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Abstract—In this paper, we present a method of constructing
new families of LDPC block code ensembles formed by termi-
nating irregular protograph-based LDPC convolutional codes.
Using the accumulate-repeat-by-4-jagged-accumulate (AR4JA)
protograph as an example, a density evolution analysis for the
binary erasure channel shows that this flexible design technique
gives rise to a large selection of LDPC block code ensembles with
varying code rates and thresholds close to capacity. Further, by
means of an asymptotic weight enumerator analysis, we show
that all the ensembles in this family also have minimum distance
that grows linearly with block length, i.e., they are asymptotically
good.

I. INTRODUCTION

The notion of degree distribution is an important factor in

the design of irregular low-density parity-check (LDPC) codes.

The performance of a belief propagation (BP) decoder for

LDPC codes is closely related to the variable and check node

degrees in the Tanner graph of the code. In order to improve

decoder performance, irregular code ensembles with a variety

of node degrees have been proposed (see, e.g., [1]). For the

binary erasure channel (BEC), capacity achieving sequences

of codes with a vanishing gap between the threshold and the

Shannon limit εsh = 1 − R have been found in [2]. The

node degree distribution also influences the minimum distance

properties of the code ensemble. For example, (J,K)-regular
LDPC code ensembles [3] with constant node degrees have

minimum distance that grows linearly with block length for

J > 2, i.e., they are asymptotically good; however, they also

have comparitively poor iterative decoding thresholds.

LDPC codes based on a protograph [4] form a subclass of

multi-edge type codes that have been shown in the literature to

have many desirable features, such as good iterative decoding

thresholds and, for suitably-designed protographs, linear mini-

mum distance growth (see, e.g., [5]). So-called asymptotically

regular LDPC block code ensembles [6] are formed by termi-

nating (J,K)-regular protograph-based LDPC convolutional

codes. This construction method results in LDPC block code

ensembles with substantially better thresholds than those of

(J,K)-regular LDPC block code ensembles, despite the fact

that the ensembles are almost regular (see, e.g., [6]). As the

termination length tends to infinity, it is further observed

that the iterative decoding thresholds of these asymptotically
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good ensembles approach the optimal maximum a posteriori

probability (MAP) decoding thresholds of the corresponding

LDPC block code ensembles. Recently, this property has been

proven analytically in [7] for the BEC considering some

slightly modified ensembles. These codes were also shown

to be asymptotically good in [8].

In this paper, we extend the results of [8] to consider the ef-

fect of terminating irregular protograph-based LDPC convolu-

tional code ensembles. As an example, we use an accumulate-

repeat-by-4-jagged-accumulate (AR4JA) protograph [5] to

construct an irregular LDPC convolutional code ensemble

by means of an edge spreading technique over component

matrices. By design, this LDPC convolutional code ensemble

has the same degree distribution and rate as the AR4JA LDPC

block code ensemble. Terminating this ensemble gives rise to a

family of irregular LDPC block code ensembles with flexible

code rates defined by a termination factor L. Using density

evolution analysis for these ensembles over the BEC, we show

that this flexible design technique gives rise to a large selection

of code ensembles with varying code rates and thresholds

close to capacity. Further, by means of an asymptotic weight

enumerator analysis [5], we show that all the ensembles in

this family are asymptotically good.

II. ANALYSIS OF PROTOGRAPH-BASED LDPC CODES

A protograph is a small bipartite graph B = (V,C,E) that
connects a set of nv variable nodes V = {v0, . . . , vnv−1} to a

set of nc check nodes C = {c0, . . . , cnc−1} by a set of edges

E. The protograph can be represented by a parity-check or

base biadjacency matrix B, where Bj,k is taken to be the

number of edges connecting variable node vk to check node

cj . As an example, Figure 1 shows the accumulate-repeat-

jagged-accumulate (ARJA) protograph [5] and its associated

base matrix B.

B =





1 2 0 0 0
0 3 1 1 1
0 1 2 1 2





Fig. 1: The ARJA protograph and associated base matrix B.

The ARJA protograph has multiple repeated edges between

V and C. In addition, as illustrated by the undarkened circle,

variable node v1 is punctured.



