
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

LDPC Convolutional Codes Based on Braided Convolutional Codes

Tavares, Marcos B.S.; Lentmaier, Michael; Zigangirov, Kamil; Fettweis, Gerhard

Published in:
[Host publication title missing]

DOI:
10.1109/ISIT.2008.4595144

2008

Link to publication

Citation for published version (APA):
Tavares, M. B. S., Lentmaier, M., Zigangirov, K., & Fettweis, G. (2008). LDPC Convolutional Codes Based on
Braided Convolutional Codes. In [Host publication title missing] (pp. 1035-1039). IEEE - Institute of Electrical and
Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2008.4595144

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISIT.2008.4595144
https://portal.research.lu.se/en/publications/f302f94f-3576-43d5-848f-cbf31f6ee020
https://doi.org/10.1109/ISIT.2008.4595144

LDPC Convolutional Codes

Based on Braided Convolutional Codes

Marcos B.S. Tavares†, Michael Lentmaier†, Kamil Sh. Zigangirov‡ and Gerhard P. Fettweis†

† Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, 01062 Dresden, Germany

Emails: {tavares, michael.lentmaier, fettweis}@ifn.et.tu-dresden.de

‡ Department of Electrical Engineering, Unviversity of Notre Dame, Notre Dame, IN 46556, USA

Email: kzigangi@nd.edu

Abstract— We introduce and analyze new constructions of
LDPC convolutional codes and their tail-biting versions which
are obtained from braided convolutional codes. The basic ideas
behind the encoding and decoding architectures for these codes
are presented. Additionally, asymptotic results concerning the
iterative thresholds are shown for different ensembles. Finally,
we evaluate the bit error rate performances of several codes by
means of computer simulations.

I. INTRODUCTION

At the present time, the low-density parity-check (LDPC)

codes invented by Gallager [1] and the turbo codes (TCs) pro-

posed by Berrou et al. [2] are attracting very much attention of

coding theorists and practitioners. The interest in these codes

can be justified by their capacity approaching performance and

low-complexity decoding algorithms.

In spite of their relatively good iterative thresholds, fast

convergence and low encoding/decoding complexity [3], the

conventional TCs are known for having poor distance prop-

erties. Motivated by the results shown in [4] – in which it

can be observed that it is possible to construct turbo-like

codes with good distance properties – other schemes are being

investigated.

In this paper, we propose a new code construction method

that uses conventional convolutional codes (CCs) as build-

ing elements for the construction of LDPC codes. This

method is similar to the construction of LDPC codes based

on protographs [5] and represents a new attempt to obtain

code ensembles with good distance properties, good iterative

thresholds and low-complexity encoding/decoding from sim-

ple codes. As we will see in the next sections, the codes

obtained through this construction technique belong to the

class of LDPC convolutional codes (LDPC-CCs) [6] and

we call them braided LDPC-CCs. In addition to inheriting

the properties belonging to LDPC-CCs (i.e., variable block

lengths, linear time encoding based on shift-registers and

pipeline decoding), the braided LDPC-CCs can be decoded

with Gallager’s belief propagation (BP) algorithm [1] or with

the BCJR algorithm [7] depending on the constraints imposed

on their syndrome former matrices. Similarly to [8] and [9],

tail-biting versions of the braided LDPC-CCs can be derived

to avoid the rate-loss problem due to the termination overhead.

This paper is organized as follows. In section II, we show

the construction method and definition of the braided LDPC-

CCs and their tail-biting versions. In section III, we discuss the

encoding architectures for these codes. Section IV describes

the decoding architectures. In section V, iterative thresholds

are computed for two ensembles of braided LDPC-CCs. The

section VI presents simulation results on the error correcting

capability of our codes. Finally, section VII concludes the

paper.

II. CONSTRUCTION AND DEFINITION

To explain our construction method, we consider an exam-

ple. For instance, we take the rate R = 2/3 CC with polyno-

mial parity-check matrix given by H(D) = [1, 1+D2, 1+D+
D2]. Then, we connect two of such codes as shown by Fig.

