
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Explicit Cache Management for Volume Ray-Casting on Parallel Architectures

Jönsson, Daniel; Ganestam, Per; Doggett, Michael; Ynnerman, Anders; Ropinski, Timo

Published in:
Symposium on Parallel Graphics and Visualization

2012

Link to publication

Citation for published version (APA):
Jönsson, D., Ganestam, P., Doggett, M., Ynnerman, A., & Ropinski, T. (2012). Explicit Cache Management for
Volume Ray-Casting on Parallel Architectures. In Symposium on Parallel Graphics and Visualization
Eurographics - European Association for Computer Graphics.

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 19. Apr. 2024

https://portal.research.lu.se/en/publications/5990c5d7-05e8-4a20-97b3-b6156b9995ca

Eurographics Symposium on Parallel Graphics and Visualization (2012)
H. Childs, T. Kuhlen, and F. Marton (Editors)

Explicit Cache Management for Volume Ray-Casting
on Parallel Architectures

Daniel Jönsson1, Per Ganestam2, Michael Doggett2, Anders Ynnerman1 and Timo Ropinski1

1C-Research, Linköping University, Sweden
2Lund University, Sweden

Abstract

A major challenge when designing general purpose graphics hardware is to allow efficient access to texture data.
Although different rendering paradigms vary with respect to their data access patterns, there is no flexibility when
it comes to data caching provided by the graphics architecture. In this paper we focus on volume ray-casting, and
show the benefits of algorithm-aware data caching. Our Marching Caches method exploits inter-ray coherence
and thus utilizes the memory layout of the highly parallel processors by allowing them to share data through
a cache which marches along with the ray front. By exploiting Marching Caches we can apply higher-order
reconstruction and enhancement filters to generate more accurate and enriched renderings with an improved
rendering performance. We have tested our Marching Caches with seven different filters, e. g., Catmul-Rom, B-
spline, ambient occlusion projection, and could show that a speed up of four times can be achieved compared to
using the caching implicitly provided by the graphics hardware, and that the memory bandwidth to global memory
can be reduced by orders of magnitude. Throughout the paper, we will introduce the Marching Cache concept,
provide implementation details and discuss the performance and memory bandwidth impact when using different
filters.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Volume Rendering—

1. Introduction

Modern Graphics Processing Units (GPU) are complex par-
allel devices which allow SIMD processing. To acquire high
image fidelity and high rendering performance at the same
time, algorithms need to take advantage of several aspects
of a GPU’s architecture, which itself is subject to change
undergoes technological advancement. One aspect of high
importance which needs to be considered, is the increasing
gap between computational capability and memory band-
width of modern GPUs [OHL∗08]. While compute power
grows, memory bandwidth does not grow at the same rate.
Algorithms running on modern GPUs can be roughly classi-
fied on whether they are compute bound or memory bound.
The former spend a major amount of cycles performing com-
putations, while the latter use most of the cycles accessing
data usually located in graphics memory. While compute
bound algorithms are supported by the high degree of par-
allelism of modern GPUs, memory bound algorithms suffer
from the increasing gap between computational capabilities

and memory bandwidth. To reduce this effect, specialized
memory is used to grant fast data access through caching.
This goes even that far, that the Larrabee architecture other-
wise solely build with standard CPUs, integrates dedicated
texturing hardware to allow better performance for memory
bound algorithms [SCS∗08]. However, when providing such
dedicated hardware, besides the costs mainly two problems
occur. First, the same data caching strategy is used indepen-
dent of the algorithm executed by the parallel processing
units. This is problematic, since data access patterns vary
drastically even among algorithms performing similar tasks.
For instance, when implementing volume rendering through
texture slicing, the 3D texture representing the volumetric
data set is accessed in a slice pattern, while ray-casting ac-
cesses the 3D texture in a pattern following each viewing
ray. It is obvious, that these data access patterns require dif-
ferent caching strategies to minimize cache misses. Second,
todays texturing hardware is designed to offer hardware sup-
port for linear interpolation only, while in many application

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

(a) Trilinear interpolation (speed: -2.5x). (b) Catmul-Rom (speed: 3.3x). (c) B-spline (speed: 3.3x).

Figure 1: Comparison of data reconstruction and performance improvement for the Marshner-Lobb dataset using our method.
Hardware trilinear interpolation was used in (a) for comparison, while our method implements it in software which causes the
slowdown.

areas it can be necessary to apply more complex filters when
accessing data [HAM11].