An ensemble of protograph-based LDPC block codes can

be created from a base matrix B using the copy-and-permute

operation [4]. A parity-check matrix H from the ensemble of

protograph-based LDPC block codes can then be obtained by

replacing ones with an N ×N permutation matrix and zeros

with the N ×N all zero matrix in the base matrix B. In the

case when a variable node and a check node are connected

by r repeated edges, the associated entry in B equals r and

the corresponding block in H consists of a summation of r
N ×N permutation matrices. The ensemble is defined as the

set of all possible parity-check matrices H that can be formed

using this method.

By construction, every code in the resulting ensemble has

the same node degrees and structure. The ensemble rate is

given as R = (nv −nc)/u, where u is the number of variable

nodes connected to the channel. In addition, the sparsity

condition of an LDPC matrix is satisfied for large N . The

code created by applying the copy-and-permute operation to an

nc×nv protograph base matrix B has block length n = Nnv .

A. Density evolution for protograph-based ensembles

Since every member of the protograph-based ensemble pre-

serves the structure of the base protograph, density evolution

analysis for the resulting codes can be performed within the

protograph. In this paper, we assume that belief propagation

(BP) decoding is performed after transmission over a BEC

with erasure probability ε. Let p(i) denote the probability that

the incoming message in the previous update along an edge

of an arbitrary check node is an erasure. Then the density

evolution threshold of an ensemble is defined as the maximal

value of the channel parameter ε for which p(i) converges to

zero for all edges as the number of iterations i tends to infinity.

B. Protograph weight enumeration

The preserved structure of members of a protograph-based

LDPC code ensemble also facilitates the calculation of average

weight enumerators. An ensemble average weight enumerator

Ad tells us that, given a particular Hamming weight d, a typical
member of the ensemble has Ad codewords with Hamming

weight d. Combinatorial techniques for calculating enumer-

ators for protograph-based ensembles have been presented

in [5] and [9]. The weight enumerator Ad can be analysed

asymptotically to test if the ensemble is asymptotically good.

If this is the case, then we can say that the majority of codes in

the ensemble have minimum distance growing linearly at least

as fast as nδmin, where δmin is called the minimum distance

growth rate of the code ensemble [5].

III. TERMINATED LDPC CONVOLUTIONAL CODES

A rate R = b/c binary LDPC convolutional code [10] can

be defined as the set of infinite binary sequences v[−∞,∞] that

satisfy the equation v[−∞,∞]H
T

[−∞,∞] = 0, where

H
T
[−∞,∞] =



















. . .
. . .

H
T
0 (0) · · · H

T
ms

(ms)
. . .

. . .

H
T
0 (t) · · · H

T
ms

(t+ms)
. . .

. . .



















is the transposed parity-check matrix, also called the syndrome

former matrix. The binary (c− b)× c submatrices Hi(t), i =
0, 1, · · · ,ms, satisfy the conditions that Hms

(t) 6= 0 for at

least one t ∈ Z and that H0(t) has full rank for all t. We

call ms the syndrome former memory and νs = (ms + 1) · c
the decoding constraint length. These parameters determine

the width of the nonzero diagonal region of H[−∞,∞]. The
sparsity of the parity-check matrix is ensured by demanding

that its rows have Hamming weight much less than νs. The
code is said to be regular if its parity-check matrix H[−∞,∞]

has exactly J ones in every column and K ones in every row.

The code is irregular if its row and column weights are not

constant, and the degree distribution is used to characterize the

variations of check and variable node degrees in the Tanner

graph of the code.

A. Constructing protograph-based LDPC convolutional codes

Analogously to block codes, an ensemble of LDPC convolu-

tional codes can be constructed from a protograph. We proceed

by forming an infinite base matrix composed of component

bc × bv submatrices B0,B1, . . . ,Bms
as follows:

B[−∞,∞] =



















. . .
. . .

Bms
· · · B0

. . .
. . .

Bms
· · · B0

. . .
. . .



















. (1)

The infinite Tanner graph associated with B[−∞,∞] can be

regarded as a convolutional protograph. An ensemble of

time-varying LDPC convolutional codes can be formed from

B[−∞,∞] using the protograph construction method based on

N ×N permutation matrices described in Section II.