1(a) and obtain a tightly braided convolutional code (TBCC)

[4] with repeated parity-bits (i.e., v
(1)
t = v

(2)
t) that has its

syndrome former H̄
T
[0,∞] depicted in Fig. 1(b). The syndrome

former of the associated braided LDPC-CC is obtained by

substituting all 1’s and 0’s in H̄
T
[0,∞] by permutation matrices

and all-zero matrices, respectively. Observe that the blank cells

in H̄
T
[0,∞] also represent zeros and are originated due to the

causality of the encoder.
In order to simplify notations, we give below the formal

definition for braided LDPC-CCs and their tail-biting versions

with rates R = 1/3, which are constructed from CCs of rate

1

10

10

1

1

1

0

0

1

0

1

1

1

1

1

0

1

0

1

1

1

1

0

0

1

0

1

1

1 0 1

1 1 1

1 0 0

1

1

1

0 0

1

1 0 1

1 1 1

1 0 0

1 0 1

1 1 1

1 0 0

1 0 1

1 1 1

1 0 0

CC 1

CC 2

S
y

n
d
ro

m
e

fo
rm

er

o
f

th
e

ti
g
h

tl
y

 b
ra

id
ed

 c
o

d
e

Rate R=2/3

CC 1

Rate R=2/3

CC 2

tu

(1)

tv

(2)

t
v

(a) (b)

T

[0,]∞
=H

(0)

tv

Fig. 1. Tightly braided convolutional code (TBCC) [4] with repeated parity-
bit used in the construction of braided LDPC-CCs. (a) Encoder for the TBCC.
(b) Composition of the syndrome former H̄

T
[0,∞]

of the TBCC based on the

syndrome formers of the component convolutional codes CC 1 (continuous
rectangles, white cells) and CC 2 (dashed rectangles, gray cells).

H
T
[0,∞] =

P
0
v0

(0) P
1
v0

(0) 0 0 P
4
v0

(0) P
5
v0

(0) 0 0

P
0
v1

(0) 0 P
2
v1

(0) P
3
v1

(0) P
4
v1

(0) 0 0 0

0 P
1
v2

(0) P
2
v2

(0) P
3
v2

(0) 0 P
5
v2

(0) 0 0

0 0 P
0
v0

(1) P
1
v0

(1) 0 0 P
4
v0

(1) P
5
v0

(1)

0 0 P
0
v1

(1) 0 P
2
v1

(1) P
3
v1

(1) P
4
v1

(1) 0

0 0 0 P
1
v2

(1) P
2
v2

(1) P
3
v2

(1) 0 P
5
v2

(1)

.
.
.

.
.
.

.
.
.

(1)

H̃
T
[0,L−1] =

P
0
v0

(0) P
1
v0

(0) 0 0 P
4
v0

(0) P
5
v0

(0) · · · · · · · · · 0

P
0
v1

(0) 0 P
2
v1

(0) P
3
v1

(0) P
4
v1

(0) 0 · · · · · · · · · 0

0 P
1
v2

(0) P
2
v2

(0) P
3
v2

(0) 0 P
5
v2

(0) · · · · · · · · · 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

P
4
v0

(L − 2) P
5
v0

(L − 2) · · · · · · · · · · · · P
0
v0

(L − 2) P
1
v0

(L − 2) 0 0

P
4
v1

(L − 2) 0 · · · · · · · · · · · · P
0
v1

(L − 2) 0 P
2
v1

(L − 2) P
3
v1

(L − 2)

0 P
5
v2

(L − 2) · · · · · · · · · · · · 0 P
1
v2

(L − 2) P
2
v2

(L − 2) P
3
v2

(L − 2)

0 0 P
4
v0

(L − 1) P
5
v0

(L − 1) · · · · · · · · · · · · P
0
v0

(L − 1) P
1
v0

(L − 1)

P
2
v1

(L − 1) P
3
v1

(L − 1) P
4
v1

(L − 1) 0 · · · · · · · · · · · · P
0
v1

(L − 1) 0

P
2
v2

(L − 1) P
3
v2

(L − 1) 0 P
5
v2

(L − 1) · · · · · · · · · · · · 0 P
1
v2

(L − 1)

(2)

R = 2/3. Generalization to constructions of different rates are

straightforward and should follow the same principle.

