a second gluon is a complicated expression [1]. In
case the transverse momenta of the first and second gluon are strongly ordered,
ki1 > k1o, it is a very good approximation to treat the second emission as
independent emission from two dipoles [2]. For an exclusive statement, for
example the probability dP to emit the first gluon with a certain (k1,y1), it
is necessary to multiply the inclusive formula in Eq.(5.1) with a Sudakov form
factor Ay containing the probability not to emit above k1,

L
Ag(Lyky) = exp(—/ dn),

dp((laglaq) dn(ﬁlayl)As(Lanl) . (55)

The probability to emit two gluons is then, in the approximation that the
second gluon is emitted by two independent dipoles, given by

dP(q,8,8,,q) = dP(q,8,,q) [dP(q,82,8,) + dP(g,,8,,q)] (5.6)

in easily understood notations. The approximation in Eq.(5.6) results at most
in a percentage error over all phase space [3]. Thus, contrary to QED where
the chargeless photons still leave the eTe~-current as the single emitter, the
8-charge gluon (g,) in QCD changes the original qq dipole into two dipole
emitters, one between q and g; and one between g, and q, and each can inde-
pendently emit the second gluon (g,). The requirement for the validity of the
approximation in Eq.(5.6) is that k1 > k2 or else the indices are exchanged.

The two independent dipoles are moving apart (with g, as the common parton).
This means that they have together a larger effective rapidity range for the
emission of g,, i.e. the original hyperbola length L = log(s) is exchanged for
two hyperbolas with the combined length log(sqg, ) + log(sg,q) = L +log(k? ;).
From any one of the two new dipoles we may then emit the second gluon,
thereby producing three independent dipole emitters and the process can be
continued towards more dipoles; ordering the process in k; downwards. The
available phase space for further emission is increased after each emission, as
can be seen from the increased total length, L, after the first emission. This
description of the QCD cascades is called the Dipole Cascade Model (DCM) [4].
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We will now consider the polarisation sum contribution in Eq.(5.1). Its precise
properties depend upon whether we are dealing with a q, qg or a gg dipole,
but it stems from the spin couplings between the emitter(s) (it is essentially
sensitive only to the closest emitter) and the new field quantum. These cou-
plings contain the property that helicity is conserved, which is true for all gauge
theories. This means that if a spin-1/2 parton emits a spin-1 parton, the spin-1
parton must go apart from the emitting particle in order to conserve helicity
and angular momentum. They have to go even further apart in the case of a
spin-1 parton emitting a spin-1 parton. To estimate the separation we consider
(for fixed k. (or )) the available rapidity range:

Ymax
/ Vdy =1L -k —c+ 002 /s) (5.7)
Ymin
where ¢ = (11/12+11/12), (3/4+11/12) or (3/4+ 3/4) depending on whether
the emitters are gg, qg (gq) or a qq dipole [5]. The quantities ¢ are written as
sums to show that a spin-1 (g) emitter and a spin-1/2 (q or @) emitter has an
empty region surrounding it in rapidity of size 11/6 and 3/2, respectively. In
order to obtain this result we note that in terms of the z-variables introduced
in Eq.(5.3) the factor ¥ is (21" + 25%)/2 with 213 = 1 — k1 exp(+y)/+/s and
ny 3 equal to 2 or 3 for q(q) and g, respectively. ¥(max,min} are determined from
the energy momentum requirement in Eq.(5.4).

A note of caution should be issued at this point. For given s and &k, there are
two definite limits in rapidity ¥min < ¥ < Ymax, and there is then a depletion
of emissions due to helicity conservation, in regions close t0 ymin and Ymax. It
is in general a poor approximation to put the factor ¥ to a unit stepfunction
for Ymin + ¢/2 < ¥ < Ymax — ¢/2 although it works when the rapidities and
azimuth are integrated out. A closer examination provides a y-distribution with
similarities to a finite temperature Fermi distribution. We will nevertheless
refer to this feature as “the excluded region” around each gluon.

We note that in the process g — qq, where the spin-1 parton emits two spin-
1/2 partons, that the fermion pair “prefer” to be parallel, since there are no
poles in this decay distribution. However the process g — qq is suppressed
compared to the process g — gg and is in general neglected. The DCM will
in this way produce a fan-like set of dipoles, which in the LLA increases the
phase space (the total available effective rapidity range) for further emissions.
However, including the influence from the polarisation sum (which is essentially
the approximation scheme called Modified LLA) there is in each emission also
a depleted region around an emitted parton, in practice ¢ = 11/6, because the
gluons completely dominate the process. At large energies, but not too large
transverse momenta, one may in general neglect the restrictions but they will
be very noticable at the end of the cascades. For example, with a dipole mass of
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3 GeV the typical rapidity range available for gluon emission is about 4 units,
and it is then very noticable to exclude 11/6 units.

