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CHARACTERISTICS OF A STABLE PLATFORM.

by

Karl-Johan Astrém

Summary.

In this report a three-axis stable platform system is discussed. The plat-
form system consists of 2 stable element to which three single-axis gyros
are mounted. The stable element is provided Mth<some kind of}suspen-
sion, e.g. a gimbal system, arranged in such a way that it is possible to
apply a torque to the stable element. : The system is described in section
1. Possible ways of arranging the gyroscopes on the stable element are
discusced in secticns 2 and 3. The equations of motion are derived for
arbitrary orientation of the gyros in sections 4 and 5. The equations of
motion are linearized in section 6, where it is assumed that the input
axes of the gyros are mutually orthognnal. In sectiogj?&re given some
physical irterpretations of the results, so far obtained. In section 8 the
conditions for stability are established. It is found that the stability of
the system is greatly affected by the arrangement of the gyros. The main
result of section 8 is that, for a system with orthogonal input axes,the
gyroscopes should be arranged with the output axes in the same plane and
with a total angular momentum equal to or greater than \/—3_' H, where H
is the angular momentum of one gyrescope. The stability conditions for
systems designed on a single axis basis are also discussed in section 8.
It is found that the output axis sensitivity of the gyroscopes gives inter-
action between the three channels. The effect of this interaction is 2 £
extensively treated. Systems with a characteristic equation of a low

degree are analysed with algebraical methods. For systems with a

For an analysis of the dynamics of a gimbal system we refer to the
work reported in references 5 and 6.




characteristic equatmn/of a high degreei the graphical method of Evans

is adopted. In section 9 a—re analysed the angular deviation of the stable
element, caused by stochastic disturbances, It is assumed that the
disturbances are stationary processes with zero averages. It is found
that the angular deviation caused by disturbing torques acting on the
gyrofloats has a random walk character, with a variance increasing
linearly with time. A relationship is given between the variance of the
angular displacement and the autocorrelation function of the disturbing
torque. A quality figure for the random drift of a gyroscope is suggested.
In section 10 the synthesis problem is briefly delt with. A method is

given for the synthesis of an inertial stabilized platform system. In the
y P 3@ ¢ y
72 g

appendlx the synthe51s method: due to Truxal is to the synthesis

of a 51ngle axis inertial stabilized platform system.
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4.

1. A short description of the system,

The principal function of the stable platform is to maintain a physical
reference system (for navigation, fire-control, or other purposes). The
: [EN
( complex}of/#ll components necessary to establish the reference is-eaited

the platform system. The component of the platform system which

{av

mechanizes the reference is called the stable element. Here it is assumed

that the basic component of the platform system is the single-axis floated

gyro. The features of such a gyro are shown in figure 1. 1.

RTORQUE GENERATOR STATOR

<JORQUE GENERATOR ROTOR FLOAT SIGNAL
b GENERATOR

ROTOR

STATOR

%) QUTPUT AXIS

“S_SPIN AXIS
GIMBAL / cAsSE! | GYRO ROTOR
BEARING- BALANCE NUT SPIN REFERENCE AXIS ™

FIGURE 1.1

It consists of a gyrorotor supported by ball bearings in a cylindrical
chamber, called the float, which is supported in the case by jewel bearings.
The space between the cylinder and the casg is filled w,l}h a higp-denaity
fluid, This-fuid serves-tofioat Fhe cylinde_ﬁj{mr-ﬁéﬁgz rease: the
friction torque in the bearings. In some applications the fluid is also used
in order to introduce damping between the float and the case. The pivot
axis of the float is the output axis of the gyro, and the angle between the
float and the case is the output signal of the gyro. The cutput signal is
measured by a microsyn, the signa.ll generator. A gyro ig often provided

with another microsyn, the torque generator, which makes it possible to



apply a torque to the float for control purposes. The spin axis of the gyro
is coincident with the spin vector of the rotor. The axis coincident with
the spin axis when no output signal is obtained from the gyro is called
the spin reference axis. The input axis of the gyro is orthogonal to the
spin reference axis and to the output axis. In pictorial diagrams the gyro

is represented by the following simplified drawing.

SPIN REFERENCE AXIS

OUTPUT AXIS

INPUT AXIS

Figure 1.2

The desired performance of the single axis gyro is to give an output

signal for rotations around the input axis. For further details of the

single axis floated gyro, see reference 1.

In order to maintain the re{erence/three single axis gyros are mounted
to a stable element with mutually orthogonal input axes. The stable

element is supported for three degrees of freedom to the carrier frame,

) for examplre by a system of gimbals. The main feature of the stable

element and the gimbal system is shown in figure 1. 3.
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FIG. 13

At
The rotations of the stable element 48 sensed by the gyros. The output

signals of the gyros are amplified, filtered and distributed to torque
motors on the gimbals and in the gyros. By the proper choice of the
transfer functions from the gyros to the torque motors it is possible

for the stable element to maintain the desired reference.



Description of the arrangement of the gyros and definition of the

ccordinate sets.

The center of mass of the stable element is O. Introduce a right-
handed orthogonal coordinate system Oyl Y,V fixed to the stable ele-
ment. This coordinate set will be referred to as the y-set. A gyro is
named after its input axis, e.g. a gyro with the ym-axis as input axis
is called a m-gyro. The input axes of the three gyros are parallel to

the axes of the y-set,

To each of the three gyros we associate a coordinate set
(m) (rn (m)x3(m , referred to as the x(m)-set. The point O

(m) .

the center of the m-gyro. The x, - and X, -axes coincide with the input
and output axes, respectively. The x3—a.xis coincides with the spin_

reference axis. Compare figure 1. 2.

The position of the m-gyro is given by the point O( m) and the orienta-

w
tion of the m- gyro‘defmed by the transformation of the y-set on the

x-get.

;(m) - P(m) v

As the input axis of the m-gyro is parallel to the ym—axis the trans-

(m)

formation matrix is completely apecified by an angle ©

N




The transformation matrices can be written

1 0 0
p(l) - 0 cos 8l1)  gin (V)
0 _sin (1) cos o{V)
0 1 0
P(Z) = gin 9(2) 0 cos 6(2)
cos 9(2) 0 -8in 9(2)
0 0 1
P(3) = cos 9(3) sin 9(3) 0
-8in 9(3) cos 9(3) 0 2.2

The following conventions are introduced in order to simplify the algebraic

manipulations.

(1) Latin indices used as subscripts will take all values from 1 to 3

unless the contrary is specified.

(2) If a Latin index is repeated in a term, it is understood that a

summation with respect to that index over the range 1,2, 3 is implied.

Introduce the Kronecker delta Sij and the permutation symbol eijk

defined by
1 if i=]
ij 0 if ifj
1 if indices ijk occur in cyclic order
eijk - -1 if " " " " acyclic "
0 if two indices are equal

The transformation 2.1 can be written

) < g ) 2.3



with the inverse transformation

= p (m) (m)
ol — pji xj 2.4
where
(m) _ (m) _
Py = 3im i Py = Oy
m m
pz( n‘)1+1 - cos o)
m . m
Pz( rr)1+2 = sin ¢t
m . m
P3(,n)1+1 = -sin o™
p3(r2+2 = cos O(m) 2.5
thereby defining
p. (™) N (m) -
Pi,m+3 = Pim oS s S

Introduce the coordinate system z(m) attached to the float of the m-gyro.
When the float is in its neutral position, i.e. no output signal, the z; (m)
axis coincides with the xl( )-ams The transformation of the x( )-5ystem
on the z( m) -system is a rotation around the xz-ams. The angle of roz:.son

P (m) is the output signal of the m-gyro. The transformation of the x

set on the z(m -set is

z(m) _ g (m) ;(m) 2.6
g (m) _ o (m)  (m) 2.7
i ij j

and the inverse transformation
x(m) r(m) z(m) 2.8
1 Ji J



10.

where

e ) 2 o ol

11
) - i g )
e, = i o)
() < cp o)
™ =2 ) o5 2.9

Combining equations (2. 3) and (2. 6) we get

where

Further combining equations (2.4) and (2.7) we get

- . (m)
i T 9%

(m) 2.12

The transformation matrices Q(m) S R(m) P(m) are

i cos cp(l) sin cp(l) sin 9(1) -sin(p(l) cos 0(1)
Q(l) = 0 cos e(l) sin 9(1)
sin cp(l) -cos q)(l) sin 6(1) cos cp(l) cos 0(1)
-sin @ (2) cos 6(2) cos @ (2) sin cp(z) sin 0 (2)
0(® . sin 0(%) 0 cos (?)
cos q)(.?.) cos 9(2) sin @ (2) -cos cp(z) sin 6(2)
sin (p(3) sin 9(3) -sin q3(3) cos 6(3) cos q)(3)
Q(S) = cos 6(3) sin 9(3) 0
-cos cp(3) sin 9(3) cos cp(3) cos 9(3) sin q>(3)
2.13




it.

Classification and analysis of the arrangement of the gyros.

It was shown in paragraph 2 that the arrangement of the gyros is completely

specified by three angles © (1), 0 (2), and 6 (3) . The arrangements can there
plet o (1), 9(2) o3

fore be classified according to the properties of the tri

The total angular momentum of the gyros is

is called the spin of the platform. We get from equation (2.2)

s = (sin 9(1) - cos 9(3))2 + (sin 6(2) - cos 6(1))Z + (sin 6(3) - cos 6(2) )2
3.3

The spin greately influences the performance of the platform system.

Another quantity of significance is the output axis orientation numberl,

which is defined as the triple scalar product
o) 22 4 ()
1-[:{2 » Xyl Xy 3.4

The output axis orientation number can be interpreted geometrically as
AN

the volume of the parallelepiped with the output axes unit vectors xz(l) ;

Y

XZ(Z) and 3\:2(3) as concurrent sides. Also notice that the output axis

orientation number can be expressed as
1 = det L

where I is the matrix defined by equation (6.4).
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Equation (2. 2) gives

1 = sin 9(1) sin 9(2) sin 9(3) + cos 9(1) cos 6(2) cos 9(3) 3.5

The significance of s and 1 will be shown in paragraph 8. We get from

equations (3. 3) and (3. 4)

o
AN
O]
th
o
w
o

3.7

i
—
1A
—
i~
—

The cases of equality in equation (3. %) are of special interest. Zero spin

is obtained for

sin 61 _ cos 003 = ¢

I
o

sin 9(2) - cos 9(1) S

sin 603) - cos 603 - o 3.8

These equations have eight solutions

L0 @ )
3 3w _ 3w 1= \LE,
- -y E3 -T2
T T 3 _ \/?
o v T 1=- > cycl.
L s i 1= V2
4 4 4 2
%‘E - %’l = % 1= _\4;2_ cycl. 8.9

The corresponding configurations of the gyros are shown in plate 3. 1.
It is obvious that the spin axes are in the same plane. The solution

[-E ’ -:Ir ) g e.g. has the following spin axes



13.
3"23(1) \/L?(o, =1, 1)
2.2 . Ly 0, oy
5 \/_2_3( )
2.0 o Ly, 1, 0) 3. 10

e

The angle between the plane through the spin axes and each coordinate axis

is arctgV 2 = 54,73°,

The conditions for maximum spin, s = 6, are

sin 9(1) + cos 6(3) =

=0
sin 6(2) + cos 9(1) =0
sin 9(3) + cos 9(2) =0 3.1t

The solutions of this system can be obtained from the solution (3. 9) by

changing the signs of all angles. Hence

o(1) .(2) o(3)
3w 3w 3w B
T T z 170
™ ™ 3w 1=0 cl
z "7 T = cyeh
™ T ™ _
"7 "7 -7 1=0
3w 3w ™ _
"T T Z 1=0 CYC].. 3. 12

The corresponding configurations of the gyros are shown in plate 3.2. In

this case the output axes are in the same plane.