A. Definition of Braided LDPC-CCs

A braided LDPC-CC C associated with a

TBCC C0 is the set of all sequences v[0,∞] =

(v
(0)
0 ,v

(1)
0 ,v

(2)
0 , · · · ,v

(0)
t ,v

(1)
t ,v

(2)
t , · · ·) satisfying the

equation v[0,∞]H
T
[0,∞] = 0, where v

(0)
t = ut =

(ut,0, · · · , ut,M−1), ∀t ∈ Z
+ with ut,m ∈ GF (2)

for 0 ≤ m ≤ M − 1, are the information bits and

v
(i)
t = (v

(i)
t,0, · · · , v

(i)
t,M−1), i = 1, 2, ∀t ∈ Z

+ with

v
(i)
t,m ∈ GF (2) for 0 ≤ m ≤ M − 1, are the parity bits. The

syndrome former H
T
[0,∞] with elements in GF (2) is obtained

by substituting the 1’s in the syndrome former H̄
T
[0,∞] of the

TBCC C0 by permutation matrices of dimension M ×M and

the 0’s by M × M all-zero matrices.

For instance, the braided LDPC-CC associated with the

TBCC from Fig. 1 has the syndrome former given by (1),

where 0 represents an M × M all-zero matrix and the

other elements are M × M permutation matrices. Due to the

convolutional character of the braided LDPC-CCs, it is also

possible to define the syndrome former memory ms as the

number of time instants being checked by the parity equations.

For the example in (1), ms is equal to two. Moreover, if

we consider practical applications, periodic syndrome former

matrices with period T are used, i.e., P
i
v0

(t) = P
i
v0

(t + T),
P

i
v1

(t) = P
i
v1

(t + T) and P
i
v2

(t) = P
i
v2

(t + T).

We will speak of constrained codes, if the non-zero per-

mutation matrices of H
T
[0,∞] are subject to the constraints

P
2n
v0

(t) = P
even
v0

(t), P
2n+1
v0

(t) = P
odd
v0

(t), P
2n
v1

(t) = P
even
v1

(t),
P

2n+1
v1

(t) = P
odd
v1

(t), P
2n
v2

(t) = P
even
v2

(t) and P
2n+1
v2

(t) =
P

odd
v2

(t); where t, n ∈ Z
+, and P

even
(·) (t) and P

odd
(·) (t) are

arbitrary non-zero permutation matrices. Furthermore, we will

consider two ensembles of braided LDPC-CCs throughout

this paper. Ψ1 is an ensemble of regular codes with degrees

(J = 4,K = 6), which is defined by the TBCC of Fig. 1.

The second ensemble Ψ2, which is constructed in the same

1

4 (2)t −vP

4 (2)t −
0vP

5
(2)t −

0vP

1
()t

0vP

0 ()t
0v

P

2

2 (1)t −vP

2

3
(1)t −vP

1

2 (1)t −vP

1

3
(1)t −vP

2

5 (2)t −
v

P

D D

D D

D D

()
2

T
0

()tvP

()
1

T
0

()tvP

t
u

(1)

t
v

(2)

t
v

(0)

t
v

Fig. 2. Encoder for the braided LDPC-CC defined by (1).

way as Ψ1 but uses CCs with parity-check matrix given

by H(D) = [1 + D, 1, 1 + D + D2] as component codes,

consists of irregular codes and has degree distribution given

by J(x) = (1/3)x + (2/3)x4 and K = 6.

B. Definition of Tail-Biting Braided LDPC-CCs

A rate R = 1/3 tail-biting braided LDPC-CC C̃ is the

set of all code sequences ṽ[0,L−1] satisfying the equation

ṽ[0,L−1]H̃
T
[0,L−1] = 0, where the transposed parity-check

matrix H̃
T
[0,L−1] with block length N = 3LM is obtained

by wrapping the last 2ms columns of permutation matrices

of the syndrome former H
T
[0,∞] after L time instants. For the

example of Fig. 1, the parity-check matrix of the tail-biting

code is given by (2).

III. ENCODING

The encoding of braided LDPC-CCs can be easily defined

based on their syndrome formers H
T
[0,∞]. Considering a rate

R = 1/3 systematic braided LDPC-CC, the recursive encoding

equations for the parity-bits are given by (3).