Within this paper we address these two problems, by in-
troducing explicit data caching strategies for memory bound
volume rendering algorithms. By using our approach, we can
increase rendering performance and improve image quality
by enabling the application of higher-order reconstruction
and enhancement filters when accessing data. We have cho-
sen volume rendering as our application scenario, as it is
known to be memory bound by dealing with often large 3D
data sets. To reduce the limitations resulting from the mem-
ory bound behavior, we introduce the Marching Caches con-
cept as an explicit caching strategy for state-of-the-art GPU-
based volume ray-casting. Marching Caches improve per-
formance by reducing the amount of volume data read from
slow memory. This is done by exploiting inter-ray coher-
ence, whereby computational power is traded for memory
bandwidth through neighboring rays sharing fast memory
which they incrementally update. Thus, it becomes possible
to apply higher-order reconstruction and enhancement filters
to generate more accurate and enriched renderings with an
improved rendering performance as demonstrated in Figure
1. This is mainly achieved by taking advantage of data lo-
cality, which has previously been pointed out as being im-
portant by Rixner et al. in the development of the Imagine
Stream Processor [RDK∗98] [Cor11]. Thus, by moving data
closer in terms of the architecture to the thread execution,
performance can be improved. Within our approach, we uti-
lize a thread’s ability to access fast memory regions and use
it as an explicit cache, by moving voxel data into the memory
that is shared between the group of threads. By moving the
data from slow memory into the fast memory regions this
ensures data is available for reuse by several threads all at
very low latency, unlike having to read the data again from

slow memory or running the risk that data is evicted by the
implicit cache.

We have tested our Marching Caches with seven differ-
ent filters: Catmul-Rom, B-spline, ambient occlusion pro-
jection, trilinear, bilateral, gradient and filtered gradient. For
some of these filters we were able to obtain a speed up of
four times as compared to using the caching implicitly pro-
vided by the graphics hardware. Furthermore, the proposed
explicit caching reduces the memory bandwidth to global
memory by orders of magnitude. Besides these benefits, our
explicit caching also allows the programmer who knows the
data access pattern, to reorder computations to make max-
imum use of the available shared memory. Thus, it allows
further improvements for specialized rendering algorithms.

While we mainly focus on volume ray-casting, a similar
analysis as performed within this paper can be applied to
other data intensive algorithms and potentially lead to ded-
icated explicit caching schemes, which may allow similar
gains.

2. Previous Work

The concept of tracing several rays together has been used
previously in several contexts including volume render-
ing [MKW∗02]. Meissner et al. ray cast four rays together to
ensure enough computation is available to cover the latency
of the compositing pipeline. For the generation of realistic
images using interactive ray tracing the concept of packet
tracing [WBWS01] also involves tracing several rays at the
same time. In particular the rays in each packet are forced to
travel together, to ensure the same data is used for each ray
as it traces its path through the 3D dataset. While originally
used in a four-wide configuration to make best use of CPU
SIMD engines [WBWS01], it has also been applied to GPU
based ray tracing as well [HSHH07].

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

Global memory

Local memory

(a) Regular raycasting (b) Our method

Marching Cache

ri

ri

rj

rk

ri

rj

ri

rj

rk rk

Figure 2: A vast amount of reads from slow memory, indicated by grey boxes, are necessary when performing filtering for
regular ray-casting. Our method works by incrementally updating a cache which marches along a ray front. Dark (short dashes)
and light (long dashes) green represent fast memory where only the light green is updated from slow memory. The neighboring
rays, ri, r j and rk, work together to fill up the missing values. Using Marching Caches in this example, ri will read two values
from global memory and the other rays one each. For regular ray-casting each ray needs to read four values.

A vast amount of work has been directed into designing
filters, and summaries have been made by Meijering [Mei02]
and Unser [Uns00]. A comparative study of prefiltered re-
construction techniques for volume-rendering was made by
Csébfalvi [Csé08], which showed that the image quality can
be improved considerably when using such techniques. Re-
cently, Hossain et al. [HAM11] showed how to also improve
gradient estimation by prefiltering the data. As our approach
works for any filter, the work of both Csébfalvi [Csé08]
and Hossain et al. [HAM11] could benefit from using our
method.

Although more advanced filters can be used to improve
image quality, they will not be used for visualization if it
prevents interactivity. For 3D meshes, data access pattern
where improved by Tchiboukdjian et al. [TDR10] using a
cache-oblivous layout which provided coherent traversal.
Hadwiger et al. [HTHG01] enabled high quality filtering on
graphics hardware by scattering instead of gathering input
data. They reconstructed one slice at a time which could
possibly be used in a slice-based volume renderer. Sigg and
Hadwiger [SH05] and Lee et al. [LYS∗10] introduced meth-
ods to improve the performance of cubic filters in volume
rendering by using combinations of hardware trilinear filter-
ing and virtual samples, respectively. As such their meth-
ods are not extendable to other filters. As pointed out in
the CUDA C Programming Guide [Cor11], shared memory
can be used as a user managed cache. This was utilized by
Mensmann et al. [MRH10] which introduced slab-based ray-
casting where trilinearly interpolated sample points along

rays could be reused by neighboring rays. However, as the
cached data in their work depends on distance between rays
and step size it could only be used as an approximation for
a small set of filters such as ambient occlusion. In this work
raw volume data is cached and updated using an incremen-
tal scheme which saves bandwidth and enables support for
arbitrary filters.