It is interesting that the average region excluded due to helicity conservation
also occurs in connection with the properties of the running coupling. To be
more precise, we consider a change of scale in the definition of a field quantum
and its interaction. A change of scale means that the field operator, which has
been normalised to a single quantum at one scale, and the coupling constant,
which likewise has been normalised at the original scale, will both change.
These changes can be read out from the Callan-Symanzik equations and the
B-function contribution, stemming from the change in the coupling constant,
can be written as

oM

11 Neay  2npas oM
day

s Oayg

6 27 3 4r

—B(as) ( (5.8)

where a change in a quantity M, when the observation scale is decreased from
the level k = log(k%) to k — dk, is considered. The decrease accounts for the
minus sign on the left hand side. According to the DCM there is then at this

new scale not only the possibility to emit new gluons but also, at the next order
in the coupling ay, the possibility to reabsorb already emitted gluons.

The operator a;0/0a, works like a number operator, i.e. for any function
M =" a?m, it provides the number n of possible insertions. The quanti-
ties Neas/2m and nyas/4m are the couplings for gg — g and qq — g (and
the inverse processes) while 11/6 and 2/3 corresponds to the effective (gen-
eralised) rapidity ranges available in these reabsorption processes for a given
k. It should be noted, however, that this interpretation is gauge-dependent;
in almost all gauges there are contributions to the g-function from the vertex
corrections. However, for a particular gauge choice with the propagator given
by —(guw — 4kuk, /k?)/k?, the vertex contributions vanish. A closer analysis
reveals that the major effect stems from the so-called Coulomb gluons, i.e. a
charged particle like a field quantum in a non-abelian theory is always accom-
panied and interacts with its own Coulomb field. The 11/6 can therefore be
considered as the region around the gluon containing its accompanying field.
This has been utilized for an approximation of the QCD cascades where the
available phase space for emission is discretised [6].

5.3 A toy model for the end of the cascades

After several gluon emissions there are a set of dipoles with small masses, and
there are in general very many Feynman graphs which may contribute. The
largest diagramatic contribution is chosen according to coherence conditions in
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the cascade; in the Dipole Model [4] by an ordering of the gluon emissions in
transverse momentum, and in the Webber-Marchesini model [7], and the model
implemented in JETSET [8], according to a choice of kinematical variables that
fascilitates a strong angular ordering of the emitted gluons. Results from the
cascade models are essentially equivalent, at least as long as sufficiently hard
gluon emission is considered.

The ordering of emissions in the models will lead to dipoles with small masses
emitting softer gluons. These soft gluons have a transverse momentum, &, , of
the same order as their emitter and recoils play an important réle. At present
there exists only a minor knowledge of how the recoils should be distributed
among the emitters. A sufficiently large recoil on one of the emitting (soft)
gluons will in general imply that the chosen order is no longer in accordance
with the coherence conditions. Emitting soft gluons will evidently lead to a sit-
uation where several, or even very many, paths to the final state are important,
and many different Feynman graphs may contribute and interfere.

To investigate the emission of soft gluons we propose a toy model with the
following two properties:

I We assume that the effective coupling & is large enough so that there is a
tendency to emit as many gluons as possible, essentially with the same & .

II We assume that the emissions fulfil the requirement of helicity conserva-
tion; this implies that two colour-connected gluons cannot be closer than a
“distance” d = c.

We will use the following combination as the probability for a given colour-
connected multi-gluon state

T Sid+l (59)
where s; ;11 is the dipole mass between the colour-connected gluons j and
j+1. The factor a corresponds to the product of the coupling and the relevant
phase space region, and 3 to the restrictions from helicity conservation, i.e.
the requirement of a suitable distance between the emitted gluons. Neglecting
recoils, we obtain for any order of the emissions in the DCM, that the product
of factors 1/s; ;41 can be written in terms of the invariant dipole transverse
momenta as

512823 .. -Sn—1,n = kiQkiS [N kin—lslznn (510)

where k| ; denotes the invariant k£ of the dipole from which gluon j is emitted.
Eq.(5.9) is therefore a simple generalisation of Eq.(5.1).
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The dipole mass can be written as
sigit = K 2fcosh(Ay) — cos(A)]
~ k7 (Ay® + A¢®)[1 + (Ay? — A¢®)/12] . (5.11)

For simplicity we have set the transverse momenta of the two gluons to be
identical. Ay and A¢ are the differences between the colour-connected gluons
in rapidity and azimuthal angle, respectively. We are now in a position to
define precisely what we mean by “distance”. We therefore introduce a distance
measure, d, which is related to the dipole mass by

djj+1 = \/sij+1/k (5.12)

When the dipole mass and the rapidity region are large the azimuthal depen-
dence can be neglected and d ~ Ay.

The emission of soft gluons has thus been reduced to the following problem;
given a certain rapidity range and the full accompanying azimuthal range 0 <
¢ < 2w how are the colour-connected gluons distributed in phase space in order
to obtain a maximum of P in Eq.(5.9), keeping in mind that the gluons cannot
be too close?