As shown in section 8 systems with

1 =0 3.13

are of special interest.
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Equations (3.3) and (3.5) give
sin 9( 1) cos 9(3) + sin 9(2) cos 9(1) + sin 9(3) cos 6(2) =0
sin 9(1) sin 9(2) sin 9(3) + cos 9(1) cos 9(2) cos 9(3) =0 3.14
These equations have/infinitely many solutions. Given arbitrary 9(1) we

can find four pairs 9(2), 9(3), satisfying equation (3. 14). The solutions can
be obtained from plates 3. 11 and 3. 12. There are 24 solutions which are

multiples of -‘i— m. These are cyclic permutations of the following basic

solutions.

(1) o(2) ol3)
m 3T

=B o - T
™ ™

) 0 I
™ . ™

-2 ' "z
™ 3m

3 T 7}
v ™
z s -3
T 31
- 0 -
L 3w
7 1 "z
321 T % 3. 15

The corresponding configurations of the gyros are shown in plates 3.3 and
3.4. Some special arrangements occur frequently. We adopt the following
terminology. An arrangement is called cyclic if all angles G(m are equal,
An arrangement is called orthogonal if all angles © ) are multiples at

1

= M.

2
Equation 3.3 gives the following condition on the spin number of the ortho-

gonal arrangements

1< s £5 3.16
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There are totally 64 orthogonal arrangements. These arrangements are
obtained by cyclic permutation of 24 basic arrangements. The basic
arrangements can be divided into three groups of eight arrangements each

with spin 1, 3 and 5, respectively. The basic arrangements are

s=1,1=0 o(1) o(2) 6(3)
™
0 0 -
m ™
g 3 3
0 % T
T ™

0 3 -7

0 T _%

™ ™

z m -2

™ ™ - T

2

T % -;_’. 3. 17
s=3,1=-1 ol1) o(2) o(3)

v m ™

. T T .

2 2 2

0 0 T

% % % 3.18
5 =3,1=1 ot) o(2) o(3)

0 0 0

T ™ ™

2 2z 2

0 m T

% _% _% 3. 19
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s=5,1=0 o(1) o(?) o(3)
m
0 0 -3
0 T —%—
g ™
0 ) z
'
0 -'-z ™
™ ™
0 =% 3
i _TE =
2 2
_“_ T ™
72
™ ™
Z —-Z ™ 3.20

Notice that the solution with spin 5 can be obtained from the solution with

spin 1 by changing the signs of all angles.

The configurations represented by equations (3.17), (3.18), (3.19) and
(3. 20) are shown in plates 3.5 - 3.10.
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The equation of motion of one gyro.

We will now derive the equation of motion of one of the gyroscopes.

The angular velocity of the stable element is

o~

Sy = 4
)= LFZS Y 4,1
The float of the m-gyro has the angular velocity J(m) ;
G(m) = w (m) 2 () 4,2
s s
where
(m) _ _ (m) . (m)
W = Qg Qt + 552 4.3

The angular velocity of the gyroscopic element with respect to the float
is w_. Let the components of the inertia matrix of the float with respect
to the z(m)-set be JAkl , where J is the moment of inertia of the gyro-
scopic element with réspect to the spin axis, and the quantities Akl

defined by

dm k=1, i#j#k#i

The float is supposed to have its center of mass on the output axis.

Let the angular momentum of the float of the m-gyro with respect to its

center be H(m) .

NN PYC P CS .t

Differentiating with respect to time

ﬁ(m) = g [Aks d;s(m) + Ajs ws(m) wi(m) eijk + P ""i(m) ei3k] gk(m)

4.5



A

18,
The equations (4. 3) and (4. 5) give
SRR |:Ak2'(’5(m)+€z3kep(m)“ Ays 9 ( e +q1(t ) i3l %
A Eij‘b(m) (b(m)JrAJ_z qi(r m) i <P( )+Aqu( m)_ e ( m)
TALs és(tm)Qt-*-Ajs qst(m) qil('m) Eiijt"ﬁLr:\ /Z\k(m) 4.6
The component of I%I(m) along the output axis is
I;Iz.(m) = [Azqus (m)+A25 qs(tm)p i ql(t & t Yoty qi(fl)eijzgr‘b(m)J’
t A ést(;m)nt+Ajs qsim) q'ix('m) €ijzntﬂr:] Skl

The torque acting on the float of the m-gyro has a component jlz(m)
along the output axis. This component is composed by viscous torque,
torque from the torque generator, unbalance torque, etc. Supposing it
is possible to control the torque generator of each gyro by signals from

all gyros we get

(m) _ (1) (2) 3] grmlen)
M, =-JA,, o’ml(D)cp +5m2(D)q) +6’m3(D)(p -Jm
4.8
The ©. (D) s are differential operators. It is assumed that they are
rat10na1 functions of D = éit . Further Jm( m) is the component on the
output axis of the disturbing torque acting on the float of the m-gyro.
Newton”s second Law of Motion gives
i () g (m) m=1,2,3 4.9
2 2
Introduce the following matrix-notations
1
o)
(2) 4. 10

¢
o0



1
0= <ﬂ2
o,
)
T = m(2)
m3)
D% 4 54 (D) 612(D) ,_ 6’13 (D)
$(D) = 5, , (D) D’ + 6, (D) &, 4 (D)
634 (D) 63, (D) D% + 35 (D)
q 1(1) q 2(1) q 3(1)
@u.(a)-) = qal(Z) qaZ(Z) qo.3(2)
| q(11(3) qa2(3) q(13(3)
Ea(Ep-) - A#ZZ A(ll @i
qai(l)ﬂi g :
_”_‘a(a’ﬁ) = 0 qai(Z)ﬂl 0
: g clo,i(?,)’ni
_ @ d JEZ
Do) = T @ -E,D- —

222

The equation (4.9) can be written
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$(D)F = T(D, 9L + Klz—z (Ay, T -2, f,) D% +
+(T1 B, ST, ') - m 4. 18

This equation is called the signal equation of the gyros. The matrix $(D)

represents the dynamic properties of the gyros and the feedback from the
signal generators to the torque generators of the gyros. The matrix
(D, ) shows how the components of the angular velocity of the stable
clement is transferred to the output signals of the gyros. The second and
third terms depend on crosscoupling between the output signals of the
gyros and the angular velocity of the stable element, these terms are of
the second order in ¢ (m) and {1 since —r‘ is linear in Qj . The last

term in the signal equation depends on dlsturblng torque acting on the

float of the gyro.

If the z-axes are principal axes of the float i.e.

A“:a1
A = a, = a
;% 2 4.19
A = a
33 3
Aij =0 17fJ

equation (4. 18) can be simplified to

a - a —_
— . — e 3 _ _ .
ﬂ‘"?’(D)<P=IID(D,cp)_('L+_?___1_.q(q),_o_)_ ALn_ 4.20
2 22
where
_ e dQZ
U/(D’(p) = —a— QI—QZD— _ET— 4'21
and
(1) (1)
L 935 93] 0, QJ
q (9,0 = —]|_'1 @3ﬂ= | @1Q: ql(lz) (Z)Q e} 4 2
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21.

The equation of motion of the stable element.

Let JCkl be the inertia matrix of the stable element with respect to the
y-set. In Jckl are included three mass points, each equal to the mass
of one float and situated in the center of the float. The elements Ckl are

defined by

j(yi2+yj2)dm k=1, iZjFk#i

S
~lyg * v, dm Kk # 1

The integration is carried out over the stable element and the three mass-

points. The angular momentum of the platform is

3
7. s N g
H = JClkﬂky1+ /. H 5.1
m=1
Differentiating with respect to time
3
0 = £ (m)
H = J(Clkﬂk+ c. [l 131 + ;7 5.2
m=1
From equation (4. 6) we get
B (m) & (m) (m) ¢ (m) (m) _ (m)
H“J[Akzqkl $ 8 g O eyt A g G St
() (M) . 4w oaa g (M olm) o(m)

Ty Qg i3kt % Tz % 25k @

t AR qi(rm) qkl(m) 55 6 ) 4 Ajs s (m) qk(lm) <21k bt o™ ¢

* Aks s(tm) (m)"(lt * A_]s qs(tm) qi(rm) U i ) 1Jk ﬂ :\ 1

Introduce the inertia matrix J B, (¢ ) of the stable element including the

floats with all moving parts fixed in their actual positions.
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The elements Bkl are defined by

1, ifjEkFE

p
2 2
J(y.l +yj)dm k

IBy, (9 = <

_Jyk~yldrn k #1

“

The integration is carried out over the stable element and the floats, fixed

in their actual positions. We get

3) = () 5.4 |
B (@) = Cyy }— At qsk 9 |

Notice that the elements Bij ($) depend on the output signals of the gyros.
However, if the inertia ellipsoids of the gyros are symmetric with

respect to the output axes the elements Bij are constants.

Equations (5.3) and (5.4) give

3
03Y [rpad o,

ql(rn)qlé m) €y SL, 0 +A2qk§ m) ijé(m)c&(m)+
Ay, ql(l_m) (m) 1Jkﬂrgp( )JrAJ q(m) k(l m) e 5@
+ A 4 (m)ﬂt ’;71 5.5

The torque acting on the platform is composed by components from the

torque motors JT and disturbing torques JM. Supposing T to be
controlled by signals from all gyros, we get

3
T G)
Ti—-z (D) o 5.6
=1

e —
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It is assumed that the differential operators Tij (D) are rational functions

of D = -g’—t . Further we denote
T (D) = {Tij(D)} 5.7
Newtons second law of motion gives
3
L4
B o)t +B. (p)e.., 1. 02 +}— m) .+ (m m) :(m
lm((p) m Jk(q))el_]l ik h [Akzqu )cp( )+q1(1 )cp( )wo+
m=1
(m) (m) _ (m) (m) - (m) - (m)
1 (D)o Hq T ay T gty 9ot Apdg e ® 9 T

e ol ) qpn 00 a0 o o T

A e qkfm)ﬂt:\ "M 5.8

ks At
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The linear approximation of the equations of motion.