B. Terminated LDPC convolutional codes

Suppose that we start the convolutional code with parity-

check matrix defined in (1) at time t = 0 and terminate it

after L time instants. The resulting finite-length base matrix

is given by

B[0,L−1] =

















B0

...
. . .

Bms
B0

. . .
...

Bms

















(L+ms)bc×Lbv

. (2)

The matrix B[0,L−1] can be considered as the base matrix

of a terminated protograph-based LDPC convolutional code

ensemble. Termination in this fashion results in a rate loss.

Without puncturing, the design rate RL of the terminated code

ensemble is equal to

RL = 1−

(

L+ms

L

)

bc
bv

= 1−

(

L+ms

L

)

(1−R) ,

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of

the unterminated convolutional code ensemble. Note that, as

the termination factor L increases, the rate increases and

approaches the rate of the unterminated convolutional code



ensemble. The protograph-based LDPC block code ensemble

associated with B[0,L−1] can be studied using the analysis

discussed in Section II. It has been shown in [6] and [8] that

the BEC thresholds and minimum distance growth rates are

highly dependent on the choice of component submatrices.

IV. AR4JA-BASED TERMINATED LDPC CONVOLUTIONAL

CODES

As an example of our design method, we construct fam-

ilies of protograph-based LDPC convolutional code ensem-

bles based on the irregular AR4JA ensembles introduced in

[5]. These convolutional code ensembles are then terminated

following the procedure described in Section III-B, and we

find the iterative decoding thresholds and minimum distance

growth rates of the resulting LDPC block code ensembles.

A. A family of terminated ARJA-based convolutional codes

The ARJA protograph [5] and associated base matrix are

displayed in Figure 1. The ensemble defined by this protograph

is of significant practical interest, since it has minimum dis-

tance growth rate δmin = 0.0145 and BEC iterative decoding

threshold ε∗ = 0.4387. Consider splitting B into component

submatrices B0 and B1 of size bc × bv = 3× 5 as follows:

B0 =





1 2 0 0 0
0 1 1 1 0
0 0 1 0 2



 and B1 =





0 0 0 0 0
0 2 0 0 1
0 1 1 1 0



,

where we note thatB0+B1 = B. We can use these component

submatrices to form a convolutional base matrix as in (1),
where ms = 1. The associated convolutional protograph is

shown in Figure 2.

L=2 =3Lt=0

Fig. 2: The ARJA-based convolutional protograph defined in

Section IV-A with termination markings for increasing L.

Note that the variable nodes associated with the second column

of the component submatrices are punctured in accordance

with the ARJA protograph. Using this construction method,

the infinite convolutional protograph has the same degree

distribution as the ARJA protograph and design rate R = 1/2.
Spreading the edges of B over component submatrices in this

fashion ensures that edges from variable nodes at time t are

spread among check nodes at times t, t+ 1, . . . , t+ms.

The convolutional protograph may then be terminated as

shown in Figure 2, with the associated base matrix given by

(2), for termination factors L ≥ 2. In order to achieve linear

distance growth, we have modified the construction presented

in [6] to avoid degree one and two check nodes, so that the

edges of the degree 3 check node c0 are not split over the

component submatrices. As a result of the all-zero row in B1,

the terminated protograph associated with B[0,L−1] has nc =
(L +ms)bc − 1 = 3L + 2 check nodes and nv = Lbv = 5L
variable nodes. After puncturing, the design rate is

RL =
nv − nc

u
=

5L− (3L+ 2)

4L
=

L− 1

2L
.

Note that, while the terminated code ensembles approach the

check node degree distribution of the ARJA ensemble as

L → ∞, for finite L the terminated ensembles have a reduced

fraction of degree 6 check nodes. For L ≥ 2, the protograph

has L + 4 degree 3 check nodes and 2(L − 1) degree 6
check nodes. By design, the variable node degree distribution

remains constant for all L. The calculated minimum distance

growth rates and BEC thresholds for these ensembles are given

in Table I.