From Eq.(5.9) we see that the magnitude of « controls the relative probability
between different gluon number states. If « is sufficiently large the number of
emitted gluons will fill the available phase space, and P becomes maximal when
the gluons align along a straight line in phase space. This helix-like structure
is the optimal configuration irrespective of the size of «a, or of the number of
emitted gluons. For a given multi-gluon state there are many possible ways to
colour-connect the state, where the helix is only one of the possibilities. It is
of course possible that the sub-optimal configurations are the important ones
and swamp the helix-like contribution, but there are also many contributions
close to a perfect helix.

We have carried out a numerical study to test whether the contributions from
helix-like structures survive the phase space effects. Our program calculates
all possible configurations on a discretized (y,$) phase space taking into ac-
count that gluons must not be closer than ¢ to each other. The number of
possible configurations grows factorially with the number of gluons, but the
number of gluons is restricted by the available phase space. We have studied
a reasonable phase space size of three units of rapidity using a closest gluon-
to-gluon distance ¢ = 11/6 in all the calculations. Since the fluctuations in
dipole k; are limited within a narrow range at the end of the cascades and
the dependence on dipole &k, in Eq.(5.1) is rather weak, we set the transverse
momenta of the gluons to be constant. In Fig.(5.1) we show the most prob-
able five and six gluon configurations. The points corresponding to a given
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Figure 5.1: The most probable configurations with five and six gluons using ¢ = 11/6.
(The cylindrical phase space has been mapped onto a plane). The gluon exclusion
region for each gluon is indicated with the ellipse-like shapes. The line segments show
the colour field and should form a straight line for a perfect helix. The discrepancy
is due to the discrete phase space used in our numerical analysis.

mass correspond to ellipse-like shapes (1/(cosh(dy) — cos(6¢)) and in order to
minimize the distance between adjacent gluon emissions these ellipses must be
displaced so that they correspond to a helix-shaped configuration. The case
shown corresponds to the optimal situation where it is favourable to “close
pack” the gluons irrespective of the size of a.

Taking into account all possible configurations we obtain a distribution in D? =
>_d%; ., which is very broad, cf. Fig.(5.2), but weighting each D> with the
corresponding P from Eq.(5.9) we obtain a large and narrow peak close to
the most probable colour-connected configuration indicating that the gluon
configurations have short strings close to the optimal helix structure.

Now that we have established that short strings are preferred we investigate
in more detail if they are helix-like in general. To this aim we will introduce
a new possible observable, “screwiness”. At this point it is only a theoretical
observable, but later on we will show how to use it for the final state hadrons.
We define screwiness S from the values of (y;,¢;) for the emitted gluons in
accordance with the toy model,

Sw)=) P Zexp(i(wyj - )| - (5.13)

The first sum is over all the configurations e found in the phase space and
the second goes over the gluons in the configuration. For w-values close to
zero, screwiness must be small if the gluons are emitted isotropically in the
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Figure 5.2: The unweighted (dashed line) and weighted (solid line) squared length
distributions, f, of configurations with six gluons.

azimuthal angle. For large values of w the phases should be close to chaotic
and then screwiness only depends on the mean number of emitted gluons.

In Fig.(5.3) we show the screwiness distribution including contributions from
all configurations with a specific number of gluons. Two cases are shown, firstly
configurations with the maximum possible number of gluons (in a three unit
rapidity phase space this is six gluons), and secondly those corresponding to
five gluon states (the contributions corresponding to even smaller number of
gluons show similar distributions). There are two noticable broad peaks with
their mean values close to w = 27 /c. Since the helix structure has no pre-
ferred rotational direction the distributions should be even. The small apparent
asymmetry is due to numerical effects. We have also analysed the configura-
tions for ¢ = 1.5 and 3 and these results are independent of the minimum
gluon-to-gluon distance.

From this toy model we see that if we fill the phase space with soft gluons,
which are forbidden to be too close to one another, then they tend to line up
along a helix structure, since the colour-connection between the gluons prefer
to be as short as possible.

5.4 Modelling the helix as an excited string

In order to consider the consequences of the helix-like colour field which we
obtained in Section 5.3 it is necessary to provide observables in terms of the
final state hadrons. A first attempt to model such a field is to approximate it
by the emission of a set of colour-connected gluons with the same transverse
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Figure 5.3: Screwiness in the toy model for five (dashed line) and six (solid line)
gluon states in a rapidity region of three units with ¢=11/6.

momentum k. We may then consider the properties of the final state hadrons,
as produced by the Lund string fragmentation model. We very quickly find
that in the competition between increasing the multiplicity versus increasing
the transverse momentum of the hadrons the model uses the first possibility
only. In this section we will be content with giving the basic argument for why
the helix cannot be described as gluonic excitations on the string field.