Taking only the terms of equation (4. 18) which are linear in ¢ and |

we get
1

$(D) 9 = W(D)ﬁ-.% o 6. 1

where

W (D) = W(D,0) 6.2 :

Introduce the unit matrix I and the matrices L. and W defined by

0 cos 6(1) sin 9(1)
L = sin 9(2) 0 cos 9(2) l
cos 6(3) sin 6(3) 0 y 6.3
I
0 - sin 9(1) cos 9(1)
W = cos 9(2) 0 - sin 9(2) 6.4 !
- sin 9(3) cos 9(3) 0 ;

_— —
and their transponates L. and IN we get from equation (4. 18)

“o A23
WD) = (= -A,, D)I-DL - 4+—— DN 6.5
AZZ 21 A22
Equation (6. 1) gives
— -1 = -1 1 =
=% (D) W(D)(2- S (D)~A—m 6.6 i
22 1

Taking only the linear terms of equation (5.8) we get

3
B, O+ L\__ pz(tm) : pl(lm) - pl(tm) - pz(lm)]ﬂt +

3
+) [ en 8@ e
= 6.7 s
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where
Bij = Bij (O) 6.8

i.e. J Bi' is the inertia tensor of the stable element including all moving

parts fixed in their null positions. Further denote

(
B = iB..ls 6.9
1_]J
Equation (6.7) then gives
F(D){2= M-G(D)?9 6. 10
where
F(D):DBB+wO(L-'Eu) 6. 11
G(D) = T(D) + (A D% + o D)I+ A D2 T -A, D°N
12 o 22 32
6.12

Equation (6. 10) is referred to as the equation of motion of the stable
element. The term J I (D) {) is the time derivative of the angular
momentum of the stable element, JM is the disturbing torque and

J G (D) § is the control-torque, i.e. the torque given by the torque-motors
which are controlled by the gyros. Elimination of @ (t) between the signal

equation and the equation of motion of the stable element gives

K(D)fL = M + 11— G (D) s ! (D)m [ 6.13
22
where
K (D) = F(D) + G(D) $ ! (D) W(D) 6. 14

The signal equation, the equation of motion of the stable element and

equation (6. 13) are linear with constant coefficients. As suming all initial

conditions to be zero and Laplace-transforming these equations, we get
i

$(p) 7(p) = W(p)Tu(p) - x5, i (p) 6. 15
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= (p) A(p) = M(p) - G(p) 9(p) 6.16

R(p) FL(p) = M(p) + 5 G(p) $ ' (p) T(p) 6. 17

22

The transformed variables are denoted by writing p for the argument. In

the following we always write the arguments p or t in order to avoid

ambiguity.

For a stable element with only one gyro the equations (6. 15), (6. 16) and

9(1))

6.2
(6.17) are still valid if the matrices are interpreted in the following way.
A 2 + + T 0 0
2P T T Tyt
. _ (1) A1)y 2
G’ (p) = (AZZ cos 817/ - Ay, sin © )p 7oy 0 0
o 4(1) (1), 2
(AZZ sin 8 + Ag, cos0'\'’)p +734 0 0
6.21
p~+ olp) 0 0
% (p) = 0 0 0
0 0 0 6,22
(1) noll) ey
w -~ P -(A22 cos8 /- A, 5in® )p -(AZZ sin@®'"/ + A, ;cos
Wp) = -Al— 0. 0 0
22
0 0 0
6.23
(1) i gl1)
Bllp B12p+wocos9 Bi3p+w051n9
/ - (1)
F{p) = B, P - w_ cos® B,,P B,3P
ey
B31p - w_ sin 8 B32p B33p
6.24
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It is here assumed that the input axis of the gyro coincides with the Y-

axis of the stable element.

If the motion of the stable element is restricted to rotations around the

yi-axis we obtain ,l

Y
% . o ml(p) 6.25
o

i
(p) = M, (p) +
‘n‘l B“p(1+Yo) 1 w 4P 1+Y0

where

2
(AP  +o Pt 7 Mo, - Ay P)

Yo(p) = > 6.26
Agp By P (@7 + 0y y)
If the output axis coincides with one of the principal axes of the float
we get
1 a Yo
2,0 = gy Mt o Ty ™) g
11 o o o]
where
w T +w p
Y (p) = —2 11__o 6.28
o ab 2
1t p(p” +0y)
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The concept of platform. Classification of platform systems.

In the previous sections we obtained the following equations

$(D) $(t) = W(D)A (t) - fz—z () (6. 1)

F(D)11L(t) = M(t) - G(D) P (t) (6. 10)

These equations were referred to as the signal equation and the equation
of motion of the stable element, respectively. Eliminating ¢ (t) between

these equations we obtain

K (D) O.(t) = M(t) + -AT;—Z G (D) s ! (D) mt (6.13)

This equation gives the motion of the ''stable element when the servoloop
is closed'. We shall now give a physical interpretation of this equation.

For the sake of convenience the concept platform is introduced.

The platform is an object to which is attributed: structure, attitude, mass,
center of mass, center of gravity, angular velocity and angular momentum,

defined in the following way.

The structure, attitude, mass, center of mass, center of gravity and
angular velocity of the platform are equal to the corresponding properties

of the stable element.

If the angular momentum of the platform with respect to a point P is Jﬁp p

where J is the moment of inertia of the gyrorotor with respect to the spin

axis, then

d — —
T H, ° K, (D)L (t)

where (O (t) is the angular momentum of the platform and

KP(D) = E‘p(D) + G (D) 5! (D) W(D)

F (D)=DB_+ w_ (L - L)
2 P o
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Here JB_ is the matrix of inertia of the stable element (including all
moving parts fixed in their null positions) with respect to the point P.

The matrices G (D), L., $(D) and W(D) are defined in section 6.

From mechanical point of view the concept platform is thus equivalent to

"the stable element with the servoloop closed'.

In order to Euide those of the readers who favour thinking in physical
concepts we will now give a physical interpretation of the terms of the

K (D)-matrix.
Non-diagonal elements of K (D) means crosscoupling.

A term DC of K(D), where € is a constant diagonal matrix,

means moment of inertia of the platform.

A term € of K(D), means a velocity-proportional damping of

the oscillations of the platform with respect to inertial space.

A term ]i) of K (D) means that the platform with respect to

angular displacements is spring-restrained to inertial space.
The platform systems can be classified according to the properties of
the reference they establish.

A platform system arranged in such a way that the platform will maintain

its attitude with respect to inertial space is called an inertial platform

system.

In addition to the inertial platform systems the vertical indicating or

Schuler-tuned platform systems are of great importance in navigational

and fire-control equipments.
iz
As the dynamic properties of the platformwif__closely related to the matrix

K (D) the platform systems can also be classified with respect to the

properties of the matrix K (D).

1. A platform system is said to be cyclic if the matrix K (D)
is cyclic.

2. A platform system is said to be diagonal if K (D) is
diagonal.

3. A platform system is said to be isotropic if K (D) is
diagonal with equal elements.
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Analysis of the stability of inertial stabilized platform systems.

In this section we will analyse the stability of some inertial stabilized
platform systems. In part 8. ! the concept of stabilityﬂwi;m&efined. Some
general theorems concerning the stability of platform systems are also
given. In parts 8.2, 8.3 and 8.4 are discussed the stability of some
special platform systems. The section ends with a short discussion of

some questions of interest for the practical applications.

The equation of motion of the platform (equation 6. 17)

vy

Oip) = & (p) M(p) + -Aiz; @ (p) 5 Yp) Wip) @ (p)

3

Iié/ ;Qi‘,;i ,;}
The piatform is thus disturbed by M(t) and #m(t), who are referred to
as distrubing torque®acting on the stable element and on the floats of the

gyros, respectively. We adopt the following definitions

Definition 8. 11 .

A platform system is said to be stable if a proper torque puls acting on
the stable element or on the float of a gyro gives a finite angular dis-

placement of the stable element.

Definition 8. 12

A platform system is said to be strictly stable if a proper torque puls.’

acting on the stable element gives a displacement error which tends to

zero and a proper torque puls .acting on the float of a gyro gives a finite

angular displacement of the stable element.

By a proper torque puls:' we mean a disturbing torque, with so small a

magnitude that the servos are not saturated, acting for a short time.

We will now analyse the stability of some inertial stabilized platform

systems. We have

Definition 8. 13

A stable platform system is inertial stabilized or stabilized with respect

to inertial space if a constant torque acting on the stable element gives a

finite angular displacement of the stable element,
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The definition 8. 13 gives the following condition on the K (p)-matrix of

an inertial stabilized platform system.

Lemma 8. 11

For an inertial stabilized platform system the matrix K(p) has the

property

Kp) = = C+ 0 ( —=—)

where n =2 1 is an integer and € is a diagonal matrix with constant non-

vanishing diagonal elements,

In physical terms the lemma 8. 11 means that an inertial stabilized plat-
form is at least spring-restrained to inertial space with respect to
angular displacements. Compare section 7. Before continuing we introduce

some notations.

Definition 8. 14

An equation is said to be stable if it has no roots in the open right half
plane. The equation is said to be strictly stable if it has no roots in the
closed right half plane. The function f(z) is said to be (strictly) stable
if the equation f(z) = 0 is (strictly) stable.

We will now give two conditions for stability.

Theorem 8. 11

A necessary and sufficient condition that an inertial platform system should

be stable is that the equations

det '{p K(p)}=0 8.101

and

det {p $(p) G p) K (p) } = 0 8.102

are stable.




32.

Theorem 8. 12

A necessary and sufficient condition that an inertial platform should be

strictly stable is that the equation

det {p K (p) } = 0

is strictly stable and that the equation

Ay,

det {p S(p) G l(p) jK(P)} =0

is stable.

The proof is left for the reader.

The equation (8. 101) is referred to as the characteristic equation of the

system. The roots of the characteristic equation determines the way the
displacement error fades out after a torque puls disturbance on the stable
element. If all the roots of the characteristic equation are in the left half
plane the displacement error is exponentially damped. If the characteristic
cquation has pure imaginary roots the displacement error will oscillate
with constant amplitude. A single root at the origin but no other roots in
the closed right half plane means that the displacement error tends to a

constant etc. Because of lemma 8, 11 the characteristic equation has no

root at the origin. Similarly the roots of the equation (8. 102) determines
the way the displacement error after a torque puls on one of the gyro- T
floats fades out. Instability of the equation (8. 102) means that a torque
puls acting on one of the gyro-floats will give an exponentially increasing

angular displacement of the stable element.

Although a system is strictly stable according to the above definitions the
displacement error obtained after a torque puls disturbance on the stable
element may not tend to zero fast enough. Therefore in an actual applica-
tion there may be further restrictions on the characteristic equation of

the system. Compare appendix section A 1.

Although it is possible to claim that the characteristic equation is strictly
stable we cannot claim strict stability of the equation (8. 102). This is

obvious from the following lemma.
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Liemma 8. 12

For an inertial stabilized platform system equation (8. 102) has always
one single root p = 0.

The proof is obvious from the equation (6. 14) and the definition of an
inertial stabilized platform system. The lemma implies that the displace-
ment error obtained after a proper torque puls disturbance on the float of
a gyro tends to a constant., Some other consequences of the lemma are

discussed in section 9.

We will now discuss some consequences of the theorem 8. 11. We have the

following sufficient condition for stability,

Corollary 8. 11

An inertial stabilized platform system is (strictly) stable if

(i) The arrangement of the gyros is chosen in such a way that

s23andl = 0.

(i) The characteristic equation of the system, det {p K(p)} =0
is (strictly) stable.

(iii) The function det {K(p) - ]F(p)} has no poles in the right
half-plane.

Proof

Equation (6. 14) gives
$(3) G p) = W) (K(p) - F(p))~ !

According to (iii) the function det (K (p) - ¥ (p) )-1 has no zeros in the right
half plane. Further is

w 3 wo(s-3) 3
det W(p) = (?) t gy~ p - lp

i.c. the function det W(p) has no zeros in the right half plane.
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Hence the function
det{p $(p) & (p) E(p)} = dot{pE(p)] - det W(p) - det [K(p)- F(p)] '

is stable. The system is then stable according to theorem 8. 11. If
det{p K(p)} is strictly stable the system is strictly stable according to

thcorem 8. 12.

An inertial stabilized platform system where the arrangement of the gyros
is of the definite stable type is thus certainly stable if the characteristic
equation of the system is stable and the elements of the K (p) matrix have

no poles in the right half plane.

If the condition (i) is dropped the function det W(p) is unstable. The
system then must be heavily restricted in order to assure stability. This

is illustrated by the following lemma.

Lemma 8. 13

For a stable platform system the functions det W(p) and det {K (p) - }F‘(p)}

have the same zeros in the right half plane.
The proof is left for the reader.