L Rate Growth Scaled BEC Capacity Gap to

RL rate δ
(L)
min

uδ
(L)
min

threshold εsh Capacity

2 1/4 0.0946 0.757 0.6608 0.7500 0.0892
3 1/3 0.0461 0.553 0.5864 0.6667 0.0803
4 3/8 0.0306 0.490 0.5496 0.6250 0.0750
5 2/5 0.0234 0.469 0.5284 0.6000 0.0716
6 5/12 0.0192 0.462 0.5159 0.5833 0.0674
7 3/7 0.0164 0.461 0.5083 0.5714 0.0631
8 7/16 0.0144 0.461 0.5039 0.5625 0.0586
9 4/9 0.0128 0.461 0.5016 0.5556 0.0540
10 9/20 0.0115 0.461 0.5004 0.5500 0.0496
∞ 1/2 0 0.4996 0.5000 0.0004

TABLE I: Parameters for the terminated ARJA-based LDPC

convolutional code ensembles.

As the termination factor L → ∞, we observe that the

minimum distance growth rate δ
(L)
min → 0.1 This is consistent

with similar results obtained for tail-biting LDPC convolu-

tional code ensembles in [11]. We also observe from Table

I that the scaled growth rates uδ
(L)
min converge to a fixed

value as L increases. A similar result was first observed in

[12] for an ensemble of (3, 6)-regular LDPC convolutional

codes constructed from N × N permutation matrices, where

it was shown that the scaled growth rates converged to a

bound on the free distance growth rate of the unterminated

LDPC convolutional code ensemble. This allows us to estimate

the minimum distance growth rate δ
(L)
min for larger L by

dividing this value by the number of transmitted nodes in the

protograph u = 4L.
In addition to the convergence of the scaled minimum

distance growth rate with L, Table I also indicates that the

BEC iterative decoding threshold converges to a constant

value with L. As the termination factor L increases, we also

observe that the gap to capacity decreases. Since the distance

growth rates decrease with L, this indicates the existence

of a trade-off between distance growth rate and threshold.

For this ensemble, the threshold approaches ε∗ = 0.4996 as

L → ∞. This is very close to the Shannon limit εsh = 0.5 for

rate R∞ = 1/2. Importantly, the threshold does not further

decay as the termination factor L increases. This remarkable

result was first observed empirically in [13] for (J, 2J)-regular
ensembles constructed from N×N permutation matrices, and

it was shown to be true for arbitrarily large L in [14]. Re-

cently, this phenomenon has also been observed for terminated

protograph-based regular LDPC convolutional codes [6], [8].

1Using the techniques developed in [11], this convolutional code ensemble
can be shown to be asymptotically good in the sense that the minimum free

distance grows linearly with encoding constraint length.
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Fig. 5: Left: BEC iterative decoding threshold vs. code rate along with the Shannon limit. Right: minimum distance growth

rates vs. code rate along with the Gilbert-Varshamov bound.

B. Terminated AR4JA-based LDPC convolutional codes

The ARJA protograph can be extended to a family of

AR4JA protographs [5] by adding 2e variable nodes of degree

4 as shown in Fig. 3.

nodes
e2

{

Fig. 3: The AR4JA protographs with extension parameter e.

This method of extension preserves linear minimum dis-

tance growth, and the LDPC code ensembles associated with

this family of protographs have been shown to have good

iterative decoding thresholds [5]. The design rate of the

ensemble with extension parameter e is R = (1+ e)/(2 + e).
Note that setting e = 0 results in the ARJA protograph.

Using the technique described above, we can construct

an AR4JA-based LDPC convolutional code ensemble from

(1) using component protographs B0 and B1 as shown in

Fig. 4. Terminated AR4JA (TAR4JA) base matrices B[0,L−1]

can then be formed as in (2), where B[0,L−1] is now of

size (3L + 2) × (5 + 2e)L. Note that there are exactly L
punctured nodes in B[0,L−1], where the nodes are punctured

as indicated in Figure 4. As with the AR4JA LDPC block

code, e = 0 corresponds to the terminated ARJA-based LDPC

convolutional code ensemble described in Section IV-A. Then,

for extension parameter e, the rate of any given terminated

ensemble with termination factor L ≥ 2 is given by

RL =
nv − nc

m
=

(5 + 2e)L− (3L+ 2)

(4 + 2e)L
=

(1 + e)L− 1

(2 + e)L
.

} }nodes

B B0 1

e2

Fig. 4: The component protographs for the AR4JA-based

LDPC convolutional code ensembles.