3. Marching Caches Concept

As briefly mentioned in Section 1, the Marching Caches
approach relies on two observations in volume ray-casting.
First, inter-ray coherence, i. e., neighboring rays access the
same data in a volume, and second, that the access to vol-
ume data is a bottleneck in current parallel graphics archi-
tectures. The data access bottleneck is especially a problem
when considering ray-casting, since the amount of data that
needs to be read for each ray is high compared to the num-
ber of performed computations. Only a few computational
operations are performed for each step along the ray, usually
consisting of compositing and the computation of the next
step along the ray. To take advantage of these observations
we propose Marching Caches, which exploits inter-ray co-
herence to reduce the data access bottleneck. To do so, we
create a cache containing the required data around a bundle
of rays and incrementally update it in the direction of the
rays as the rays traverse the volume (see Figure 2). Thus, the
cache marches along the ray bundle. As also can be seen in
Figure 2, a bundle of rays is aligned such that the ray front
accesses the same data simultaneously. The dark green boxes

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

represent data that has been cached in the previous step and
the light green boxes is new data that is read for the current
step. Using this caching scheme, we are able to reduce cache
misses and thus considerably reduce the bandwidth to global
memory. In Section 4 we will explain how to synchronize the
ray front and incrementally update the cache as the ray front
advances.

4. Algorithm

The Marching Cache is enabled in three steps, as shown in
Figure 3. The first step ensures that the ray front of each ray
bundle is synchronized. The second step calculates which
part of the cache each ray needs to update when the cache
becomes invalid, and the third step handles the cache updates
during ray-casting and enables filtering the cached data. The
first and second step occur before the actual ray traversal,
and enable a ray bundle to share data, compute the size of
the cache and determine which part of the cache each ray
needs to update. The third step occurs during ray traversal
and ensures that the cache is incrementally updated, i. e., that
it marches along with a ray bundle. To ensure that rays effi-
ciently share data using incremental updates, the following
requirements for a ray bundle must be met:

• Ray start and end points are synchronized.
• The positions at which the rays sample must be spatially

close.

The first requirement is necessary since the rays fetch data
to a common cache and a ray cannot be terminated before
the others as this would leave that area of the cache out-
dated. The second requirement has two implications. First,
it ensures that the required size of the cache is as small as
possible and second, that as much data as possible is reused
between rays. As illustrated in Figure 3, these requirements
are met by projecting the entry and exit points of the rays
in a ray bundle to be the same distance from the camera as
the closest and farthest entry and exit point respectively. This
projection step ensures, that all rays within a ray bundle are
of the same length, resulting in a minimal ray front which
the Marching Cache needs to cover.

The second step in Figure 3 computes which positions in
the Marching Cache each ray in a ray bundle should update.
To enable incremental updates, only the sides which are in-
valid are updated, resulting in three different cases based on
the direction of the ray, which we will discuss in more detail
below.

In the third step depicted in Figure 3, we ensure that the
Marching Cache is updated and marches along with the ray
bundle. At each step along the ray, the Marching Cache is
also advanced and if it has entered another set of voxels, the
sides that need updating are updated. We will in the follow-
ing subsections explain each step of the algorithm in detail.

4.1. Project entry and exit points

To synchronize a ray bundle we make sure that all rays are
of the same length and start relatively close to each other.
We do this by first finding the start and end points which are
closest and furthest away from the camera in texture space
within the ray bundle. Once found, the entry point, pen, and
exit point pex is projected along the direction of the ray, ~d,
using:

p
′

en = pen− (s− smin)~d (1)

p
′

ex = pex +(s− smax)~d (2)

where p
′
en and p

′
ex are the projected entry and exit points, s is

the distance from the point to the camera and smin and smax
are the distance to the camera of the closest entry point and
the farthest exit point respectively.

4.2. Calculate cache update region

In this subsection we will first explain how to determine the
size of the cache, and then how to calculate it’s incremen-
tal update. For explanatory purposes it is assumed that the
filter and cache sizes are cube shaped, even though it is not
required or done in practice.

The size of the cache must be large enough to cover the
ray bundle wavefront plus additional borders determined by
the size of the filter, but small enough to fit inside the cache
memory and allow minimal memory access to slow mem-
ory. A simple axis aligned bounding box is used as cache
because it requires minimal computation for indexing even
though it might not have an optimal fit for the ray bundle.
The extent of the ray bundle is determined using projected
exit points which allows support for perspective projection.
For each ray bundle, the extent is first computed and then
the maximum extent of all the ray bundles is selected as ba-
sis for the size of the cache. Once the size of the Marching
Cache has been determined, it is possible to calculate which
part of the cache each ray should update.

As mentioned above, there are three such update cases
which can occur when the cache marches along the ray bun-
dle. In the first case, one cache side needs to be updated,
in the second case two sides and in the third case three
sides need to be updated (see Figure 4). Thus, each xyz-axis
may need to be updated in the positive, negative or no di-
rection, which results in 33 = 27 combinations. In practice,
the case where no update in any direction is necessary is
not computed and as such 26 different cases need to be cal-
culated. For each combination, the number of fetches that
each ray needs to perform should be minimized. Space fill-
ing curves [Sag94] could be used to calculate the region, but
in this work a simpler method is used. First, the size of the 3
(7 if rectangular box) possible regions are computed using

n1 = C2

n2 = C2 +C(C−1)

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

2. Calculate cache update regions 3. Perform ray-casting1. Project entry and exit points

Marching
Cache

......

...