This lemma means that if the function

w 3 w (s - 3) 2 3
det W(p) = (”ég) t —5— P -1lp

is not stable i.e. 1 # 0 or 1 = 0 and s < 3 the matrices K(p) and F (p)
must be chosen in a very special way if a torque puls acting on one of the
gyro floats should not give an exponentially increasing angular displace-

ment of the stable element.

We will now further analyse the stability conditions for some special

inertial platform systems. Suppose that

B., = bd.. 8.103
1] 1]

A21=A23=0; A22:a 8.104
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'rij (p) = 7 (p) gij 8. 105
i (P) = o) Sij 8.106

The assumptions (8. 103) - (8. 106) are equivalent to the following physical

conditions.
1. The inertia ellipsoid of the stable element is a sphere.

2. The inertia ellipsoids of the gyro floats are symmetric

with respect to the output axes.

3. The torque generator of each gyro is only controlled by
signals from the gyro itself. The feedback character-

istics are the same for all gyros.

4. The m-component of the torque acting on the stable
element is only controlled by the m-gyro. The same

feedback characteristic is used in all channels.

Using the assumptions (8. 103) - (8. 106) we get from the equations (4. 13),
(6.11), (6.12) and (6. 6)

-1
$ ' (p) = l:pz +6‘(p)] I 8. 107
F(p) = bp I+ (L - T) 8.108
G(p) = T(p)+o p T+ap’ L 8. 109
W
W(p)=TO]I—pIL, 8.110
Equation (6. 14) gives
B w, T(p)+w, p p(T(p) + w, p)
K(p) = bP+’E-—2-—-——-— o+ w, - > L -
P~ +6(p) p +o(p)
w 6(p) _ 3 .
“ i L-——H—zap L L 8. 111
p +o(p) p +0(p)
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Introducing
o5 T(p)-l-wop -~ o 1
YI(P) =Ptopy SsSF———r— = F‘L{* g i 8.112
p-+6(p) ‘
we get

9, o) ~ -

b(p® + o (p)) b (p° + o (p))

8.113

BN
3
e

The fact that K is not a diagonal matrix means that we have interaction
between the three channels. The interaction is referred to a crosscoupling.

Putting (8. 107) and (8. 110) into equation (6. 8) we get

Tp) = b (2 T-pL)(p) + —pt

7 (p)
p°+6(p) = a(p® + & (p))

A gyro thus senses the component of the angular velocity on the output
axis as well as the component on the input axis. This phenomena is

referred to as the output axis sensitivity of a gyro.

In equation (8. 113) the second term is due to the output axis sensitivity

of the gyros. The third and fourth terms are due to secondary reaction

torques of the gyros, i.e. the components of the reaction torque on the
output and spin reference axes. The last term is due to a combination of

output axis sensitivity and gyro reaction torques.

These cross coupling phenomenas strongly affects the dynamic properties
of the system. If a platform system is designed on a single axis basis and
the cross coupling effects are neglected’fthe dynamic properties of the
complete system can differ widely from those predicted by neglecting the
crosscoupling effects. In some cases the complete system can even be

unstable.
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8.2 Make the assumption that the moment of inertia of the stable element is

much greater than that of the gyro rotor, i.e.
b> >1 8.201

Equation (8. 113) then gives
K (p) = {Y (p) I - %B [Y (p) - :l } 8.202
o

where the function YI(P) is given by the equation (8. 112).

Equation (8. 202) means that the secondary reaction torques of the gyros
are neglected. The cross-coupling is thus entirely caused by the output

axis sensitivity of the gyros. Compare the discussion at the end of

section 8. 1.

Equations (8.107), (8.201) and (8.202) gives

B - F) = 2 [v,6)-» | V) 8. 203

hence

(p)

W
-1

p 5(p) G (p) K(p) = 2 ~ K

ab \:Yl(p) - p}

Suppose that the function Y ( ) has no poles in the right half plane. The

stability of the functmn det {p K(p)} then implies stability of the function
det {p $(p) G (p K(p)} For the system discussed it is thus sufficient

to analyse the stability of the characteristic equation.

det {p K(p) } =
Compare theorem 8, 11,

The characteristic equation of the system can be reduced to
a.p2
PYl(P)'tiBO— [Yl(p)-p] =0 i=1,2,3 8.204

where the ti:s are the roots of the equation

3 s -3

t + > t-1=0 8. 205




s is the spin number and 1 is the output axis orientation number introduced

in paragraph 3.
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The roots of the equation (8. 205) for integral values of the parameters

s and 1 are given in table 8. 21.

Table 8.21
1
s -1 0 + 1
- 1.477 0 1.477
0
+0.738 ti0.361 t 1,225 -0.738 11 0.361
- 1.326 0 1.326
1
0.66211i0.563 + 1,000 -0.6621i0.563
- 1.165 0 1. 165
2
0.583 11i0.720 *0.707 - 0.5831t1i0.720
-1 0 1
3
0.5007F 10.865 To - 0.500 tio0.865
- 0.836 0 0.836
4
0.418 1 0.739 ti0.707 - 0.4181t1i0.739
- 0.682 0 0. 682
5
0.2331i0.961 ti -0.233Y10.961
- 0.554 0 0.554
6
0.277 t1i 1.315 Ti1.225 -0.277%ti1.315
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We have the following condition on the stability of the characteristic equa-

' tion of the system discussed.

Lemma 8.21

A sufficient condition that the characteristic equation (8.204) should be
strictly stable for any Yl(p) with no zeros in the closed right half plane

Iy is

Js = 3
) 8.206
|1

"

11
o

Proof

If the condition (8. 206) is satisfied we obtain

The characteristic equation is then

pY,(p) =0

The function Yi(p) has no zeros in the right half plane. As the system

is inertial stabilized we have

lim p YI(P) £ 0
p—0

which implies that the characteristic equation is strictly stable.

The system discussed is thus certainly strictly stable for any Yl(p) with
no poles or zeros in the closed right half plane, if the arrangement of the
gyros is of the definite stable configuration. Compare section 3 and

plate

Some questions now arises. Is it possible to obtain a stable system if the
mwm

arrangement of the gyros is not of the definite stable configuration’z

Although a system with s = 3 and 1 = 0 is strictly stable, is it sufficiently

7

damped to be of practical use ‘.

Before answering these questions we will further discuss the properties

of the actual Yl(p)-functions.
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From physical point of view the function Jb Yl(p) is the transfer function
from the component of stable element angular velocity on one input axis
to the component of the disturbing torque on the same axis. According to
lemma 8. 11 the Y, (pj-functions must also have a pole at the origin of the
order n > 1. In order to assure stability of the equation (8. 102) we must
also require that the Yl(p)-functions have no poles or zeros in the open
right half plane. If the error obtained after a torque puls disturbance on
the stable element sﬁgc‘){ié—id"'fné sufficiently damped, we must require that
the zeros of Yl(p) have a sufficient distance from the imaginary axis.

This question is discussed in the appendix.

Equations (A 23), (A 309) and (A 407) give the following possible transfer

functions

1:>2+2§ Bp+ﬁ2

Y,(p) = (% + 2¢ Bp + B)(p + py)
p(p +p,)
(% +2¢ Bp + PP + p,)(P +p,)
Y,(p) =

Z
p”(p +P3)

We will now discuss the nroperties of the system obtained if the first of

these functions is chosen. The characteristic equation is then

p2+2§ Bp+[32—ti-y[2§ p2+Bp]=O 1=1,2,3 8.208

The t.:s satisfy equation (8.205) and y is the cross coupling coefficient

defined by

ap 8.209
w
O

‘\(:

Numerical values of the cross coupling coefficient can be obtained from
table 8.22 and figure 8.21. Notice that the cross coupling coefficient

increases with the bandwidth of the servo system.
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Table 8. 22

a
Gyro —n
o
MIT 104 Integrating gyro unit 0.0034
HIG 6 GG 12 C-2 0.0012
2.
1.
Y
1.
0.

T T |
100 200 300 400 500
B [rad sek” 1]

Figure 8. 21
a

Coupling coefficient y as function of B and =
o

Combining two of the equations (8.208) obtained with complex conjugated
ti-values we obtain an equation of the fourth degree with real coefficients,
Applying the theorem of Hurwitz on this we obtain the following condition

for stability
2 2 2 2 12 3 2 ¢
40 - 4 y(1+2¢ )Re{ti}+y (1+8¢ )(Re{ti}) -y 2t ]t Reiti}ZO
2¢, -yRe{ti}EO i=1,2,3 8.210

In case of equality in the first of the equations (8.210) the characteristic

equation has two pure imaginary roots
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- R St et al L

' |

_g B YReitifr 8.211
p__]_ _) N b
2 t. } j
C.Ylm%_lj |

The stability condition (8.210) is obviously satisfied for all y-values if i
Re{t f <0 i=1,2,3 8.212
Equation (8. 205) then gives the following condition on the numbers s and 1 ;

1=20
8.213

s 23

]
L

If this condition is not satisfied the system is at least stable for sufficiently

small values of the cross coupling coefficient y.

If either 1 # 0 and arbitrary s,or 1 = 0 and s < 3 equation (8.208) has ,
at least one root in the right half plane. Let t, be the root in the first '
quadrant or on the real axis. The condition of stability (8.210) gives

((2{_, -y Re{to})z (1 -2t vRe {to}) - 2¢ y3(1m{to})2 Re{to}u}o
2¢ -yRe{to}zo 8.214
Equations (8.214) are satisfied if
yRe{to} <f(g,a) 8.215

where

f(g,ao) = min (Zg,zo) 8.216

and z is the smallest positive root of the equation.

-

2§(1+a0) 2 (1+8g2)z2+4z;(1+2g2)z- 4;2 =0

¢ / Imft } N

ao:f s
\Re{to}/

—————— oo
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Systems with 1 > 0 and arbitrary s, or 1 = 0 and s < 3 have

Imit L =0
Lo !
hence
a =0
o
Equation (8.216) then reduces to
£(t,0) = min (2:;,.2_1,:.) 8.217

A graph of the function f(f,0) is given in figure 8. 22.

£(t ,0)

|

Figure 8. 22

Summarizing the stability conditions for a system with

2 2
+ 2t +
Y,(p) = E I,'Bp B

we get
I. Systems with 1 > 0 are stable if

yRe{tO}ff(g,ao)

J



II.

III.

IV.
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Systems with 1 = 0 and s < 3 are stable if

YRe{to} < £(¢.0)

Systems with 1 = 0 and s > 3 are stable for
all values of vy

Systems with 1 > 0 are stable if

\/Re{to} < £(¢,0)

If the cross-coupling coefficient y is sufficiently small the system

discussed is thus stable, independent of the orientation of the gyros. The

upper limit of y for a stable system is given by the equation (8. 215).

When the cross-coupling coefficient y is increased over the critical value

given by equation (8. 215) the characteristic equation of the systems I. has
two complex roots in the right half plane while the characteristic equation
of the systems II. and IV. has one real root in the right half plane. These

cases are referred to as oscillating and pure exponential instabilities,

respectively.

Example,

Give the stability conditions for systems with the following arrangements

of the gyros

i T
A, Lo, 0, Z |
B. [Tr, T, T
C. [0. 0, O

m ™ 7
D- [i; ‘2'9 'lT—]

The s, 1 and t_ numbers are obtained from equations (3. 3), (3.5) and
table (8.31). We get
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w3}
)
11
&
.—I
it
1
=
-

]
N| —-
+
oy
N =

g

According to (8.217) the systems A and C are stable if

vy € £(%,0)

The system B is stable if

vy <2 £(L,3)
where
£(¢,3) = min [Zg,zoj
and z the smallest positive root of the equation
8t 2 (1+8g2) z2+4g (1 +2g2)z - 4g2 =0

Figure 8.23 shows a graph of the function 2f(¢, 3).