Suppose that a gluon with transverse momentum k; is moving transversely to
the constant (k) force field, then it is possible for the gluon to drag out the
string field the distance £ = k) /2x (a gluon experiences twice the force acting
on a quark). On the other hand, in a quantum mechanical setting such a gluon
is only isolated from the field if the wave-length of the gluon A ~ 27 /k, is
smaller than ¢ and therefore

\Y

k2 > 4dnk
ZQ

min

BN

(5.14)

(this is similar to the Landau-Pomeranchuk formation time arguments). From
the first line in Eq.(5.14) we obtain the requirement that a “real” gluon must
have a transverse momentum larger than k9 = 1.6 GeV.

We conclude that the helix field cannot be described in terms of a finite num-
ber of gluon excitations on the Lund string. The many small-k ;| excitations
in the model tend to increase the final state particle multiplicity (with small
fluctuations) rather than to produce transverse momentum for the particles.
The interested reader can find a more thorough investigation of the problems
associated with the fragmentation of soft gluons in appendix 5.A.
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5.5 A semi-classical field at the end of the cas-
cades

We will now consider the possibility that a (semi-)classical colour field is pro-
duced at the end of the perturbative QCD cascades that cannot be described
solely in terms of gluonic excitations on the Lund Model string field. The
properties of this field should be in accordance with the toy model that was
described in section 5.3. Thus the internal colour quantum number should be
correlated to the external space-time (energy-momentum space) behaviour so
that the colour field has a helix structure, i.e. the colour field lines are turning
around a spacelike direction, from now on called the 1-axis.

We may describe the expected field in terms of a wave-packet of energy-
momentum space four-vectors, kg, corresponding to the colour current (the
index € stands for the parameters describing the wave-packet). We will as-
sume that the vectors kp always have a constant virtuality k7 = —m?. We
further assume that the helix colour field is itself emitted from the current as a
continuous stream of gluons dk, colour-connected along each emission vector,
kg. They should be obtained by differentiating the vector ky (we are gener-
alising the physics picture from a ladder-diagram as in Fig.(5.4), where the
“propagator” vectors {k}; are emitting the gluons dk; = k; — k;j_1).

The most general description of such a vector is (we use lightcone coordinates
along the 0l-direction and transverse coordinates in the 23-plane and we do
not worry about the initial values):

k9 = mfcos(0)(exp(y), —exp(—y),0,0) + sin()(0,0, cos(o¢),sin(c¢))]
m[cos(8)er (y) + sin(6)€L1(09)] . (5.15)

Here m is a constant parameter, y is the rapidity and ¢ the azimuthal angle.
We have introduced ¢ as a constant describing the relative motion in rapidity
and azimuth. We will put o = 1/2 later in order to get ¢ as the azimuthal
angle of dk. Finally 6 is the variable describing, on the one hand, the size of the
fluctuations in the longitudinal and transverse parts, and on the other hand,
the properties of the wave-packet.

Assuming that the emitted field quanta dk are massless, we get,
AN 1 — cos(26) dy\”
2 _ av _ (%
w0 = () +(=572)- (%)
A dy\ >
small § = l<%> +0°| = <%> . (5.16)

We have used the differential d¢ = /dy? + d(o¢)?. Therefore, the assumptions
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dkf=kj - kj,]

Figure 5.4: A current with constant virtuality, kf = —m?, emitting massless field
quantas, dka =0.

of constant virtuality of £ and the masslessness of dk imply that the variable
6 should fulfil the pendulum equation according to the first line of Eq.(5.16).
In the limit of small |f|-values this becomes a harmonic oscillator equation,
assuming that the quantity dy/df is a (small) constant along each vector ky.
For consistency we will then make the change d¢ — od¢. This is the second
line of Eq.(5.16) and using the notation dy/d¢ = T we obtain as a classical
description (again neglecting the boundary values):

0= gcos(agi)) . (5.17)
If we choose 0 = 1/2 to make ¢ the azimuthal angle of dk, then we find that

the field emission vectors dk/d¢ and the corresponding current vector ky are
(in the approximation of small oscillations):

j—f; = mrleo(y) + Z10(6)]
ko = mlea(y) + (@01 (9) + 11(0))] | (5.18)

Here we have introduced the vectors ey = dey /dy and €, 9 = dé€| 1 /d$ (note that
all the occurring vectors are orthogonal). We may evidently use the quantity
7 (together with suitable boundary values) to label the wave packet for the
current. That is to say, we may assume that there is a distribution h(r) which
describes the occurrence of the different current lines, each with a well-defined
direction 7. This distribution, h(7), should be similar to a Gaussian. A single
current line with fixed 7 may also be described in the transverse plane. The
current turns around the 1-axis with the azimuthal angle and the corresponding
field quanta are emitted transversely to the current at every emission point
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according to Eq.(5.18). There is one reasonable restriction: the field energy
emitted by the current in a small angular segment should not exceed the energy
which should be available in the Lund Model string. If we use the string radius
as calculated in Eq.(5.14), £yin = \/7/k, then we find that

m7 < £lmin =~ 0.8 GeV . (5.19)

It is interesting to note that these fields have similarities to those studied in
connection with dimensional reduction in [9].