Filter

Figure 3: To allow sharing of data between rays during ray-casting a number of steps are necessary. In the first step, entry
and exit points are projected such that the rays are of the same length within a ray bundle. The second step calculates which
part of the cache a ray in a ray bundle should update during ray-casting. In the last step, regular ray-casting is extended to
incrementally update the cache and use fast local memory instead of slow global memory for filtering.

n3 = C2 +C(C−1)+(C−1)(C−1) (3)

where C is the size of the cache in each dimensions. Here, n1
is simply the area of one side, n2 excludes one overlapping
part of the cache and n3 excludes two overlapping parts of
the cache. Then, the optimal number of fetches, fi, for each
case shown in Figure 4 is computed using

fi = dni/Rne (4)

where Rn is the number of rays in a ray bundle. For simplic-
ity, each ray is then allowed to fetch data to one row which
means that the last one in the row may fetch less than the
others. To compensate for this, the number of fetches each
ray performs are increased until the area is covered. The 3D
index to start and end updating for each ray and case is then
stored to be used during ray-casting.

4.3. Ray-casting

The Marching Cache first needs to be setup before the rays
begin their traversal, and once they begin, incremental up-
dates can be performed as certain parts of the cache become

(a) Case 1: One side
needs to update

(b) Case 2:Two sides
needs to update

(c) Case 3: Three
sides needs to update

Figure 4: Incremental updating of the cache is performed at
each step along the ray instead of updating the whole cache.
Depending on the direction and step size of the rays, 0 to 3
sides of the cache may need to be updated.

invalid. We will begin by describing how to setup the cache
and then go into how the incremental updates are performed.

First the origin, o of the Marching Cache is found by off-
setting the minimum entry point, pemin of the ray bundle with
half of the filter size, N, to ensure that no data is missed.

o = bpemin−N/2c (5)

Then the direction of the cache is computed using the mini-
mum entry and exit point of the ray bundle. Before starting
the ray traversal the cache must be filled. Here the optimal
number of fetches is used since deciding the indices to up-
date is easy and performing extra computation can be af-
forded since it is only performed once per frame. Each ray
will perform n fetches given by

n = dCn/Rne (6)

where Cn is the size of the cache. The cache can then be
filled in parallel using Algorithm 1, where ri is the index of
a ray within the ray bundle and Ci is the size of the cache in
dimension i.

Algorithm 1 Fill cache
start = ri · n
end = min(start+n, Cn)
for i = start to end do

position = o + (i mod Cx, i / Cx, i / (Cx×Cy))
cache data at position

end for

Once the cache has been setup, the ray traversal can begin.
The Marching Cache is moved along the ray bundle in a syn-
chronized manner with the actual sampling points. If the ori-
gin enters a different voxel, it needs to be updated, otherwise
no operation is performed. By using the difference between
the previous and current voxel origin of the cache together

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

with the direction, it is possible to determine which combi-
nation of sides are invalidated. In order to avoid branching,
an integer representation of the cache direction is computed
indicating if the direction is zero (0), negative (1) or positive
(2) in each dimension. The index to the data computed in the
previous step can then be computed without branching:

~i = ~Cu× ~di

k = (9~iz +3~iy +~ix−1)Rn + ri (7)

where ~di is the integer representation of the direction and
~Cu is 1 in the directions the cache needs to be updated and
0 otherwise. In Equation 7, the update combination is first
determined in 3D and then flattened to a 1D index. Further-
more, one is subtracted from the 1D index to remove the case
where no side has changed as it is handled separately.

To enable the incremental update of the cache, an internal
offset oc is used. If the cache moves in the positive direction,
the internal offset is incremented by one and if it moves in
the negative direction it is incremented by the size of the
cache. The final internal offset, o

′
c, is then determined by

performing the modulo operation:

o
′

c = oc mod C (8)

where C is the size of the cache in each dimension. To lookup
a value in the cache, the input coordinate pin is transformed
using the internal offset and size of the cache using:

p = (pin +o
′

c)mod C (9)

Coordinate p takes the incremental updates into account and
can be used to directly index the data within the cache.

Even though less data is fetched and memory is saved,
increased computation is required to handle the Marching
Cache. If the computation to handle the Marching Cache
is too expensive, it will cancel the effect of decreasing the
bandwidth requirements. In the next section we will discuss
how to efficiently compute the discussed steps on parallel
architectures and introduce some optimizations necessary to
make it beneficial.

5. Implementation

To realize the Marching Cache method we have chosen to
use OpenCL. Accordingly, we will also use the OpenCL
terminology within this section. To familiarize the reader
with the concepts of OpenCL we provide a short summary
here, which the experienced reader may skip. To begin with,
hardware which executes OpenCL code is referred to as a
compute device. The compute device has a number of com-
pute units which each can execute a number of work-items
(threads). Each work-item has a private memory (usually
registers) which no other work-item may access. Each com-
pute unit can share data through local memory, which is uti-
lized for the Marching Cache. Memory which can be ac-
cessed by all threads on the compute device is called global

Compute Device
Compute unit 1

Private
memory 1

... Private
memory M

...
Compute unit N

Private
memory 1

... Private
memory M

Local
memory 1

Local
memory N

Global/Constant Memory Data Cache

Global Memory

Constant Memory

Figure 5: Memory layout of OpenCL enabled architectures.
Marching Caches utilize local memory to share data be-
tween rays within a ray bundle.

memory, or constant if it does not change. Out of the dif-
ferent memories, private memory is the fastest, then local
memory and at last global memory which is substantially
slower and access should be minimized to. An overview of
the memory layout can be seen in Figure 5.