2£(L,3))

1

m\

Figure 8.23
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Although a system is stable if equation (8. 210) is satisfied it may be too
oscillative for practical use. To judge this we have to solve the character-
istic equation. This is most conveniently carried out with the graphical
method of Evans (ref. 2). This method gives directly the root locus of

the characteristic equation with respect to the coupling coefficient.

Plates 8.21 - 8.24 shows the root loci for the characteristic equations

of the systems treated in the example.

In an actual application we have to consider Y (p)-fu.nctions considerably
more comphcated tha.n the one just dealt with. The analysis can though
be carried out/\ln a stra.1ght forward way following the scheme of the
simple example. The algebraic conditions have af?:':.}t!aer formlda.ble

appearance in case of a complicated Y (p) function why 1!: seems wise to

use the graphical methods to solve the character1st1c equation.

Consider e.g. a system with

and

(p2 + 1.41 Bp + }32)(p + 0.05 B)
plp + 1.46 B)

Y,(p) =

The characteristic equation of the system is of the 9th degree.
According to equation (8.204) it can be reduced to
2 2 aﬁz :
(p” + 1.41Bp + B )(p + 0.05 B) +t 1.1 == p(p +0.0467) =0 i=1,2,3

o/

where the t.:s are the roots of the equation (8.205).

Introducing s = 3 and 1 = - 1 in equation (8.204) we get
t1 = -1
tZ = 0.5 +10.865
t3 = 0.5 -10.865
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Introducing the cross coupling coefficient vy

a
Y= 5

i

o}

we get

(p2 +1.41 B8p + ;32)(p +0.05 B) + 1.1 t v Bp(p + 0.0467) =0

The root locus of this equation with respect to the cross coupling coeffi-

cient y is shown in plate 8. 25,

The assumption (8.201), b >> 1 means that the moments of inertia of the
stable clement are much greater than those of the gyro rotor. Systems
where the moments of inertia of the platform are much greater than those
of the gyro rotor behave in a similar way. In order to show this we will
analyse a special case. Suppose that the system is arranged according to

the equations (8. 103) - (8. 106). Assume further that
o(p) = ap + & 8.301

this implies that the floats of the gyros are ''spring-restrained' to

their neutral positions, or '"rate-coupled'',

Equation (8. 301) gives

| w
w T(p)+w_ p p+ —. 7(p) 2
Bp+ =2 —gp——2l = b7y AP + 2B, _p¥e | 5302
p_ + &(p) p +ap+d4L p~ +ap +d4
where
2
“o
b = b+ EI‘E 8.303
Introduce ©
Ap+ 5. T(p) 2
p +ap+dt p- +ap +4f
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Equation (8. 111) gives

w
. . a . b o
K(p)=b{Y1 (P I-2E v, (p)—g,pjﬂﬁg—f L -
(o]
w (ap+1L) 3 ~
. ° L. - StE L L 8. 305
b” (p” + ap +4£) b’ (o~ + ap +H)

Further is

xe) -wo) <o {[v, @ - lr- 2 [y @ Lp|n

© P L o3 A
+ 2° L - 5 p L L
b’ (p” +ap +i) b’ (p” + ap +H)
8.306
Supposing
b >> 1 8.307
we get
P P ap
K(p) = K(p) - F(p) =b” Y, {]1 -2 L 8. 308
(o)
where
wO
Hp+ = 7(p)
L 8. 309

Y, “(p) = —
! p° +ap +

Equation (8. 307) implies that the secondary reaction torques of the gyros
are neglected. The cross coupling is thus caused by the output axis sensi-

tivity of the gyros. Compare section 8. 2.

According to the equations (8. 308) and (8. 309) the moment of inertia of the

platform is
2
w

Jb"= Jb+ J F{‘f— 8.310

The moments of inertia of the platform are thus greater than those of the

stable element.
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We have the following condition for the stability of the system described
by equation (8. 308).

Theorem 8, 31

The necessary and sufficient condition for the system to be stable respect-

(s ] . .
ively strict f;;Sta.ble for any Yl” (p) with no poles or zeros in the open right

wwwww

A

4

s = 3
J} 8.311
\1 = 0

and
s = 3
j 8.312
1 =0

Proof

We prove the first part of the theorem.
Equation (8. 308) gives

~3
det p K (p) = bp Y, (p><wi) det W (p)
o
This equation is stable if the condition (8.311) is satisfied. The system

is thus stable according to lemma 8. 15.

Further is
det {p 8(p) G () K(p)} = p det W(p)

according to the equations (6. 14) and (8.308). If 1 # 0 or 1 = 0 and s < 3
the function det W (p) has at least one zero in the right half plane and the
system is thus unstable according to lemma 8. 12 which proves the first

part of the theorem. The second part is proved similarly.

For the special system discussed it is thus necessary to have a definite
stable arrangement of the gyros if the system should be strictly stable.
Compare the system analysed in section 8.2. As was already pointed out
in section 8.1 it is very difficult to obtain a stable system if the condition

(8.311) is not satisfied. If the gyros are not arranged according to
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equation (8.311) the function det W(p) has at least one zero in the right
half plane. According to lemma 8. 15 we must then require that the func-

tion det {K(p) - lF(p)} has the same zeros in the right half plane.

8.4 In section 8.2 we showed that the cross-coupling due to the output axis
sensitivity of the gyros can cause undesired effects, such as instability.
This cross-coupling can of cause be eliminated by the proper choice of

the matrix $.
If

$ = i(p) ¥ (p) SeeE01

cquation (6. 8) gives

— 1 = 1 -1
Cp=“'f"("§'j" I{ - R Vv “(p) m

This means that the m-component of the angular velocity only affects the

m-gyro. The output axis sensitivity is thus eliminated.

Suppose

£(p) = = (p° + (p))

a
w
(e

Equations (8.401) and (8. 110) gives

$(p) = (o7 +0(p)) I - co’iop(p%s(p))m 8. 402
rhus 6,,() = Gpylp) = 55,(0) = ()
TP = - 3= p(e% + lp)) cos ol
6 5(p) = - fgp(pz + o(p)) sin o}
Salp) = - o p(p? + (p)) sin 8(%)
o5 4(p) = - w—i— p(p% + o(p)) cos 0'?)
o5yp) = - e (p% + o(p) ) cos 83
Tpe) = - = plo” + 5(p) sin 00’
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Make the assumptions (8. 103) - (8. 105) and suppose % to be chosen

according to equation (8.401) then

K(p) = b{¥,(o) T+ Y,(p) L - Y,(p) L.} 8. 403
where
w T(p) +w_ P
Y, (p) =+ 3 s 8. 404
p~ +6(p)
wO
Y, = ¢ 8. 405
w_ S(p)
Y, (p) = g 8.406
b(p~ + &(p))
A
ol F AW iR B

If disturbing torques on the floats of the gyros should-net give errors

increasing exponentially with time it is necessary that the equation (8. 102)

is stable. Equation (8.402) gives

det{@ ™ (p) S (p)f= 2 (o2 + 9(p)) det{@ () W(p)}

Hence a necessary condition for stability of the systems is that the equation

3
w w
det W (p) :(—O—> + B35 .2 p2 - 1p3 =0

a 2 a
is stable. There are a few exceptions from this case, namely when the
positive zeros of W(p) are cancelled by poles of (G}-l(p) . This occurs

only when

Compare lemma 8. 15,

Excluding this case, the systems with s 2. 3 and 1 = 0 are the only plat-
form systems where the output axis sensitivity of the gyros can be success-
fully eliminated by the proper choice of $(p). Arguing in a similar way

we come to the same conclusion if the output axis sensitivity is eliminated

by the proper choice of T (p).
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Equation (8.403) gives

det K (p) = Y13 1 (Y23 - v.0) 4 8—23 Y (v, %+ v, %) 4
+-é—fY2 Y3+3Y, 7,7, 8.407
where
f = sin 2 6(1) (Y3 sin 6(3) - Y, cos 9(2)) +
+ sin 2 e(z) (Y3 sin e(l) - Y, cos 9(3)) +
+ sin 2 6(3) (Y3 sin 6(2) - Y, cos 9(1))

8.408

Suppose that the arrangement of the gyros is definite stable, i.e. s = 3
and 1 = 0, then

3

det K(p) B Yl

1
+-2-sz Y3+3Y1Y Y3 8. 409

2

The definite stable arrangement of the gyros is no longer sufficient for
stability of the system. It is therefore necessary to analyse the character-

istic equation of the system.

Example

Suppose that the arrangement of the gyros is one of the definite stable

arrangements of table 3. 15 then
f=0

The characteristic equation of the system is thus
2
Y, (p) [Yl(p) +3Y,(p) Y3(p):’ =0 8.410
Suppose that Yl(p) is chosen according to equation (A 23) i. e.

2 2
- P +2t pp+p

and further that

o(p) =ap
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Equations (8.405) and (8.406) gives
“s
Yz(P) N Yy
w o
V) = —
b(p + a)
Introducing the cross coupling coefficient §
“o
Y
Equation (8.410) gives
2
2 2
(p+21;p+{3> 2 o _ g 4
\ TP ’ +3B 5T a 0 411

The stability of this equation is most conveniently analysed by the graphical

method of Evans.

Introduce the following numerical values

p=1
{ =0.707
a = 0.707
Equation (8.411) gives
;2 2
P+ 1.41p+ 1 2 2,12 _
( + P swooror 7

P

Plate 8.41 shows the root-locus of this equation with respect to the cross

coupling coefficient P .

The condition

J

8
|1 =0

~

plays an important r8le in the previous discussions of stability. The above
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condition was a consequence of the necessity for the equation det W(p)
to be stable. As the condition depends on the orientation of mechanical
axcs it is impossible to satisfy the condition exactly. The reader might
therefore expect that the systems whose stability depend‘»on the above
condition in practice are unstable. This is not necessarily the fact. In an
actual application we have to consider the fact that the cond:;;*c;r';“;cannot
be exactly satisfied, but we must also notice that the input axes of the

gyros are not mutually orthogonal. We have in general

o p (m) (m)
JLV(D)} = 3 Pt "~ DPy 8.51
Compare equation (4.7). The matrix P(m) is defined by the transformation
(2. 1) but in the gencral casc the elements of the P(m)—matrix are not given

by the equation (2. 2).

We have
det W (D) = 1W D)3 jW(D)} (LW(D)}H( ik
hence
det W (D) = vl(\;:)3+v2(\w_°)zp+v3(“_o‘\m2+V4D3 8.52

where

v, - [;;1(1), 2,02, x1<3)1

v, - _[;2(1), 2,2, ;1(3>] [21(1)’322(2)’ ,;1(3)] ] [;;1“), 2,2, ;2(3>]

v, = J;(l(i), 2,2, 552(3)} +";£2(1), 2,2,2.0 )} 2,0, 5@, 2 (3)J

v, = -, ), 1 )

The scalar triple products above can be interpreted geometrically as the
volume of the parallelepiped which has the vectors for concurrent sides.

The quantity V., is thus the volume of the parallelepiped formed by the

1
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input axes etc. The stability of the function det W(p) gives

[
! V1> 0
‘ V,> 0
S
Vs >0
v, Vi > V> 0
LY
which replaces the condition s = 3, 1 = 0 in case of non-orthogonal input

axes.,

In an actual application we have to consider variations in the angular

velocities of the gyros as well.
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The angular deviation of the stable element caused by disturbances.