(c)

(1)

1D

(2)

1D

(1)

2D
(1)

I
D

(2)

2D
(2)

I
D

τW

Memory

pipeline
1I 1I 1I

1
O

1
O

2I 2I 2I

2O 2O

Hard

decisions

1
O

(b)

Channel

LLRs

Channel

LLRs

IN

OUT

1D
Memory

Section

2D

PI
D

Processor i

(a)
(1)(1)st m i− + −(1)(1)s st m m i− − + −

Fig. 3. Decoders for braided LDPC-CCs and tail-biting braided LDPC-CCs. (a) Graph representation of the code defined by (1) with ms = 2. (b) Architecture
for decoding braided LDPC-CCs with constrained syndrome former in a turbo-like fashion. (c) Circular pipeline architecture for decoding tail-biting braided
LDPC-CCs.

v
(1)
t

=
h

utP
0
v0

(t) +

ms
X

k=1

`

ut−kP
2k

v0
(t − k) + v

(1)
t−k

P
2k

v1
(t − k) + v

(2)
t−k

P
2k

v2
(t − k)

´

i

`

P
0
v1

(t)
´T

v
(2)
t

=
h

utP
1
v0

(t) +

ms
X

k=1

`

ut−kP
2k+1
v0

(t − k) + v
(1)
t−k

P
2k+1
v1

(t − k) + v
(2)
t−k

P
2k+1
v2

(t − k)
´

i

`

P
1
v2

(t)
´T

(3)

Fig. 2 shows exemplarily the architecture of the encoder for

the code defined by (1). In this picture, each D represents M
delay elements.

Periodic tail-biting braided LDPC-CCs are quasi-cyclic

codes. Therefore, they can be encoded in linear time, using cir-

cuits based on shift-registers [10]. Alternatively, the techniques

presented in [11] can be applied and very efficient encoding

structures can be obtained.

IV. DECODING

In general, LDPC-CCs have the fundamental property that

the separation between connected nodes of their Tanner graphs

is not bigger than ms+1 time instants. One direct consequence

of this property is the decoding by means of pipeline architec-

tures [6]. For the codes that we are considering in this paper,

pipeline decoders can also be derived. Below, we discuss the

main aspects of the decoding architectures.

A. Decoding of the Braided LDPC-CCs

In the most general case, where no constraints are imposed

and short cycles are avoided in the construction of H
T
[0,∞],

the pipelined belief propagation algorithm shall be used. This

algorithm works as follows. Let the transmitted sequence be

vt = (v
(0)
t ,v

(1)
t ,v

(2)
t), t = 0, 1, 2, · · · , and the received

sequence be rt = (r
(0)
t , r

(1)
t , r

(2)
t), t = 0, 1, 2, · · · . At time

instant t, the log-likelihood ratios (LLRs) corresponding to

rt = (r
(0)
t , r

(1)
t , r

(2)
t) arrive at the decoder, which consists

of a delay line and the concatenation of I identical parallel

operating processors [6]. Figure 3(a) shows one of such

processors and its connection to the graph representation of

the code. In this graph, each node and each edge correspond

to M permuted1 nodes and M permuted edges of the same

type, respectively. The next step of the decoding procedure

is to shift all stored values in the delay line in order to

1The permutations are defined by the permutation matrices in H
T
[0,∞]

.

accommodate the new LLRs corresponding to vt. The values

dropped from the delay line due to this shift action are already

the final decoding results of vt−I(ms+1)−1 after I iterations.

In a further step, the check nodes corresponding to the time

instants TCN = {t − (ms + 1)(i − 1)}, with i = 1, · · · , I , are

updated. Finally, the variable nodes corresponding to the time

instants TVN = {t−ms−(ms +1)(i−1)}, with i = 1, · · · , I ,

are updated and the whole process is repeated for rt+1 and so

on.