As mentioned previously, Marching Caches focuses on
using the local memory to minimize the access of global
memory. Furthermore, incremental update of the Marching
Cache is performed in order to minimize global memory ac-
cess even more. As illustrated in Figure 3, we perform two
steps on the input entry and exit points before performing
the ray traversal. During ray traversal the Marching Cache
is incrementally updated and used to lookup data for the fil-
ters. Using the OpenCL syntax, a ray bundle is mapped to a
work-group and a ray is mapped to a work-item. In the fol-
lowing subsections we will follow the order of the pipeline
which means that first, implementation details on the pro-
jection step is given, then how to efficiently calculate correct
cache update locations and last how to optimize lookups in
the Marching Cache.

5.1. Project entry and exit points

In order to find the start and end points which are closest
and furthest away from the camera within the ray bundle
used for equation 2, a parallel reduction technique described
in [SHZO07] is used. The distance to the camera in texture
space is then computed and equation 2 is used to project the
entry and exit points which can then be stored in two buffers.

Some ray bundles will include rays which both miss and
hit the bounding box. Since the scheme is dependent on the
neighboring rays for fetching values into the cache, we can-
not let them terminate because this would result in invalid

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

data. Instead, we also execute them, but along a virtual ray,
and discard the results afterwards. One might think that also
executing rays which miss, creates a lot of overhead, but the
work-items within a work group must wait for the last work-
item to finish. Therefore, it does not matter as much if the
missed rays are executed or not. If all of the rays within the
ray bundle misses, no ray needs to traverse and all can ter-
minate directly.

5.2. Calculate cache update region

Even though one might have a different size for each ray
bundle, all ray bundles would have to allocate the same
amount of data as it cannot be done dynamically in OpenCL
and it would also require different update regions for the
incremental update of the Marching Caches. Therefore, the
maximum size of all ray bundles are used to determine the
size of the cache. Determining the maximum extent is per-
formed in a two step process. First, each ray bundle de-
termines its own extent using the projected exit points and
stores it. Then, in a second pass, the maximum extent of
all ray bundles is determined. Parallel reduction is used in
both steps. The parallelism is also used when computing the
26 update combinations for the cache. Each work-item in a
work-group computes the update region of one ray, and each
work-group computes one of the 26 different combinations.
The use of reduction when computing the cache size and
parallel computation of the update combinations enables the
whole step to be computed in a small fraction of the total
computation time.

5.3. Modulo optimization

Equation 9 will be heavily used, both when applying filters
and updating the cache, but the modulo operator is very slow.
Therefore, some optimizations need to be performed. By re-
alizing that the size of the cache is constant the whole frame
we can utilize the following:

x mod y = x−bx/ycy (10)

where 1/y can be precomputed and instead of a division, a
multiplication can be performed which is much faster. Us-
ing the optimization in equation 10 improves the Marching
Cache performance by five times on the graphics card used
for benchmarking in the next section. Without the modulo
optimization, the Marching Cache would actually be slower
than regular ray-casting.

6. Performance Evaluation

To evaluate the performance of the Marching Cache we im-
plemented a range of filters which use different amounts of
computations and data. Besides using existing filters we also
created an artificial filter which allows us to vary the size of it
and the amount of computations. All tests where performed
on a computer with an Intel Xeon 2.67 GHz processor, 6 GB

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

m
an

ce
 im

p
ro
ve
m
e
n
t

2³

4³

6³

Filter size

0.0x

0.5x

1.0x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e
rf
o
rm

Computational complexity

6

8³

Figure 6: A speedup of almost four times can be achieved
with filters of size 83 with low computational complexity
compared to a ray caster not using Marching Caches. How-
ever, when the computational complexity of the filter in-
creases enough, the latency of fetching the data can be hid-
den and using the Marching Caches can decrease the per-
formance.

random access memory and a Nvidia Geforce 570 graphics
card. The frames per second (fps) were averaged over 100
frames, using a camera position of (0,0,1.5) looking at the
origin and rotating 360◦ around the origin with a screen of
size 10242. The Engine dataset (8-bit, 2563 voxels) was used
to benchmark all filters. In order to show the true difference
between our method and ordinary ray-casting no accelera-
tion methods were used during performance measurements.
However, acceleration methods such as early ray termination
can be implemented as described in [MRH10]. Empty-space
skipping as described in [KW03] can also be applied, one
just needs to make sure that the cache is complete when data
has been skipped. To evaluate the performance of the built-in
implicit caching, we projected the start and end points and
applied filters without using local memory. We found that the
performance was equivalent to a standard openCL raycaster
and therefore used the standard raycaster in the tests.