5.6 Fragmentation and screwiness

We have in the previous section described the emission of a continuous stream
of colour-connected gluons having the property that the azimuthal angle of
the stream is proportional to the rapidity, i.e. it is of a helical character. As
previously discussed we cannot implement this as individual gluonic excitations
of the Lund string. We will in this section instead describe a possible way
to take the transverse properties of the continuous helix into account whilst
keeping the major properties of the Lund fragmentation model. In order to do
this we will begin by presenting a few relevant parts of the Lund model. This
model has been described several times and a recent investigation can be found
in [10].

5.6.1 The Lund fragmentation process

The following (non-normalised) probability to produce a set of hadrons has
been derived using semi-classical arguments in [11]

dP({p};; Piot) = [Hdepj5(p?—m?)] 8> pj — Piot) exp(=bA) . (5.20)

Here N; are normalisation constants, A the decay area, cf. Fig.(5.5), and b a
basic colour-dynamical parameter; from comparison to experimental data we
know that b ~ 0.6 GeV~2 if the area A is expressed in energy-momentum space
quantities.

The constant force field spanned between a colour-3 quark and a colour-3 anti-
quark is a simple mode of the massless relativistic string. The process has been
generalised into a situation with multigluon emission in [12] using the Lund
interpretation that the gluons are internal excitations on the string field.

The area decay law in Eq.(5.20) can be implemented as an iterative process, in
which the particles are produced in a stepwise way ordered along the positive
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Figure 5.5: The break-up of a Lund string.

(or negative) light-cone. If a set of hadrons is generated, each one takes a

fraction z of the remaining light-cone component E + p; (or E — py, if they are

generated along the negative light-cone), with z given by the distribution

(1—-2)"
z

fiz)=N exp(—bm3 /z) . (5.21)

The parameters N, a and b are related by normalisation, leaving two free
parameters. The transverse mass parameter in the fragmentation function is
m? = m? + p?, with the transverse momentum obtained as the sum of the
transverse momenta stemming from the q and q particles generated at the
neighbouring vertices, p; = Eu — EM. In the Lund model a qg-pair with
transverse momenta +k is produced through a quantum mechanical tunneling
process. It results in a Gaussian distribution for the transverse momenta

d’k) exp(—7k? /K) . (5.22)
The whole process is implemented in the Monte Carlo program JETSET [8].

Consider the production of a particle with transverse mass m . Given that one
vertex has the rapidity y;, the rapidity difference Ay is not enough to specify
the position of the other vertex. One must also know the proper-time of the first
vertex. This is shown in energy-momentum space in Fig.(5.6) where the first
vertex is specified by I which is the squared product of the proper-time and k.
Of course there are two solutions in this case, but one is strongly favoured by the
area dependence in Eq.(5.20). In the Lund model the vertices, on average, lie
on a hyperbola given by a typical I'. That is to say, the steps in rapidity in the
particle production are related to the scale (T') as given by the model. There
is a similar situation in the transverse momentum generation. The squared
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Figure 5.6: The longitudinal energy scale in the Lund model is (I'). The figure shows
the production of a particle with transverse mass m . The difference in rapidity
between the constituent vertices has to be related to the I' of one of the vertices in
order for the vertices to be specified.

transverse momentum of a particle is not only given by the azimuthal angle
A¢ between the break-up points that generate the particle. The lengths of
the transverse momenta of the q and the @ that make up the particle are also
needed. In the tunneling process in Eq.(5.22) these sizes are given by the scale
K/

Thus the Lund fragmentation model provides two different energy scales; one
longitudinal to relate to the rapidity difference between vertices and one trans-
verse to relate to their difference in azimuthal angle.

5.6.2 A modified fragmentation process with screwiness

The main idea in the screwiness model is that the transverse momentum of
the emitted particles stems from the piece of screwy gluon field that is in
between the two break-up points producing the particle. Therefore we begin
by summing up the transverse momentum that is emitted between two points
along the field line, cf. Eq.(5.18):

o
%&b =kio— ki1 =mr[EL1(d2) — EL1(d1)] (5.23)
1

We note that the quantity m7 also occurs here. We will always consider the pa-
rameter m to be a suitable fixed mass parameter but according to the assumed
wave function for the current the direction 7 may vary between the different
break-up points. To keep the presentation clear we will start off keeping 7
fixed. In the end we will present the generalisation to the case of a varying 7.
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Figure 5.7: A qg-pair is produced in a break-up point with azimuthal angle ¢. The
figure illustrates how the screwy gluon field between ¢ and ¢» is associated with
the transverse momentum (—k1,k12) of the quarks produced at the two break-up
points. This association has the property that the produced transverse momentum is
conserved locally in each break-up point.