There are many reasons why the stable element should deviate from its
desired orientation. In order to obtain a complete picture of the deviation
we have to consider the details of the motion of the carrying vehicle, the
temperature distributions, the elastic deformations, the gimbal errors,
the friction torques, etc. Because of the enormous number of quantities
which are necessary for a complete description of the state of the system
we group all quantities together and treat the problem of the deviation of

the platform with statistical methods.

A

For the sake of convenience, the disturbances are divided into two groups
m(t) and l—\"/I(t) referred to as disturbing torques on the gyrofloats and on

the stable element, respectively.

Introduce a coordinate set O £ &£ fixed to inertial space and initiall
152 °3 y

coincident with the y-set. The transformation of the §-set on the y-set is
vy=CME 9. 11

where

C(0) =I 9. 12

The orientation of the stable element is thus completely determined by the

transformation matrix € (t). According to Eulers theorem of a rigid body,
an orthogonal transformation can be interpreted as a rotation around the
eigenvector of the transformation matrix. The angle of rotation @ (t) is
used to specify the angular deviation of the stable element. The angle @ (t)
is related to the matrix © (t) by the relation

g(t) = arc cos -é— [Tr C (t) - 1] 9.13

leaving ambiguity to the sign of #(t). Tr € is the trace of the matrix ©.
We obtain the following equation for € (t)

t

A ) ©) dt” 9. 14
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where

(‘{;rﬁ)jk :I}'i Eijk

and {) (t) the angular velocity of the stable element

Lu =0 ,};

1°1

Introduce the matrix sequence

C () =T+ Sy L (t7) at”

n-1

O bty

This sequence converges to a limit © which is the solution of the equation
(9. 14) when all the elements of the ¥ -matrix are bounded in a compact

t-set including (0,t). As
A+ =0

the solution © is an orthogonal matrix.

Further is

where
a = sup ) ylﬂi.(t)l

In the first approximation we neglect the right-hand side of the above

equation , then

#(1) = ey(t) - ey(0)

1

" In actual applications @ is of the order of magnitude of milliradians.
The approximation is made throughout this chapter.
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where
t

iv‘ = / g
ei(t) = J d Li(t ) dat 9.16

(o]

Equations (6. 17) and (9. 15) give

K p) M)+ o K (p) G(p) S (p) m(p) 9.17

g

e(p) =

By this equation it is possible to calculate the error if the disturbances

M(t) and m(t) are known.

For an inertial stabilized platform system the function
det {p $(p) G (p) K(p)}
et p $(p) (p) K (p)]

has a simple zero at the origin. Compare Lemma 8. 13. This implies that
a constant disturbing torque m acting on a gyrofloat will give the stable

element a constant angular velocity

f i o O aw
v Z}' {,: ; ‘.;3,1.,','.‘ ir s o

Thi"é%lilenomena is referred to as drift of the platform system. A disturb-
ing torque can e.g. be obtained if the center of gravity and center of
buoyance of the gyrofloat do not coincide with the output axis of the gyro.
The constant drift, which is of the order of magnitude of 0.01 o/h for a
good gyro, can to some extent be eliminated by proper design and careful
compensation of the gyro. In the following we assume that the constant
drift is eliminated, i.e. the disturbing moments acting on the gyrofloats

have zero ensemble averages, hence
E{m(t)}=0
L
It is also assumed that

E {M(t)}z 0




.2

\

Equation (9. 17) then gives

E{EM}=O

Because of the complicated nature of the disturbances m (t) and M (t)
we cannot expect to have a detailed knowledge of them.We thus have to

find refuge in a statistical description of the disturbances.

The problem is to determine some measure of the angular deviation #(t)

when the statistical character of the disturbing torques is known.

To characterize the angular deviation of the stable element we choose the

variance of the angular deviation, i.e.
- 21
E{#{®)";
The problem stated is complicated by the initial condition
e(t) =0 for t =0

and the fact that the function

det {p $(p) G (p) K (p)}

is not strictly stable. This implies that the function e (t) is not a stationary
process even if m(t) and M(t) are stationary processes, which means
that the Wiener theory of stationary processes cannot be used. Before

continuing we state two theorems.

Consider a linear system with n input signals xi(t) and m output signals

Yi(t) related by

y(p) = ¥(p) x(p) 9,21

where %(t) and y(t) are the column vectors formed by Xi(t) and Yi(t) ,

respectively. Suppose that E{Sz(t)} =0




6G.

—_ —_ 1
The correlation matrix R( f,t, T) of a vector f (t) ¢s defined by

(R(T,6,7));; = E{f(t- 3) £+ ) 9. 22

e o

i v O RN I

The Fourier-Laplace transform of B ( f,t, T) is denoted by ¥ ( f,p,w).

If the function f(t) is sufficiently well%behaved the inversion formulas
3

e - X

F(f,pw) = J ¢ Pt at j[ R (T, ¢, 1) e @7 ar 9.23
(o] - Q0
. <

R(F,t,7) = o J Pt at i F(Tpo)e ™ do 9. 24
=t -

hold.

For a stationary random process g (t) we have

Rg,t,7) = R(g,w) independent of t
hence

F(gpw) =5 F(gw)

3
P

Suppose that equations (9.23) and (9.24) are valid for the functions x(t)
and y(t).

Theorem 9. 21

If E {__:Z(t)} = 0 the correlation functions of the input and output signals
are related by

F (Y, p: o) =W(%-iw)F(§,p,w)7§(§+iw) 9.25

For a system with one input signal and one output signal equation (9. 25)

reduces to

F(y,p,w) = Y(%— i0) Y(5+ie) Flxp )
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If the input signal is a stationary random process we have

F(x pow) = -I§-¢ ()

XX

where gxx (w) is the power spectrum of the signal. For systems with one

input signal and one output signal we have '

Theorem 9.22

If the transfer function Y (p) has a pole of the order n at the origin with

v

lim p " Y(p) = 1 , n
p— 0

and no other poles with non-negative real part then ]

lim R(y,t, T) = - J R __ (T) dT |

t — o (2n-1)((n

where Rxx(‘r) is the autocorrelation function of the output signal, i.e. the

Fourier-transform of the power spectrum Qfxx(w) g

Coroll aridm

If the transfer function Y (p) is strictly stable and Y(0) = 1, we get

gt
" .
lim R(y,t, 7) = J‘ Y(iw) f (w) Y(-iw) e ®T do
t — 00
e |

The time required to reach the asymptotic values is of the order of i’

magnitude of the step-function-response-time of the transfer function Y (p).

For the proof of these theorems we refer to reference 3.

The theorems of section 9.2 form suitable tools for solving the problem

stated in section 9. 1. Introduce the column vector 1 define by

) 9.31
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and the 3 x 6 matrix Z (p) defined by
1 -1 1 -1 -1
Z(p) = (5 K (p), 55K (p) G(p) S "(p)) 9.32
Equation (9. 17) gives
e(p) = Z(p)1(p) 9.33

Equation (9. 16) and (9. 22) gives

E {;zf(t)z} = Tr R(S,t,0)

Using theorem 9.21 we get

- o
} [
Tr B(e,t,0) = 5T et dp ‘ Tr F (e, p,w) dw
g o
T -0
where
F (e pw) = zz(.fzi- iw) F(1,p,w) Z(%+iw)
hence

Tr [Z(%— iw) F(1,p,w) %(%+iw)]dm

8 -—— 8

2{0®°}= ziije‘” P
T 9.34

The problem stated in section 9. 1 can thus be solved if the correlation

function of the input signal is known.

The asymptotic properties of E {ﬁ(t)z} will now be analysed. We start

with an example.

Example

Suppose that the platform servos are perfect meaning that

P(t) =0 all t
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Equation (6. 1) gives

hence

) = — v (p) m(p) 9.35

The only way to obtain a system whose errors do not increase exponentially

with time is by choosing an arrangement of the gyros which gives
det W(p) # 0 for Re {p} =)

i.e. it is necessary to use a definite stable arrangement of the gyros.

Compare section 3.
For small p we get the following asymptotic expansion of W (p)
“o
W(p) = - I+ O(p)
p—0C
Suppose further that the disturbing moment m (t) is a stationary random
process with zero average whose autocorrelation function exists, i.e,

R(m,t 1) = R(m,T) independent of t

Applying theorem 9. 22 on the ¢omponents of the equation (9. 35) we get

L
w

o
T t f — 1
Eie(t)jz—z lﬁTr’-IR(m,T)de
P

In this special case the variance of the navigation error thus increases
linearily with time. This depends on the fact that the diagonal elements

of the matrix

have a pole at the origin. Physically the property depends on the fact that

a gyro responds to a disturbing torque along the output axis in the same

NN
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way as to an angular velocity along the input axis. In order to obtain a
system where the variance of the indication error does not increase with
time the gyro must be substituted by a component which does not have

this property.
The result obtained in the example is valid under more general conditions.

If the disturbing torques m(t) and M(t) are independent functions, the

input function correlation matrix can be partitioned in the following way

d }F(I\P/-[,p,w) 0 \
F(l,p,w) = ( 9.36
e 0 E"(ﬁi,p,w)J
Introduce
Z (p) = + K {p) 9.37
1 P
Z,(p) = — K '(p) G(p) 7 (p) 9.38
2 pa :
then

z(p) = (Z,(p), Z,(p))
Equation (9. 33) gives
S = %, () + 5, ()

where

-z, (p) - M(p)

(4
—
—~~
e
—
]

and

Z, (p) m(p)

o
N
—_—
e
~—
N

We can now state a theorem.




Theorem 9. 31

If the disturbing moments M(t) and m(t) are independent stationary

random processes and

—_— '} p e 2
E{ (t) ¢ =0 ElLM(t)}*(Cl
E{m() }=0 E{m@n’}<c,
then
o 0]
= _ (i
: E{Qf(t)z} = —t—z— Tr R(m, T) dr + O(1)
) w, t—> oo
-0

for all platform systems which are stabilized with respect to inertial

space.

Proof.

The disturbing moments m (t) and M (t) are independent hence _e'l (t) and

EZ (t) are also independent, 1.e.
f 27 _ — 2
E&ﬁ&)!-E{elﬂ)}-+E{e2&)J

The asymptotic properties of the first term will first be considered. As

was shown in section 8, the equation
det p K(p) = 0

has no roots with Re {p )’* 20, hence the elements of the matrix Zl (p)
are strictly stable. Applying the corollarium of theorem 9.2 on the three

components of the equation

e, (p) = Z,(p) - M(p)

we get

lim E{e (1)

2‘{'L
t —> oo ~ v

=
J Tr {Z (i0) F(M o) Zl(—iw)} dw




The matrix Zl (p) is strictly stable, hence all elements are bounded on ;
the imaginary axis this implies that the right hand side of the above

equation is bounded by

“}

C- E{M{

Equations (6. 14) and (9. 38) gives

|
|
PZ,p) = 1 (1-K 1p)F(p) Vi)
|
|

According to section 11 we have for all platform systems which are

stabilized with respect to inertial space.

|
|
|
lim K(p) =p *C a =1 ‘
p-—0 |

where © is a constant diagonal matrix. Hence

-

|

lim p Z,(p) = = I ‘
p—O0 o) |
|

|

|

€

The diagonal elements of ZZ (p) thus have a simple pole at the origin.
Applying theorem 9.22 on the components of the equation

e, (p) = Z,(p) m(p) |

we obtain

QO
= 2 £ A e
Ej e, (t) = — TriR(m,T);dr + O(1)
Loz } woz J L } t— oo
-00

Hence

t — o0

E{p’(t)z} = _tz. J Tr{}R(rYi,"r)} dr + O(1)

which proves the theorem.