Current graphic cards can hide the latency of memory
transactions if enough computations are available. There-
fore, it is reasonable to expect that a filter which is expensive
enough will turn the ray-casting from bandwidth bound to
compute bound. When the ray-casting is compute bound the
Marching Caches will not increase the performance, it could
actually decrease the performance. To show how much com-
putations that can be performed before a raycaster without
Marching Caches becomes compute bound an artificial filter
was designed. The artificial filter performs three simple op-
erations for each data element, it first computes a weight by
dividing one with the current computation iteration number,
i, then accumulates the weight times the current data value,
x, and at last accumulates the weight, wi:

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

wi = 1/i

v = v+ x ·wi

w = w+wi (11)

After performing the operations, the value, v, is normalized
with the accumulated weights, w. The artificial filter sim-
ulates a simple filter where the filter weights has not been
precomputed. As can be seen in Figure 6, the more data
used (larger filter size) and fewer computations made, the
greater is the benefit of using the Marching Cache. Further-
more, at around 10 iterations of equation 11 per data element
the performance improvement levels out and it is not as ad-
vantageous to use the Marching Cache. In order to evaluate
the amount of unnecessary reads from global memory that is
introduced by the simplified algorithm described in section
4.2, the average amount of reads and unused reads for each
case was measured. The maximum amount of reads per ray
occurs for case 3 in Figure 4(c) which, for the filter sizes
23, 43, 63 and 83 are 1, 2, 3 and 4 respectively. Two percent
additional reads needed to be performed for the largest filter
size but for the other filter sizes no fetches were wasted.

Although the behavior for the artificial filter is interest-
ing, the real value of the Marching Cache is not apparent
until real filters are used. The following filters, shown in
Table 1, were implemented: Catmull-Rom spline and Cu-
bic B-spline [CR74] for reconstructing data; a 3D version
of a Bilateral filter [AW95] for edge preserving denoising; a
version of local ambient occlusion [HLY10] and two gradi-
ent filters for shading. Hardware trilinear interpolation was
used for data reconstruction in bilateral filtering, local am-
bient occlusion, gradient and filtered gradient as it improved
performance slightly (roughly 10 %). To compute the gradi-
ent we implemented central difference. Filtered gradient was
computed using a weighted sum of the neighbourhood gra-
dients and local ambient occlusion as the the average of the
neighborhood contained by the size of the filter.

In Figure 1 we show how the different data reconstruction
filters compare using the Marschner-Lobb dataset config-
ured as described in [ML94]. To show how Marching Caches
behaves when the user zooms we measured the time it took
to render each frame when going from an overview to a
close-up of the dataset as shown Figure 7. Two datasets were
used, the Engine as before and an artificial 16-bit dataset of
size 5123. The filter was set to ambient occlusion of size 43,
and the zooming animation was measured over 100 frames.
The results can be seen in Figure 8.

7. Results

As shown in the Table 1, the Marching Caches outperforms
the built-in texture cache by 1.3-4.7 times for existing filters
of size 43 or greater. If extended to the best filter on Carte-
sian Cubic lattices in [HAM11] and cubic filters in [Csé08],

(a) Zoomed out Engine. (b) Zoomed in Engine.

Figure 7: Snapshots of start and end camera view of the En-
gine dataset used for measuring performance during zoom-
ing with ambient occlusion projection.

Table 1: Performance improvements for filters compared to
ray-casting without Marching Caches.

Filter Size Performance improvement
Catmul-Rom 43 3.4x

B-spline 43 3.4x
Trilinear interpolation 23 -3.5x

Ambient occlusion
43 2.4x
63 4.7x
83 2.6x

Bilateral
43 1.3x
63 1.8x
83 1.2x

Gradient 33 -1.3x
Filtered gradient 53 2.2x

which are of size 43, the Marching Caches should be able
to improve the performance by 3-4 times. The filters which
requires more computation have less performance improve-
ment which is caused by latency hiding in regular ray-
casting and that the Marching Cache is compute bound. Us-
ing an artificial filter, it could also be validated that when
too much computation is performed the advantage of the re-
duced bandwidth decreases. Looking at Figure 8 it can be
seen that the render time when using Marching Caches is
higher if the rays are not subject to a high degree of inter-ray
coherence, i. e. not as many voxels are shared between the
rays. However, as soon as the zoom factor becomes higher,
i. e. the user zooms in, inter-ray coherence increases and thus
using the Marching Caches concept has a clear performance
benefit. Nevertheless, as can be seen in Figure 8, exceeding
a certain zoom factor results in a linear slightly increasing
performance. We suspect that the cause for this is two-fold.
First, the rays get shorter as the viewpoint enters the vol-
ume. Second, the high degree of inter-ray coherence results
in only a few voxels being used, which makes the perfor-
mance behaviour of the Marching Caches concept more sim-

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

3.5

256³: Marching Caches 256³: Ordinary ray‐casting

512³: Marching Caches 512³: Ordinary ray‐casting

3

2.5

2

en
de

r t
im

e
(s
)

1

1.5Re

0.5

0
Low High

Zoom factor

Figure 8: Render time for each frame during a zooming from
overview to close-up using the Engine (2563) and an artifi-
cial (5123) dataset.

ilar to the behaviour of the rather local cache incorporated in
modern GPUs.