If we associate £k 1; with the transverse momenta of the q@-pair produced
at vertex i, the transverse momenta of the produced particles are given by
Eq.(5.23). The corresponding squared transverse momentum is then

p2; =2m>72[1 — cos(Ag)] (5.24)

where A¢p = ¢; — ¢;—1. Since A¢ is proportional to the rapidity difference
between vertices Ay, it can be written as a function of the particle’s light-cone

fraction z N
Ay 1 z+m?7 /T
Ap=—=—1] oL 2
¢ T 27 0g< z2(1—2) ) (5.25)

where T' is defined as in Fig.(5.6) and with respect to the previous break-
up point ¢ — 1. Taken together this means that we can write the transverse
momentum of a particle as a function of z and 7

pi(z) = 2m’r’ {1 — cos (Ay—(z)ﬂ : (5.26)

Ti

As explicitly manifested in Eq.(5.26) this means that the transverse and longi-
tudinal components are connected in this model. Inserting p% (z) in the Lund
fragmentation function gives

(12

fz) =N e (=2 (i +41)) (5.27)
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In this way Eq.(5.27) gives the distribution of light-cone fractions for a given
direction 7.

This model keeps the longitudinal properties of the ordinary Lund fragmenta-
tion model, but the azimuthal properties are changed. Rapidity differences are
still related to (I') but steps in the azimuthal angle are now correlated with
steps in rapidity. The azimuthal angles are no longer related to k/m as given
by the tunneling process, but instead to m27? as given by the screwy gluon
field.

When going from one vertex to the next in the case of varying 7 one has to keep
in mind that the transverse momentum produced at the first vertex has been
specified by the previous step. In order to conserve the transverse momenta
generated at each vertex we therefore modify the association in Eq.(5.23), as
follows

i d-iCJ_ - T;
dp =k, ; — ki 5.28

J Gt =P iR (529
where 7; denotes the direction between break-up points i —1 and 7, cf. Fig.(5.7).
The transverse momenta of the produced particles are then given by

Pri = kii—Fiiqa=mnéi(s) —7i181(i1)]
pii = m? [Tf + Ti2_1 — 27T cos(A¢)] . (5.29)

The p? given by Eq.(5.29) can then be put into the fragmentation function.
Varying 7 results in larger variations in the emitted transverse momenta of
the particles. We have used a Gaussian distribution of r-directions and we
have approximated m? in Eq.(5.25) with m% ~m? + (p?,.,.) = m; +2m>c2.
Where my, is the hadron mass and o, denotes the width in the distribution of 7-
directions. The equations can be solved iteratively without this approximation,
but we find that our results are unaffected by this approximation.

5.7 1Is screwiness observable?

In this section we will address the question of whether introducing a correlation
between i and ¢ of the string break-up vertices has observable consequences for
the produced particles. There are two processes which in principle can destroy
such a correlation. Firstly, there is the initial particle production and secondly,
there are resonance decays. The initial particle production spoils things because
even if the vertices lie on a perfect helix the produced particle will usually
not lie on the line between its two constituent vertices in the (y,¢)-plane.
The particle production fluctuations are mainly in rapidity, i.e. a particle is
produced with an azimuthal angle which roughly corresponds to the average
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angle of its constituent vertices, while its rapidity is distributed with width
unity around the average of the vertices.

To study the consequences of the screwiness model we have generated events
with three different values (7) = 0.3,0.5 and 0.7. For each value we have tuned
the parameters of the model to agree with the multiplicity, rapidity and trans-
verse momentum distributions of default JETSET. In this way we can study
the correlations introduced by the model as compared to the ordinary Lund
string model. We have tuned m to get the default average p; of the produced
particles, utilizing the fact that the product mr is the important factor. The
parameter b has been changed from the default JETSET value to tune the mul-
tiplicity, and o, has been tuned to get the final charged p; fluctuations. Tuning
with different (7) values results in the parameter values shown in Table 5.1.
We note in particular that to get the multiplicity distributions of default JET-

(r) ] 03 ] 05 | 0.7
m | 1.0 | 0.71 | 0.61
b | 0.64 | 068 | 0.7
o- | 02 ] 03 |0.35

Table 5.1: Parameter values. The model has been tuned to the multiplicity and
charged final p, distributions of default JETSET (b = 0.58).

SET only minor changes of the b-parameter are needed. We also note that the
restriction in Eq.(5.19) is satisfied for all the cases since in this model only a
fraction of the energy available in the Lund string is used to produce transverse
momenta.

We have generated pure q events and the particles in the central rapidity
plateau have been included in the analysis. The plots shown are for four units
of rapidity, but the qualitative results for observable screwiness are unaffected
for values as low as approximately three units of central rapidity. We have
analysed the properties of the generated events by means of the screwiness
measure, defined in Eq.(5.13). Here, the second sum in the measure instead
goes over the hadrons or over the break-up vertices. The weight P, is of course
unity for all events.