——#
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If the disturbing torques acting on the gyrofloats are uncorrelated and

have the same stocastic properties we obtain

B(m,T) = R

mm (T L

where R (T) is the autocorrelation function of the disturbing moments

acting on a gyrofloat.

Theorem 9. 31 gives

E{¢(t)2} _ lz Ji R__(7)dr + to¢§1)

Notice that the disturbing moments are normed by the angular momentum

of the gyroscopic element.

Theorem 9. 31 shows that the standard deviation of the navigation error

will increase as the square root of the time coordinate. Notice that we

assumed that

E{m@®)} =0

i.e. the disturbing torques on the gyrofloats have zero averaées , which

means that the unbalance of the floats is carefully compensated.

Theorem 9. 31 thus represents the ultimate navigation accuracy obtained
with systems based on gyros, whose unbalance torque is perfectly

compensated.

The angular deviation of the platform is then entirely caused by the ran-

dom variations of the unbalance torques of the gyros.

In order to specify the random drift of the gyros the quality figure Q is

b

suggested.
© !
=21, J R (t) ar rad sec—l/2
w A/, mm
- 0o

xR

Notice that Q depends on the environmental conditions.
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Notice that the m is the normed disturbing torque. Introducing the torques

themselves m”~ we get instead

1

0

g r - d

Q= H J m’m’(T) T
-00

Introducing this quality figure, the standard deviation of the angular

deviation of the platform is,

———

Ve{##®©} =p{sw} =/t

v

For a single axis system we obtain in a similar way

D {¢ (t) ﬂ? = 't
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10.1

69.

Techniques for the synthesis of inertial platform systems.

The design procedure will always start from some kind of Specificationé.
Depending on the specifications the design will take different lines. The
synthesis can e.g. start from s;:ratch or start with a given stable element
with gimbals and gyros. In the first case the designer can choose both the
arrangement of the gyros, the weight of the different parts, etc. while

in the second case the designer can only choose the transfer functions
between the different parts of the system. The following scherme is

suggested for the synthesis procedure.

{. Choose a matrix K(p) which satisfies

the specifications.

2. Design a system which has the K (p)-

matrix obtained above.

3. Check if it is possible to change the
K (p)-matrix in order to simplify the
instrumentation without overriding

the specifications.

10.2 The first part of the synthesis is the classical problem on servomecanisms.

et G

Although no complete solution is yet ‘obtained the problem is solved for
certain classesy,gf specificatiorlg in ordinary textbooks on automatic control.
Let it suffice b%mentioni«ng a few things about this special problem. With
the specificatiéns ordinarily given,the problem usually has no unique solu-
tion. The choice between the different solutions is governed by instrumenta-
tional considerations. Compare part 10.4. It is often favourable, however,
to use a diagonal system or a system with small cross-couplings. These
systems can be synthesized essentially on a single axis basis which means

a considerable simplification of the analytical work. Compare appendix.

According to the physical interpretations given in section 7 the K (p)-
matrix determines the properties of the platform. The first part of the
synthesis of inertial platform systems thus consists of choosing a K (p)-
matrix which gives a sufficiently tight coupling between the stable element
and inertial space, and a reasonable amount of damping. Compare section

7 and the definition (8. 13).




70.

Example

Consider an isotropic platform system, i.e.
K(p) = k(p) I 10. 21

As there is no cross- coupllngs in the system the synthesis can be carried

g

out following the scheme glven in appendix. Suppose e.g. that we obtain

2 2 2
Kk(p) = b P +2p§.E3P+I3 = b(p+2L P+ Pp_) 10. 22

Interpreting the different terms of the K (p)-matrix according to section 7,

we get

JbI the term corresponding to moment of inertia of
the platform. The inertia matrix of the platform

is Jbl

2J¢pBbI the term corresponding to camping of the platform
with respect to inertial space. The damping

coefficient is 2J¢ Bb [Nm s rad” 1:% :

Jb % i the stabilizing term which implies that the stable
element is ''spring- restralned” to 1nert1a1 space.

The spring-coefficient is JbB LNm rad” lj.

10.3 For the second part of the synthesis we start with equation (6. 14) i.e.

K(p) = F(p) + G(p) $ '(p) ¥(p) 10. 31

The matrix K (p) is given by the first step of the synthesis procedure. The
ecquation above then gives 9 equations for determining the 18 feedback
(1) ) 4na

operators 6.. and Tij’ the orientation angles of the gyros ©
3 .
( ), and the 18 components of the inertia tensors AJ and B.j . Besides

we have to consider the stability conditions of section 8. A.nyway the

problem is highly indetermined and we can impose several other condltlons.

Some examples are given below.

— —_
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Example 1

Suppose that the gyros, their orientation, the stable element and all c'i’j :s

are specified.,

Equations (6. 12) and (6. 14) give

T(p) = G(p) - (A p2+wp)I[-A p27f:+A pzﬁ
12 o 22 32

and

K(p) - F(p) W '(p) $(p)

1l

@G (p)

Assume further that the output axis sensitivity of the gyros is eliminated.
(This usually requires a definite stable arrangement of the gyros. Compare
section 8. 4), i.e.

=1 “o

v " (p) S(p) = 5 I
a(p” + o(p))

hence

w b

G (p) = 2 K (p) - F (p)
’ a<p2+cr<p))[p &l

A system with the desired properties is thus obtained if the transfer func-

tions from the gyros to the torquers Tij are chosen in the following way

T(p) = —2
a(p

K (p) - F(p)]- (A plt+w p)I-A. piL
+6(p))L () - F(p) |- (&,,p 40 p)T-A,,p L+

ZN
+A32p N

Example 2

Suppose that the gyros, their orientation, the inertia of the stable element

and all 'rij:s are given. Equations (6. 12) and (6. 14) give

$(p) = W) [KG) - F0) | ! Gl
where
2 2 = 2 ==
G(p) = ’H‘(p)+(A12p +wop)I[+A22p L - Ay, p W
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Suppose e.g. that
T (p) = 0

This corresponds to a system without gimbal torquers which means that
the gyros are used i‘?’ﬁ\l'leu'double pui’pose bf sensing device and torque
actuators. The desii‘é&fproperties of the system are obtained by feeding
the output signals of the gyros to the torquers of the gyros through suitable

networks whose characteristics are given by the matrix $(p).

The analytical problems of the last part of the synthesis are essentially
to estimate the errors obtained when the K (p)-matrix deviates from the
ideal character. Because of man”s limited analytical ability it seems

wise to use analogue computer methods.
SV

It is impossible to give any rul'es??how to change the system in order to

simplify the instrumentation. The designer thus have to rely upon his

intuition. However, there is one thing we would like to point out. It is

- 'necessary to analyse the order of magnitude of the output signals of the

gyros . This is necessary as one of the assumptions made in the

beginning of section 6 was that the output signals were small quantities.

If this is not true the analysis is not valid.

We will end this chapter with a discussion of the synthesis of diagonal

platform systems.

Suppose we want to synthesize a diagonal platform system. Before starting
the analysis we will give a physical interpretation of the non-diagonal
clements of K(p).
1. B, £ 0 i#£ j
This means that the inertia ellipsoid of the stable
element is not symmetric with respect to the

-axes.

Tk
2. L # L
This means that the spin number s of the platform

is not zero,




2~ 2 ~

A L - Ay, p° N

22 P
Secondary reaction torques.
(When the gyros give signals they give rise to

reaction torques on the stable clement. )

Non-diagonal elements of S—l(p) V (p) means
that the gyros are sensitive to angular veloci-
ties along axes orthogonal to the input axis,

e.g. output axis sensitivity.

Non-diagonal elements of T implies that the
component of the torque produced by the torque
motors on the ym—axis is not only controlled

by the m-gyro.

73.

In order to obtain a diagonal platform system we can let non-diagonal

elements cancel each other, or try to make all non-diagonal elements

zZero.

The effect of the non-diagonal elements can be eliminated in the following

way.

17

37

47

Making a stable element whose principal axes

coincide with the ¥y -axes.
Choosing a zero-spin arrangement of the gyros.

Making the gyrofloats symmetric with respect

to the output axis gives A32 = 0. Increasing

the moments of inertia of the platform decreases
the influence of the secondary reaction torques.
The high moments of inertia of the platform can
be obtained by making a large heavy stable ele-

ment.

The output axis sensitivity of the gyros can be
eliminated by the proper choice of the matrix

% (p). Compare section 8. 4.

Choose T diagonal !
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The conditions 17 - 57 are unfortunately inconsistent. Condition 2” implies
a zcro-spin system, according to section 8. 4.the output axis sensitivity
cannot be eliminated in a zero-spin system without overriding the stability
condition. Further condition 4” requires a system with s = 3and 1 = 0,
which contradicts condition 2. If the secondary reaction torques are
eliminated by the proper choice of the internal feedback we must also have

a system with s = 3 and 1 = 0.

Example

Consider a system according to equations (8. 103), (8. 104), (8. 105) and

(8.401) whose gyros have a definite stable arrangement. Assume further

that
6(p) = ap + #
and that
2
“o
b = b + a7 > 51
then
K(p) = b {Yi’(p) L+Y, (p) L - Y7 (p) Ilu}
where
“o
h ~ z}{p+ a—b; T(p) bPZ p+a
p tap+ 4 p +ap+dt
“o
Y, (p) = 4>
w_ (ap +47)
. o
Y3 (P) = 2 .
b’ (p” + ap +4)
and
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Hence by making £ sufficiently small the effect of the secondary reaction

torques are becoming negligible and the complete system is isotropic.
e

The same effect can be obtained by the proper choice of T(p). The details

are left for the reader.

ap———
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A method for the synthesis of a single axis inertial stabilized platform

system.

When designing servomechanisms for platform systems we have to con-

sider the following facts.

1. The indication error caused by disturbing torques acting on

the gyrofloats and on the stable element.

R The ability of the stable element to follow commanding signals.

The disturbing torques depend on the motion of the vehicle, the vibration
level, the elastic properties of the stable element, errors in the gimbal
system etc., In order to carry out a successful design it is therefore

necessary to have information about the motion of the vehicle, the vibra-
tion level, the disturbing torques and the commanding signals. The

synthesis of the servomechanisms then consists of choosing the transfer
functions from the gyro to the torque generator of the gyro and to that of

the stable element.

In order to obtain the main features of the required transfer functions we
will make a simplified approach to the design problem. This approach
does not require detailed information about the disturbances and the
commanding signals. Instead we sacrifice a close-fit between the specifi-
cations and the performance of the system. The validity of the simplified
approach can be tested by evaluating the error for some characteristic

disturbances. We are also supported by the experimental fact that systems

designed in this way behave satisfactorily.

Equation (6.27) gives for the single axis platform

Y Y
I - o ) 1 ..%... —._.—0
@) = et sprryy MO o rryo @)

(o] (o] (o] (o]

(AL 11)
where
w T(p) +w_p
— O . o

Yo (p) = 35 (A.. 12)

p@2+6@H

e e e et
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angular velocity of gyroscopic element

moment of inertia of the gyroscopic element with
respect to spin axis

moment of inertia of the float of the gyro
moment of inertia of the stable element

transfer function from output signal to torque motor

of the gyro

transfer function from output signal to the torque

motor of the stable element

disturbing torque acting on the stable element
disturbing torque acting on the float of the gyro
output signal of the gyro

angular velocity of the stable element
commanding angular velocity

orientation of the stable element

commanding signal

A block-diagram of the system described by equation (A.11) is shown in

figure A. 1.