The main advantage of this approach is the amount of
bandwidth saved. As an example, consider a three dimen-
sional filter of size N3, where N is the size of the fil-
ter in each dimension. Using a naive approach would re-
quire, for each point along the ray, N3 data values to be
fetched. Marching Caches utilize two properties which sub-
stantially reduce the amount of data fetched for each ray.
First, each ray in a bundle only updates a part of the March-
ing Cache. Therefore, if the number of rays in a bundle is
denoted Rn and the size of the cache in each dimension is
C, each ray would perform a maximum of dC3/Rne fetches.
Second, since only the sides of the Marching Cache that
needs updating is updated each ray performs a maximum
of dC2 +C(C− 1)+ (C− 1)(C− 1))/Rne fetches, given by
Equations 3 and 4, when three sides are invalid. As an exam-
ple, a typical case is when the ray bundle consist of Rn = 64
rays and the Marching Cache is of size C = 10 for a fil-
ter of size N = 4. Using the naive approach would require
64 fetches per step along the ray while the method pre-
sented here would require a maximum of four fetches per
step along the ray, 16 times less. By measuring the amount
of reads from global memory performed per ray for the En-
gine dataset it can be concluded that the amount of band-
width saved ranges from 8-128 times, a difference of several
orders of magnitude, depending on filter size. Furthermore,

it could be shown that the simple algorithm for calculating
which part of the cache each ray should update in section
4.2 performs well in practice; only wasting on average two
percent of the reads for the largest filter size and none for the
others.

8. Limitations

The main drawback with using the Marching Cache is the
limited amount of local memory on current architectures.
When the amount of voxels covered by a ray bundle is too
large, local memory will not be large enough. The GPU used
for performance evaluation has 48kB of local memory which
means that a cache of about 233 is supported if float data type
is used and about 283 for half data type. To put this into con-
text, a 5123 dataset with a filter size of 43 uses on average a
cache size of about 123 for a screen size of 10242.

When the amount of physical memory is not enough there
are a couple of options available. The work-group size can
be decreased, which means that fewer voxels will be covered
at the expense of performance. Another possibility is to in-
crease spatial proximity of the rays, for instance by increas-
ing the screen resolution. If the amount of voxels covered is
caused by the zoom level selected by the user, a lower reso-
lution of the volume could be used. If none of the mentioned
options are viable, one has to resort to ray-casting without
the Marching Caches.

9. Conclusions and Future Work

In this paper, we have introduced Marching Caches as an
explicit strategy for GPU-based volume ray-casting. By ex-
ploiting inter-ray coherence it is possible to share cached
data in between neighboring rays and thus allow to increase
rendering performance and image fidelity when applying
complex filter kernels. We show, that with modern GPUs it
becomes possible to get up to 4.7 times increased perfor-
mance when using Marching Caches compared to regular
ray-casting. Additionally, the memory bandwidth to global
memory, which is a limiting factor for many GPU algo-
rithms, could be reduced by orders of magnitude, which we
show theoretically and demonstrate through profiling. We
expect the performance improvement to rise even more with
the development of new GPUs, since the expected increased
compute power of these models is beneficial for our compute
bound explicit caching.

In the future, we would like to use the Marching Caches
approach in order to investigate how inter-ray coherence can
be exploited to deal with various zoom levels, i. e., how suf-
ficient data reconstruction can be enabled with ray-casting
when zooming out such that undersampling occurs. Further-
more, an application to ray-tracing based rendering algo-
rithms seems to be an interesting direction. By proposing
Marching Caches, we could show how to modify volume

c© The Eurographics Association 2012.

paper1008 / Volume Cache Management

ray-casting algorithms from being memory bound GPU al-
gorithms into compute bound algorithms. In the future, we
would like to apply similar strategies to other memory bound
GPU algorithms, and thus allow them to take full advantage
of the increasing compute power of future GPUs. Ideally,
a conceptual approach for transforming general GPU algo-
rithms from being memory bound to compute bound reduces
the demand of dedicated data access hardware and thus de-
creases GPU development costs.

Acknowledgments

The presented method was developed using the Voreen vol-
ume rendering engine (www.voreen.org), which is an
open source visualization framework. We would also like
to thank the anonymous reviewers for their feedback. This
work was supported through the Intel Visual Computing
Institiute, Saarbrücken, Germany, the Excellence Center at
Linköping and Lund in Information Technology (ELLIIT)
and the Swedish e-Science Research Centre (SERC).