Figure 5 shows the results obtained for the TAR4JA ensembles,

the AR4JA ensembles, and some (J,K)-regular ensembles.

For e = 1, . . . , 5, we again observe that the scaled minimum

distance growth rates uδ
(L)
min of the TAR4JA ensembles con-

verge as L increases, which allows us to estimate the growth

rates for L ≥ 10.

For the TAR4JA ensembles with e = 1, . . . , 5, we observe

that, as with the e = 0 case, increasing the termination factor

L results in a family of codes with capacity approaching

iterative decoding thresholds and declining minimum distance

growth rates. For each family, the iterative decoding threshold

converges to a value close to the Shannon limit for R∞ as

L gets large. The design rates RL of the TAR4JA ensembles

overlap for increasing extension parameter e, allowing a large

selection of asymptotically good codes to be obtained in the

range 1/4 ≤ R ≤ 6/7. The achieveable code rate can be

increased by considering larger extension parameters e.

We also observe that the minimum distance growth rates

of the TAR4JA ensembles for small termination factors L
typically exceed those of (3,K)-regular codes for K ≥ 6.
For the same extension parameter e and large termination



factors L, the TAR4JA ensembles have significantly better

thresholds and less complexity then the AR4JA ensembles2,

but smaller distance growth rates and slightly lower code

rates. Further, by increasing the extension parameter e, and
for small termination factors L, the minimum distance growth

rates of the TAR4JA ensembles are larger than those of the

AR4JA ensemble with only a slightly worse threshold and

some increase in complexity.

Figure 6 plots the minimum distance growth rates against

the fractional gap to capacity (εsh − ε∗)/εsh for the TAR4JA

ensembles with termination factors L = 2, . . . , 10, 20, 50, 100,
the AR4JA ensembles, and some (J,K)-regular ensembles.
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Fig. 6: Minimum distance growth rate vs. the fractional gap

to capacity.

The trade-off we observe effectively allows a code designer to

‘tune’ between distance growth rate and threshold by choos-

ing the parameters e and L. We observe that, in particular,

intermediate values of L provide thresholds with a small gap

to capacity while maintaining a reasonable distance growth

rate with only a small loss in code rate. The complexity of

the TAR4JA ensembles (measured by average node degrees)

increases slowly with L and approaches that of the AR4JA

ensemble for a given extension parameter e. Further, as L
becomes sufficiently large for the scaled growth rates to con-

verge, we observe that the gaps to capacity are approximately

proportional to L for all of the TAR4JA ensembles. For ex-

ample, we obtain about a 10% gap to capacity by terminating

after L = 9 time instants; a 5% gap after L = 20 time instants;

a 2% gap after L = 50 time instants; and a 1% gap after

L = 100 time instants. Finally, the extension parameter e can

be chosen, where a larger e gives a higher code rate but a

lower distance growth rate and greater complexity.

V. CONCLUSIONS

We have provided a construction technique for a large

family of asymptotically good AR4JA-based terminated LDPC

2Complexity is measured by average node degree. When comparing the
TAR4JA ensembles to the AR4JA ensembles with equal extension parameters,
the average variable node degree is equal for all L, but the average check
node degree is less for the TAR4JA ensembles for finite L because of the
termination.

convolutional code ensembles with thresholds close to capac-

ity. The design method, based upon an extension parameter

e and a termination factor L, is very flexible, allowing the

selection of asymptotically good LDPC code ensembles for

a wide variety of rates. It was also shown that the ensemble

average minimum distance growth rates are higher than those

of other code ensembles with similar complexity. Further, as

a result of the variable node degree design, we ensure fast

convergence rates and thresholds close to capacity.

The discussion in this paper was limited to the BEC;

however, as we have recently shown in [15], similar behaviour

is observed for the additive white Gaussian noise channel.

Finally, although the AR4JA protograph was used as an

example, the same design method can be applied to other

irregular protographs to construct asymptotically good LDPC

code ensembles with varying code rates and thresholds close to

capacity. In practice, the design parameter L adds an additional

degree of freedom to given block code designs. Starting from

any LDPC block code, it is possible to derive periodically

time-varying terminated convolutional codes that share the

same encoding and decoding architecture for arbitrary L.
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