On the other hand, constrained braided LDPC-CCs can be

decoded based on a turbo-like decoding scheme of 2M compo-

nent CCs. Considering the braided LDPC-CC associated with

Fig. 1, the component CCs have parity-check matrices given

by H(D) = [1, 1 + D2, 1 + D + D2] and the code sequences

are obtained using (3), where each vectorial equation in (3)

represents a group of M CCs. In this sense, the M CCs from

one group are made to exchange extrinsic information with the

M CCs from the other group during the decoding and, thus,

it can iterate in a turbo fashion. Fig. 3(b) shows the decoding

architecture for these codes. As we can observe, this decoder

consists of a delay line (memory pipeline), the concatenation

of I pairs of parallel operating processors and write/read logics

(i.e., I1, I2, O1 and O2) defined by the permutation matrices

in H
T
[0,∞]. Here, D

(1)
i , with i = 1, · · · , I , are the processors

responsible for decoding the M CCs from the first group (first

equation in (3)) and D
(2)
i , with i = 1, · · · , I , are the proces-

sors responsible for decoding the M CCs from the second

group (second equation in (3)). Obviously, the communication

between adjacent processors is done by means of extrinsic

information. Furthermore, the decoding within each processor

D
(·)
i is performed using M parallel, windowed BCJR decoders

[12] that operate on windows of length W . Additionally,

adjacent processors are separated from each other by the

separation delay τ in order to avoid memory conflicts. Within

this context, the decoding of a certain rt is accomplished when

it is shifted through the whole memory pipeline and processed

by the 2I processors, and hard decisions are taken at the output

of processor D
(2)
I .

B. Decoding of the Tail-Biting Braided LDPC-CCs

The decoding of tail-biting braided LDPC-CCs with uncon-

strained parity-check matrices can be performed using the cir-

cular pipeline architecture discussed in [8] and depicted in Fig.

3(c). This decoder will consist of 1 ≤ IP ≤ Nmax/(ms + 1)

parallel processors Di, where Nmax is a design parameter2 and

corresponds to the maximum length (in time instants) of the

codewords that can be decoded. The operation of the circular

decoder is as follows. After a word r̃[0,L−1], corresponding

to the transmitted codeword ṽ[0,L−1], is received and stored,

the processors Di begin to hop over the memory addresses

in steps corresponding to the amount of data transmitted in

one time instant of the tail-biting code while performing their

decoding operations. When each processor has completed IR

rounds over the complete memory, a number I = IR · IP of

decoding iterations has been performed on r̃[0,L−1].

Similar to the braided LDPC-CCs with constrained syn-

drome formers, a turbo-like decoding scheme can be applied

to decode the tail-biting codes with constrained parity-check

matrices. In this case, the component CCs belonging to the two

groups of M CCs are tail-biting CCs and each of them can

be decoded using the techniques presented in [13]. A circular

decoding architecture can be also derived for the constrained

tail-biting braided LDPC-CCs. However, it is more convenient

to perform the decoding iterations in a non-pipelined fashion

in order to avoid the additional memory requirements due to

the separation delay τ .

V. ITERATIVE THRESHOLD ANALYSIS

We were able to compute the iterative thresholds of the

ensembles Ψ1 and Ψ2 using the computation tree methods

presented in [3]. The results of our computations are sum-

marized in Table I for the BPSK modulated additive white

Gaussian noise (AWGN) channel.

As we can observe in Table I, there is more than 0.5
dB difference between the thresholds of unconstrained and

constrained codes from the same ensemble. This is a par-

ticularly interesting phenomenon since the unconstrained and

constrained codes from a particular ensemble still have the

same degree distributions. In this case, the difference in the

thresholds are due to the application of distinct decoding

algorithms, i.e., unconstrained codes are decoded using Gal-

lager’s BP and constrained codes are decoded using the BCJR

algorithm.

TABLE I

THRESHOLDS FOR BRAIDED LDPC-CC ENSEMBLES IN AWGN CHANNEL

Ensemble Unconstrained Codes Constrained Codes

Ψ1 1.68 dB 1.10 dB

Ψ2 1.43 dB 0.86 dB

VI. PERFORMANCE ANALYSIS

In this section, we present the performance results for

several braided LDPC-CCs and tail-biting braided LDPC-CCs

belonging to the ensembles Ψ1 and Ψ2. All simulations were

performed in the BPSK modulated AWGN channel and a

maximum of 100 decoding iterations were allowed. For the

braided LDPC-CCs at least 500000 bits were decoded and at

least 5000 bit errors were detected in each simulation point.