(1,4
=+

1
"
—

M)
y
i - L)

\
V

Qe p) ==t

Figure A. 1
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Equation (A. 11) gives
|
Y Y
1 e o
0(p) = ——<— O _(p) + . M(p) + m (p)
TFY_ o bp2(1+Yo) wp TFY,
(A. 13)

The transfer function from torque acting on the stable element to stable

element orientation is thus

6() . _1 (A. 14)

M(P) bp Y1

where

Y (p) =p(1+Y_(p)) (A. 15)

Define the coefficient of stiffness Ks

. J M(p)
K = lim (A. 16)
S p =30 6 (p)

The steady state error when a constant torque is applied is thus

JM
o

8(+o) = — (A. 17)

where JMO is the magnitude of the disturbing torque.

It is reasonable to assume that a constant torque will result in a finite
angular deviation of the stable element i. e. Ks # 0. This gives the

following conditions on the error constants of the servo

If these conditions are satisfied the coefficient of stiffness is proportional

to the acceleration constant

K =JbK (A. 18)
s a

=

N Compare the "spring coefficient' of section 10.2.
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The permissible steady-state indication error will thus determine the
acceleration constant.

The ability of the system to follow commanding signal is essentially
determined by choosing a suitable bandwidth and damping ratio of the
system,

An analysis of the disturbing torques and the commanding signals will

therefore give some preliminary specifications of the following kind.

bandwidth wg
damping ratio of control poles t
positional error constant K =o

velocity error constant K = oo
Ks
acceleration error constant K = 7% (A. 19)

The order of magnitude of $, { and Ks is in an airborne application

100 rad/sec, 0.7, 1 Nm/rad., respectively.

A system with these specifications can easily be obtained by the synthesis-

procedure given by Truxal. See reference 4, chapter 5,

The specifications can be satisfied by a pole-zero configuration of the over-
all system according to figure A.2 where the position of the zero is

determined by the condition on the velocity constant

N
£
L
Figure A.2
% Pole-zero location for over-
all system transfer function

Y (p) -




—

The over-all system transfer function is

2
2 +
Y(p) = — t Bp + B ” (A.21)
p +t2L Pp+P
The constant B is chosen so that the bandwidth condition is satisfied.
Cuppose { = 0.7 then B = —Zl-wB. Cf. ref. 4, figure 3.5,
The open-loop transfer function is
o 1-Y(p 2
P
Equation (A. 15) gives
Y (p) 2 2
- N 2¢ Bpt+p
Y (p) =p(1+Y (p)=p —opry = 7 A.23
(P} = p( oP)=P < 5 (A.23)
thus
2
p[Yl(p)"P] = Zg 69 + p (A..24)
Equation (A. 16) gives
_ 2
K, = Jbp (A. 25)
The transfer function T (p) is obtained from equation (A. 12)
(A. 26)

25 % [pz + d(p)][zé pp + ﬁzj\ - w P

T(p) = o
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/) A.3 Itis desirable to have simple expressions for T(p) as this transfer
function must be realized with some networks.
We obtain an expression simpler than (A. 26) by choosing a pole-zero
configuration of the overall system according to figure A. 3.
K
- pl
) |
K-
|
X |
Figure A. 3 |
Pole-zero location for overall system transfer function Y (p) '
We obtain
2
B” py (p+2)
Y(p) = — ¥ ey > (A.301)
- (p"+2¢pp+87)p+p,)

By proper design of the system the steady-state behaviour is essentially

determined by Py and z  and the transient behaviour by B and ¢ . The

1
damping ratio of the control poles { is given directly by the specifications
and the constant f is chosen in order to satisfy the bandwidth condition.

If P, and z, should not affect the transient behaviour too much the

1
quotient pl/z1 should be near 1, say
Py
1< — < 1.1 (A. 302)
“1

e ————
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according to Truxal. After the choice of pl/zl the zero z, is determined

by the condition on the velocity coefficient.

2
2 PPy
2§6p1+ﬁ - Zl =0

The open loop transfer function Yo(p) is

2
_ Y _ PP P*Z
Yo(P) T 1-Y(p) T Tz

il -
! p (p+p,)

where
p, =p;t2LP
Equation (A. 16) gives

P
K = gbp . L
S pZ

From equation (A. 14) we obtain

- Y (p)
YI(P) =p !_1 + YO(P):I =p ~ B
thus
(p° + 2¢ Bp+ﬁ2)(p+p1)
¥yle) = plp +p,)
and

2
2 P py Ptz
P [Yl(p) - p:l =p Y (p) = I FTE,

The transfer function T (p) is obtained from equation (A. 13)

2 3 2
abp”p, azp +a,p+o(p) (ptz)
T (p) = T
z plp +p,)

wa

(A. 303)

(A. 304)

(A. 305)

(A. 306)

(A. 307)

(A. 309)

(A. 310)

(A.311)
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where
2
a = 1 Yo 2
37 07 2
abp P,
@ O p
a, = 7, - o 1°2
ab B Py
Suppose that we can choose ag = 0 consistent with equation (A.302) i.e.
P w 2
P J— 5 (A.312)
2 abp
and
2 k5
W
1< °2 ddal (AL 313)
abp
Equations (A.303), (A.305) and (A. 312) give
© 2
P, = B { 2 - £) (A.314)
! t\abp /
r w °
p2*2—5,4g2+ 02 _11 (A.315)
| ab B ]
B abp®
Zl = ?g (1 - - 5 ;' (Aa 316)
o s
Equation (A. 311) then reduces to
Wy 2
1, P (z -py) +a(p)p +2,)
T(p) = (A.317)
o p(ptp,)
goansantn

Suppose further that we use an integrating gyro and that its torque #reotox

g This means that the momént of inertia of the stable element should
match the bandwidth of the system.
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is not used for feedback purposes, i.e.

6(p) = ap
then
1 p(z1+ct—p2)-+-u.z1
T(p) = /. (. 318)
o p+p2

A.4 1If the disturbing torques have a high level it may be necessary to claim

K = oo (A.401)

for proper performance of the platform system. The specifications (A. 17)
with this condition added can be met with by choosing a pole-zero con-

figuration of the overall system according to figure A, 41.

X
M & S
FAN
=P, “#y P2y
X

Figure A.41

Pole-zero configuration of overall system transfer function.
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The overall system function is
h (0 +2)( +2,)
P,P PpTz )prz
¥lp) = == — . C (A. 402)
172 (" + 2¢ pp+p7)(p+p )P +P,)
The specifications of the velocity and acceleration constants give
2 2
2 2 ppp, B PP,
2t Bpp, +Pp P, + 8P, - - =0 (A. 403)
142 il 2 z, z,
2
2 P PP o
The open-loop transfer function is
¥ pip, (P2 )P+ 2y
. __Y({) _ 172 1 2
Y o) = 4y = == 3 (A. 405)
172 p (ptp;)
where
Py = p, tp, 2L P (AL 406)
Equation (A. 14) gives
2 2
(P" +2¢ Bp +B)(p + p)(P + p,)
Y, (p) = (A.407)
il 2
p (p+psy)
thus
2
B pyp, (Ptz)p+z,)
p [Yl(p) - p] = el (A.408)
1 %2 P(P+p;)

Equation (A. 13) gives

2 4 3, 2
abp pyp, 2, P tazp +p z 2z,+6(p)(ptz,)(p+3,)

w Z Z

Z
o172 Pp” (p +py)

T(p) =

(A. 409)
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where
w 2Z z
S S M (A.410)
4 abf
Py Py
w_  z,Z,P
PR S - I (A.411)
3 Y
Py P2
Choosing
P, P w 2
e (A.412)
) abp
we get
) ozt _p)+piz, 2yt PPtz )(p+a,)
T(p)=q1£- 1" %2 32 172 1/\PT %,
/o p (p+p3)
(A.413)

We have still one condition left before P, P, % 2, are determined.




PLATE 3 1
SYSTEMS WITH ZEROQO SPIN

%’.,%,1{:.] S=0, isg_




PLATE 3.2
SYSTEMS WITH SPIN SIX

oy

3 3n 3
2, 3.35] sesos0 [FR-E] seeieo
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PLATE 3.3
SYSTEMS WITH SPIN THREE AND OUTPUT AXES IN THE SAME PLANE

E_;L, o,.’;_] S=3, =0

3n
-%,n,..zz_] §=3,1=0 [--g-.u,-,.-] S=3,1=0
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PLATE 3. 4

SYSTEMS WITH SPIN THREE AND OUTPUT AXES IN THE SAME PLANE.

[Z’f,o,-i‘-]s-a,uo [1,0.31 S5=3,1=0
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PLATE 3.5

ORTHOGONAL SYSTEMS WITH SPIN ONE
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PLATE 3.6
ORTHOGONAL SYSTEMS WITH SPIN ONE

o &




—_——

PLATE 3.7

ORTHOGONAL SYSTEMS WITH SPIN THREE
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PLATE 3.8

ORTHOGONAL SYSTEMS WITH SPIN THREE
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PLATE 3.9
ORTHOGONAL SYSTEMS WITH SPIN FIVE

2y &

K E 3 = _n - -
l:o,o.-.i.:l s=5,1=0 [O,n, ’I] s=5, =0




PLATE 3.10

ORTHOGONAL SYSTEMS WITH SPIN FIVE

S o

..E _ZE, = = E—E = -
[0. 5! 2_]5 5, | =0 [2,2.7{] s=5, | =0

£ %

n = - x _k - -
[5”""] s=5,1=0 [2. z.n] s=5,1=0
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Plate 3.11
Solutions of the equations;
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Plate 3.12

Sotutions of the equations:

Amwamﬁsw nom@ + mm:%anomm:f mn,.anom@l 0
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" PLATE 8.2

ROOTLOCUS WITH RESPECT TO THE CROSSCOUPLING
COEFFICENT ¥ FOR THE CHARACTERISTIC EQUATION
OF A SYSTEM WITH S=1, e=0,¢=0 AND Y(P\. Pl I.1g+1
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PLATE 8.22

ROOTLOCUS WITH RESPECT TO THE CROSSCOUPLING COEFFICIENT § FOR THE CHARACTERISTIC
EQUATION OF A SYSTEM WITH S=3 ea-1¢-0 AND Y(P)- P4 141P+1
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PLATE 8. 23

ROOTLOCUS WITH RESPECT TO THE COUPLING COEFFICIENT J FOR THE CHARACTERISTIC
EQUATION OF A SYSTEM WITH S=3,e=1,820 AND Y(p)_ Pe 141P 41
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PLATE 8.24

ROOTLOCUS WITH RESPECT TO THE COUPLING COEFFICIENT § FOR

THE CHARACTERISTIC EGUATION OF A SYSTEM WITH S=5 ye=0

@=0 AND Y(P). p% 1.41P +1
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PLATE . 8.25

ROOTLOCUS WITH RESPECT TO THE CROSSCOUPLING
COEFFICENT ¥ FOR THE CHARACTERISTIC EQUATION

OF A SYSTEM WITH S=3 e -} 2.0

AND Y, (p)= (P% 1.41P+1)(P+0.05)
P(P+1.46)
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PLATE 8. 41

2.29

ROOTLOCUS WITH RESPECT TO THE GROSSCOUPLING
COEFFICIENT ¢ FOR THE CHARACTERISTIC EQUATION
OF A SYSTEM WITH

S=3,e=0,y =0, ®=0.71p
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