In Fig.(5.8) the screwiness for the break-up vertices is shown. It has a clear
peak for the different values of (), and the w-values for the peaks correspond
to the average T values used. The screwiness for the initially produced particles
is shown in Fig.(5.9). We note that the peak vanishes for small values of 7. A
helix where the windings are separated by two units of rapidity corresponds to
7 = 1/7. The vanishing of the signal for small 7 values is therefore in agreement
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Figure 5.8: Screwiness for the string break-up vertices. The three curves shown are
for () = 0.3, 0.5 and 0.7, respectively. There is a clear peak at w ~ 1/(r) in all the
cases.

Figure 5.9: Screwiness for the directly produced particles. The three solid curves
are for (t) = 0.3, 0.5 and 0.7, respectively. The peak decreases as (7) is reduced. For
(T) = 0.3 the peak has vanished due to the fluctuations in particle production. The
screwiness for default JETSET (dashed line) has been included for comparison.

with our findings for the rapidity fluctuations in the particle production. For
comparison we have included the screwiness for the initial particles produced
by default JETSET in Fig.(5.9). As expected no signal is found in this case.
The screwiness is further diluted by resonance decays, but it is still visible for
not too small 7 values as shown in Fig.(5.10).

To try to enhance the signal we have investigated how the screwiness mea-
sure depends on multiplicity and the transverse momentum of the particles.
Selecting events with large initial multiplicity enhances the signal. However,
analysing events with different final multiplicities separately does not give an
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Figure 5.10: Screwiness for the final particles (7”’s are set stable). The three curves
shown are for () = 0.3, 0.5 and 0.7, respectively. For not too small (r)-values there
is a peak at w ~ 1/(7).

enhancement of the signal. The influence of resonance decays on the multiplic-
ity is too large.

Selecting events where (p?) is large enhances the signal when decays are not
included. This is shown for (r) = 0.3 in the left part of Fig.(5.11) where events
with (p? ) > 0.3 GeV? for the initial particles have been selected. As shown in
the figure this event selection results in the signal surviving particle production
even for small (7)-values. This event selection is also profitable when it comes
to decreasing the effects of resonance decays since events with many decay
products are not likely to be selected. In the right part of Fig.(5.11) we show
the screwiness for the final state particles in events where (p? ) > 0.25 GeV?.
The curves shown are for (r) = 0.3 to show that with event selection a signal
can be obtained even for this case. Using the same event selection of course
enhances the signal for larger (7)-values, but in those cases it was clearly visible
in the total sample.

A total of 50000 qq events have been used in the analysis, except in the event
selection analysis in Fig.(5.11) where 250000 events are analysed. To be able to
observe screwiness for such a small (7)-value one needs to increase the number
of events by a factor of about five compared to the larger values. Since we
have only used positive (7)-values, events with a preferred rotational direction
are generated. We could have included both rotational directions in the event
generation which would add a signal for negative w, but reduce the statistics
by a factor of two.

The effects on the screwiness from hard gluons stemming from the parton cas-
cade will be investigated in future work. However, since only a fairly small



118 Screwiness

S(w) S(w)

0.100 0.100

0.075

0.075 r

0.050 0.050

0.025 . - : . 0.025
0 0

Figure 5.11: Screwiness for () = 0.3. To enhance the signal events where (p?)
is large have been selected (solid lines). We have included the corresponding curve
with no event selection (dashed lines) to indicate the improvement. Left) Initially
produced particles. (p3) > 0.3 GeVZ. Right) The final particles. 7°’s are set stable.
(p2) > 0.25 GeV?2.

number of events are needed for the results in this paper we expect that inves-
tigations of experimental data, in which hard gluon activity is excluded, can
be profitable.

A specific property of our model is that (p?) for directly produced pions is
smaller than (p? ) for heavier particles. This feature appears to be in agreement
with experimental data on two-particle correlations [13]. A model for correla-
tions in p, in the string hadronization process with similar consequences was
introduced in [14]. The p, for directly produced pions and p’s are shown for
the screwiness model in Fig.(5.12) and the distributions are clearly different.
In the figure we also show the p; distribution of the final pions and compare it
to the default JETSET distribution. As seen the secondary pions wash out the
differences. The (p, ) for various flavours at the initial production level depend
on the screwiness parameters, but the qualitative difference remains.

5.8 Conclusions

It is perhaps surprising that such an ordered structure as a helix could emerge
at the end of the QCD cascade. However, when we consider the constraint
imposed by helicity conservation, we see that purely random configurations of
gluons are disfavoured. This is because the exclusion region around each gluon
restricts the maximum number of allowed gluons. Instead we see that the gluons
can achieve the maximum concentration by close packing themselves into the
form of a helix. The fragmentation of this screwy field has consequences for
the final state particles. Although the fragmentation cannot be described in
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Figure 5.12: Left) The p; (GeV) distributions for the directly produced 7’s (solid)
and p’s (dashed). The curves shown are for 7 = 0.5. Right) The p, (GeV) distri-
butions for the all final pions (solid), 7°’s are set stable, as compared with default
JETSET (dashed).

terms of gluon excitations of the Lund string, we have instead modified the
Lund fragmentation scheme. If the winding is within reasonable limits then we
expect “screwiness” to be an observable feature of the QCD cascade.