2This is actually defined by the amount of memory available in the decoder.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 [dB]

B
E

R

Ψ
1
 Unconstrained M = 50

Ψ
2
 Unconstrained M = 50

Ψ
1
 Unconstrained M = 100

Ψ
2
 Unconstrained M = 100

Ψ
1
 Constrained M = 50

Ψ
2
 Constrained M = 50

Ψ
1
 Constrained M = 100

Ψ
2
 Constrained M = 100

Fig. 4. BERs of braided LDPC-CCs.

On the other hand, for the tail-biting braided LDPC-CCs and

parallel concatenated convolutional codes (PCCCs) [2] at least

1000 frames were decoded and at least 50 frame errors were

detected in each point. In addition, all permutation matrices

and interleavers were generated completely random and the

periods T of the syndrome formers and parity-check matrices

of the braided LDPC-CCs and their tail-biting versions are

equal to T = 10. An exception is done for codes with M = 50.

In this case, cycles of length 4 were avoided and T = 20.

Fig. 4 shows the bit error rate performances of different

braided LDPC-CCs from ensembles Ψ1 and Ψ2. The decoding

occurs in a streaming fashion using the pipeline decoders

presented in Section IV-A. As we can observe, the constrained

codes always show better results than the unconstrained ones

in the low to moderate SNR region. We can also note that some

additional gain can be achieved if codes from ensemble Ψ2 are

used. Moreover, all codes have the waterfall regions of their

BER curves close to the corresponding iterative thresholds

shown in Section V and no error-floors can be observed.

Finally, we observe that by increasing the size M of the

permutation matrices, the BER curves become steeper.

The performances of unconstrained tail-biting braided

LDPC-CCs from ensembles Ψ1 and Ψ2 are shown in Fig. 5.

We can observe that the codes from the ensemble Ψ2 perform

better than the codes from Ψ1 when similar parameters are

considered. For comparison purposes, we also have in the

same plot the BER curves of rate R = 1/3 PCCCs with

4-state component encoders defined by the generator matrix

G(D) = [1, (1 + D2)/(1 + D + D2)] and block lengths

N = 3000 and N = 6000. It is evident that the PCCCs have

better performances at low SNR, however, they also have poor

minimum distance properties and high error-floors appear. On

the other hand, the BER curves of the tail-biting codes are

steep and cross the BER curves of the PCCCs. Moreover, in

spite of the relatively short block lengths and sizes M of the

permutation matrices, no error-floors can be observed for the

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 [dB]

B
E

R

Ψ
1
 M = 50 N = 3000

Ψ
2
 M = 50 N = 3000

Ψ
1
 M = 50 N = 6000

Ψ
2
 M = 50 N = 6000

Ψ
1
 M = 100 N = 3000

Ψ
2
 M = 100 N = 3000

Ψ
1
 M = 100 N = 6000

Ψ
2
 M = 100 N = 6000

PCCC N = 3000

PCCC N = 6000

Fig. 5. BERs of unconstrained tail-biting braided LDPC-CCs versus PCCCs.

tail-biting codes under consideration.

We also obtained performance results for the constrained

tail-biting braided LDPC-CCs. This is shown in Fig. 6 in

companion with the BER curves of the PCCCs from Fig. 5. As

it was expected, the constrained codes from ensemble Ψ2 have

better performances than the ones from Ψ1. Comparing Fig.

5 to Fig. 6, we can also observe that the constrained codes

always perform better than the unconstrained ones, even if

they have shorter block lengths. Additionally, the curves are

not showing error-floors in the SNR intervals considered. In

Fig. 5 and Fig. 6, we can also note that the codes with smaller

M perform slightly better in the low to moderate SNR region.

We expect this situation to be reversed for high SNRs. An

indication of this are the curves (Ψ2 M = 50 N = 6000) and

(Ψ2 M = 100 N = 6000) in Fig. 5 and Fig. 6.

VII. CONCLUSION

In this paper, we introduced a new class of LDPC con-

volutional codes derived from braided convolutional codes

[4] which we call braided LDPC-CCs. We also have shown

how tail-biting codes can be derived from braided LDPC-CCs.