References
[AW95] AURICH V., WEULE J.: Non-Linear Gaussian Filters

Performing Edge Preserving Diffusion, vol. 17. Springer-Verlag,
1995, pp. 538–545. 8

[Cor11] CORPORATION N.: NVIDIA CUDA C Programming
Guide, June 2011. 2, 3

[CR74] CATMULL E., ROM R.: A class of local interpolating
splines. Computer aided geometric design. Academic Press.
(1974), 317–326. 8

[Csé08] CSÉBFALVI B.: An Evaluation of Prefiltered Reconstruc-
tion Schemes for Volume Rendering. IEEE Transactions on Visu-
alization and Computer Graphics 14, 2 (march-april 2008), 289
–301. 3, 8

[HAM11] HOSSAIN Z., ALIM U. R., MÖLLER T.: Toward High-
Quality Gradient Estimation on Regular Lattices. IEEE Transac-
tions on Visualization and Computer Graphics 17 (2011), 426–
439. 2, 3, 8

[HLY10] HERNELL F., LJUNG P., YNNERMAN A.: Local Am-
bient Occlusion in Direct Volume Rendering. IEEE Transactions
on Visualization and Computer Graphics 16, 4 (2010), 548–559.
8

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d Tree GPU Raytracing. In Proceedings
of the 2007 symposium on Interactive 3D graphics and games
(2007), I3D ’07, pp. 167–174. 2

[HTHG01] HADWIGER M., THEUSSL T., HAUSER H.,
GRÖLLER E.: Hardware-Accelerated High-Quality Filtering on
PC Hardware. In In Proc. of Vision, Modeling and Visualization
2001 (2001), pp. 105–112. 3

[KW03] KRÜGER J., WESTERMANN R.: Acceleration Tech-
niques for GPU-based Volume Rendering. In Proceedings IEEE
Visualization 2003 (2003). 7

[LYS∗10] LEE B., YUN J., SEO J., SHIM B., SHIN Y.-G.,
KIM B.: Fast High-Quality Volume Ray Casting with Virtual
Samplings. IEEE Transactions on Visualization and Computer
Graphics 16, 6 (nov.-dec. 2010), 1525 –1532. 3

[Mei02] MEIJERING E.: A Chronology of Interpolation: From
Ancient Astronomy to Modern Signal and Image Processing. In
Proceedings of the IEEE (2002), pp. 319–342. 3

[MKW∗02] MEISSNER M., KANUS U., WETEKAM G., HIRCHE
J., EHLERT A., STRASSER W., DOGGETT M., FORTHMANN
P., PROKSA R.: VIZARD II: A Reconfigurable Interactive
Volume Rendering System. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2002), HWWS ’02, pp. 137–146. 2

[ML94] MARSCHNER S. R., LOBB R. J.: An Evaluation of Re-
construction Filters for Volume Rendering. In Proceedings of the
conference on Visualization ’94 (Los Alamitos, CA, USA, 1994),
VIS ’94, IEEE Computer Society Press, pp. 100–107. 8

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K.: An Ad-
vanced Volume Raycasting Technique using GPU Stream Pro-
cessing. In Computer Graphics Theory and Applications (2010),
pp. 190–198. 3, 7

[OHL∗08] OWENS J. D., HOUSTON M., LUEBKE D., GREEN
S., STONE J. E., PHILLIPS J. C.: GPU Computing. Proceedings
of the IEEE 96, 5 (may 2008), 879–899. 1

[RDK∗98] RIXNER S., DALLY W. J., KAPASI U. J., KHAILANY
B., LÓPEZ-LAGUNAS A., MATTSON P. R., OWENS J. D.: A
Bandwidth-Efficient Architecture for Media Processing. In Pro-
ceedings of the 31st annual ACM/IEEE international symposium
on Microarchitecture (Los Alamitos, CA, USA, 1998), MICRO
31, IEEE Computer Society Press, pp. 3–13. 2

[Sag94] SAGAN H.: Space-Filling Curves. Springer-Verlag,
1994. 4

[SCS∗08] SEILER L., CARMEAN D., SPRANGLE E., FORSYTH
T., ABRASH M., DUBEY P., JUNKINS S., LAKE A., SUGER-
MAN J., CAVIN R., ESPASA R., GROCHOWSKI E., JUAN T.,
HANRAHAN P.: Larrabee: A Many-Core x86 Architecture for
Visual Computing. ACM Trans. Graph. 27 (2008), 18:1–18:15.
1

[SH05] SIGG C., HADWIGER M.: Fast Third-Order Texture Fil-
tering. In GPU Gems 2, Pharr M., (Ed.). Addison-Wesley, 2005,
pp. 313–329. 3

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan Primitives for GPU Computing. In Proceed-
ings of the 22nd ACM SIGGRAPH/EUROGRAPHICS sympo-
sium on Graphics hardware (Aire-la-Ville, Switzerland, Switzer-
land, 2007), GH ’07, Eurographics Association, pp. 97–106. 6

[TDR10] TCHIBOUKDJIAN M., DANJEAN V., RAFFIN B.: Bi-
nary Mesh Partitioning for Cache- Efficient Visualization. IEEE
Transactions on Visualization and Computer Graphics (2010),
1–14. 3

[Uns00] UNSER M.: Sampling-50 years after Shannon. Proceed-
ings of the IEEE 88, 4 (apr 2000), 569 –587. 3

[WBWS01] WALD I., BENTHIN C., WAGNER M., SLUSALLEK
P.: Interactive rendering with coherent ray tracing. In Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS 2001
(2001), Chalmers A., Rhyne T.-M., (Eds.), vol. 20, Blackwell
Publishers, Oxford. 2

c© The Eurographics Association 2012.

www.voreen.org