Acknowledgments

We thank Patrik Edén for very many valuable discussions. This work was sup-
ported in part by the EU Fourth Framework Programme ‘Training and Mobility
of Researchers’, Network ‘Quantum Chromodynamics and the Deep Structure
of Elementary Particles’, contract FMRX-CT98-0194 (DG 12 - MIHT).

5.A Problems with fragmenting soft gluons

In section 5.4 we claimed that the helix colour-field cannot be implemented as
an excited string, since gluons softer than k9 = 1.6 GeV cannot be considered
as excitations of the string.

To illustrate the problems with fragmentation of soft gluons we have investi-
gated JETSET fragmentation of parton configurations with soft gluons emit-
ted according to the Dipole Cascade Model as implemented in the ARTADNE
Monte Carlo [15]. The allowed k) range for emissions from the colour dipoles
is normally between an upper value, given by phase-space limits, and a lower
infra-red cut-off, k.. We have instead used a small maximum allowed k
value (denoted k) max) to restrict the hardness of the emitted gluons. This



120 Screwiness

1.8 =
1.6 r =

1.4 ¢ n ="

1.2

I
2

10 k = o,
n

08 L I I I I I

Figure 5.13: The multiplicity in central rapidity per unit of rapidty m and the
corresponding variance o2 depends on the upper cut-off in the cascade kimax (GeV)
as shown. Default JETSET has been used for fragmentation and o2 /n does not start
to increase until k| max is roughly 1.6 GeV

soft cascade has been applied to qg-dipoles oriented along the z-axis. The soft
gluons have a negligible impact on the event topology and for our purposes it
therefore makes sense to define rapidity with respect to the z-axis. We have
analysed the resulting hadrons in the central rapidity plateau of the events. To
emphasize the features of fragmentation of soft gluons we have not included
resonance decays in our analysis.

In Fig.(5.13) we show how the average and the squared width of the central
multiplicity distribution depend on k| max. The effect of the soft gluons is an
increase of the average multiplicity while the multiplicity fluctuations remain
constant or even decrease until k| yax is above k1 o. The (p,) with respect to
the z-axis of the hadrons only increases from 0.46 GeV for a flat string with no
gluon excitations to 0.56 GeV for k| max = 3 GeV. Changing the generated (p, )
by such a small factor has a minor effect (~ 5%) on the average multiplicity in
pure qq events whilst adding the soft gluons increases the average multiplicity
by roughly 40%, as shown in the figure. As mentioned in section 5.4, we
find that the soft gluons essentially only increase the hadron multiplicity. The
number of gluons per rapidity unit varies from 0.25 for &} pnax = 1 GeV to 0.7
for k| mez = 5 GeV. The situation is even worse in the case of the helix field
where the expected number of soft gluons per unit of rapidity is significantly
larger. We conclude that gluons softer than k¢ cannot be implemented inside
the Lund Model as individual gluonic excitations of the string.

We will end this appendix with an interpretation of the Lund fragmentation
model, which provides us with the possibility to relate & ¢ to the b-parameter in
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the model. The result in Eq.(5.20) (although derived semi-classically) can be
interpreted quantum-mechanically by a comparison to Fermi’s Golden Rule.
It equals the final state phase space times the square of a transition matrix
element | M|? = exp(—bA). There are two such quantum-mechanical processes,
Schwinger tunneling and the Wilson loop integrals, which can be used in this
connection (and they result in very similar interpretations of the parameters).
For the Schwinger tunneling case we note that if a constant (x) force field is
spanned across the longitudinal region X during the time 7" with a transverse
size A, then the persistence probability of the vacuum (i.e. the probability
that the vacuum should not decay by the production of new quanta) is [16]

|IM|? = exp(—&*XTA,TI) . (5.30)

Here the number II only depends upon the properties of the quanta coupled
to the field; for two massless spin 1/2 flavours it is II = 1/127. Comparing
the result in Eq.(5.30) to Eq.(5.20) we find that the parameter b = A /247
(taking into account that the Lund model area is counted in lightcone units).
From Eq.(5.14) we obtain the minimum transverse size of the field from which
it then follows that the b-parameter in the Lund model must be b > 7/24k ~
0.6 GeV~2. This is evidently just in accordance with the phenomenological
findings in the Lund model for the parameter b. Further, considering the
distribution in Eq.(5.22) for the transverse momentum of a produced qg-pair
breaking the string we recognise the quantity ¢, in the exponential fall-off.
We may conclude that there is a wave-function for the Lund string in transverse
space with just the right transverse size to allow the “ordinary” transverse
fluctuations in momenta.
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