Moreover, the basic ideas behind the encoding and decoding

architectures were presented. Considering the decoding, the

fact that the braided LDPC-CCs can be decoded using Gal-

lager’s algorithm [1] or the BCJR algorithm [7] in a turbo-

like fashion is particularly interesting. Iterative thresholds for

two ensembles of braided LDPC-CCs were also computed.

Finally, simulations results have shown the error correction

capabilities of our codes, where we could observe that the tail-

biting braided LDPC-CCs have potentially better minimum

distance properties than parallel concatenated convolutional

codes with similar component codes.

Our further research on this topic includes the understanding

of the impact that the component convolutional codes and the

structure of the permutation matrices have on the minimum

distances and thresholds of the braided LDPC-CCs. It is also

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 [dB]

B
E

R

Ψ
1
 M = 50 N = 3000

Ψ
2
 M = 50 N = 3000

Ψ
1
 M = 50 N = 6000

Ψ
2
 M = 50 N = 6000

Ψ
1
 M = 100 N = 3000

Ψ
2
 M = 100 N = 3000

Ψ
1
 M = 100 N = 6000

Ψ
2
 M = 100 N = 6000

PCCC N = 3000

PCCC N = 6000

Fig. 6. BERs of constrained tail-biting braided LDPC-CCs versus PCCCs.

interesting to apply puncturing to obtain other coding rates.

In other words, our future efforts will focus on deriving some

practical design rules for the codes presented in this paper.

ACKNOWLEDGMENT

This work was partially supported by the BMBF within the

project Wireless Gigabit with Advanced Multimedia Support

(WIGWAM) under grant 01 BU 370. The authors are grateful

for the use of the high performance computing facilities of the

ZIH at the Technische Universität Dresden.

REFERENCES

[1] R. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: turbo-codes (1),” in Proc. IEEE International

Conference on Communications, Geneva, Switzerland, May 1993, vol. 2, pp. 1064–

1070.

[3] M. Lentmaier, D.V. Truhachev, K.Sh. Zigangirov, and D.J. Costello, Jr., “An

analysis of the block error probability performance of iterative decoding,” IEEE

Trans. Inform. Theory, vol. 51, no. 11, pp. 3834–3855, Nov. 2005.

[4] W. Zhang, , M. Lentmaier, K.Sh. Zigangirov, and D.J. Costello, Jr., “Braided

convolutional codes: a new class of turbo-like codes,” IEEE Trans. Inform. Theory,

May 2006, submitted for publication.

[5] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from pro-

tographs,” in IPN Progress Report 42-154, JPL, Aug. 2005.

[6] A. Jiménez Feltström and K.Sh. Zigangirov, “Periodic time-varying convolutional

codes with low-density parity-check matrices,” IEEE Trans. Inform. Theory, vol.

45, no. 5, pp. 2181–2190, Sept. 1999.

[7] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, no. 2, pp.

284–287, Mar. 1974.

[8] M.B.S. Tavares, K.Sh. Zigangirov, and G.P. Fettweis, “Tail-biting LDPC convo-

lutional codes,” in Proc. of IEEE International Symposium of Information Theory

(ISIT’07), Nice, France, June 2007.

[9] M.B.S. Tavares, K.Sh. Zigangirov, and G.P. Fettweis, “Tail-biting LDPC con-

volutional codes based on protographs,” in Proc. of IEEE Vehicular Technology

Conference (VTC’07), Baltimore, USA, Sept. 2007.

[10] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, MIT Press,

Cambridge, MA, 1972.

[11] T.J. Richardson and R.L. Urbanke, “Efficient encoding of low-density parity-check

codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

[12] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “A soft-input soft-output

maximum a posteriori (MAP) module to decode parallel and serial concatenated

codes,” JPL TDA Progress Report, vol. 42, no. 127, pp. 1–20, Nov. 1996.

[13] J.B. Anderson and S.M. Hladik, “Tailbiting MAP decoders,” IEEE J. Select. Areas

Commun., vol. 16, no. 2, pp. 297–302, Feb. 1998.

