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A SCALE SEPARATION METHOD FOR LARGE FINITE
PERIODIC STRUCTURES

Daniel Sjöberg
Dept. Electroscience, Electromagnetic Theory, Lund Institute of Technology, Lund University

Box 118, S-211 00 Lund, Sweden

Abstract: We discuss the possibility of using codes developed for infinite periodic structures to analyze
(large) finite periodic structures. The idea is based on the interpretation of the Floquet-Bloch transformation
as a two-scale representation of the structure.

1 INTRODUCTION

Even though the expression “finite periodic structures” is a contradiction in terms, it is well un-
derstood that what is meant is a truncated periodic structure. Such geometries occur frequently in
antenna technology (array antennas or frequency selective surfaces) and material modelling (com-
posite materials with a periodic microstructure), since the structures have a local periodicity on
one length scale, but are necessarily finite on a larger scale.

There are many more or less standard methods developed for solving the infinite case, that is for
solving partial differential equations with periodic boundary conditions. Examples are the finite
element method (FEM), method of moments (MoM), and finite differences in the time domain
(FDTD). Physically, we expect that the infinite solution should be a good starting point for calcu-
lating the solution, and the finiteness should be a relatively small correction to this.

The downside with this hypothesis is that we know it is wrong. The reason it breaks down is that
for certain frequencies, surface waves can propagate along the periodic structure. These corre-
spond to freely propagating waves in the infinite periodic structure, whose amplitudes can only be
determined from analysis of the finite structure [2]. This means the correction to the infinite case
from the finite size may not be small, but instead on the same order of magnitude, possibly leading
to large standing waves in the structure if they are not designed properly. In this contribution, we
demonstrate a possible means of treating this situation.

2 FLOQUET-BLOCH TRANSFORMATION

Let an infinite periodic structure be described by lattice vectors an and reciprocal lattice vectors
bn, such that an · bn′ = 2πδnn′ , where δnn′ is the Kronecker delta. The lattice vectors an make up
the edges of the physical unit cell U , and the reciprocal lattice vectors bn make up the edges of the
reciprocal unit cell U ′. Any field E(x) can then be represented by its Bloch amplitude Ẽ(x, k) as

E(x) =
1

|U ′|

∫
U ′

eik·xẼ(x, k) dk (1)

where Ẽ(x, k) is U -periodic in x and eik·xẼ(x, k) is U ′-periodic in k. The Bloch amplitude can
be defined either as a sum in the physical lattice or as a sum in the reciprocal lattice,

Ẽ(x, k) =
∑
n∈Zd

E(x + xn)e−ik·xn =
1

|U |
∑
n∈Zd

Ê(k + kn)eikn·x (2)



where Ê(k) is the standard Fourier transform of E(x), xn = n1a1 + · · · + ndad, and kn =
n1b1 + · · · + ndbd, with d being the dimension of the lattice (usually d = 2 for an array antenna,
and d = 3 for a crystalline material). We can interpret the Floquet-Bloch transformation as a
means of describing a structure in terms of a microscopic variable x for scales smaller than the
unit cell, and a macroscopic variable k for scales larger than the unit cell.

3 ITERATIVE SOLUTION AND CHARACTERIZATION OF SURFACE WAVES

The finiteness of the structure can be taken into account by defining a projection operator,

P Ẽ = ζ̃
U ′

∗ Ẽ =
1

|U ′|

∫
U ′

ζ̃(x, k − k′)Ẽ(x, k′) dk′ (3)

where ζ̃(x, k) is the Bloch amplitude of the characteristic function (or window function) ζ(x) of
the finite periodic structure, that is, ζ(x) = 1 when x is inside the structure, and ζ(x) = 0 when x
is outside. This means the equation for the currents becomes

ZI = V ⇒ PZ̃P Ĩ = PṼ (4)

where Z̃(k) is the impedance matrix for the infinite periodic structure at phase shift k. We expect
that for a large structure, the operator PZ̃P is “close” to Z̃, that is, the operator for the infinite
case. By rewriting this equation as Ĩ − (1− Z̃−1PZ̃P )Ĩ = Z̃−1PṼ , we obtain

Ĩ = [1− (1− Z̃−1PZ̃P )]−1PṼ =
∞∑

n=0

(1− Z̃−1PZ̃P )nPṼ (5)

where we used the Neumann series for the inverse, expecting that 1−Z̃−1PZ̃P is a small operator.
This leads to the iterative scheme

Ĩ =
∞∑

n=0

Ĩn, Z̃Ĩ0 = PṼ , Z̃Ĩn+1 = (Z̃ − PZ̃P )Ĩn (6)

The first term in this series corresponds to the windowing technique [1, 4]. We have written it in
a form without inverses on the impedance matrix to emphasize that we are usually not computing
the inverse of the impedance matrix, but rather solving the linear system of equations it defines.
For large systems with many degrees of freedom, this is typically done in an iterative manner for
each fixed Z̃(k). Thus, as soon as the impedance matrices are computed and means of solving
associated equations are defined, the extra computational effort to take the finite periodic structure
into account is not great. Indeed, what we have outlined is a means of factorizing the problem into
independent parts (one for each k), which is highly suited for parallel computations.

Obviously, the solution of the equation Z̃Ĩ = Ṽ cannot be unique if there is a nullspace in Z̃, that
is, there exist solutions to the equation

Z̃Ĩ = 0 (7)
These solutions are precisely the surface waves. The equation can be satisfied only for certain
phase shift vectors k. Typically, for an isotropic structure surface waves exist only for k ∈ U ′

satisfying a condition of the kind |k|/ω = const, which can be considered as a dispersion relation
for the surface wave.

The surface waves can also be characterized by a singular value decomposition of Z̃, where the
existence of surface waves corresponds to the smallest singular value being zero, σ1(k) = 0. An
integral equation can then be formulated for the subspace corresponding to the surface waves [3].



4 NUMERICAL RESULTS

2.1

2

1.2

To demonstrate the effects of the presence of surface waves, we study
an array of dipoles as indicated in the figur to the right [2]. The ar-
ray is infinite in the y-direction and has 25 elements in the x-direction.
We have computed the singular values for the (infinite periodicity case)
impedance matrices Z̃(k) = Z̃(kxx̂) as functions of kx ∈ (−π/a, π/a),
where a is the element spacing in the x direction. This is done for a
number of frequencies as shown below, where f0 is the frequency corre-
sponding to a half-wavelength dipole. The singular values are shown in
dB scale.
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f = 0.4f0 f = 0.6f0 f = 0.8f0 f = f0

As can be seen, there is a clear macroscopic degree of freedom corresponding to the nonconstant
curve in these figures. For the frequency f = 0.8f0, the singular values are small enough to repre-
sent a numerical surface wave, which is evident from the oscillating nature of the currents induced
in the different elements depicted below. These figures depict the spectral (top) and spatial (bot-
tom) distribution of the currents in the array when illuminated by a plane wave of 45◦ incidence.
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