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Abstract

The field of radial turbines is wide and radial turbines of today find applications in
areas as diverse as small gas turbines; turbochargers for cars, buses, and trucks, railway
locomotives, and diesel power generators; cryogenic and process expanders; rocket engine
turbopumps; and specialty steam turbines, [12]. The three-dimensional flow inside a
radial turbine is complex and ever since the radial turbine was introduced on the market,
a desire to model this flow with simple correlations and loss models has existed.

This master thesis consist of two studies. In the first study two radial turbines are
modeled on a mean-line basis and the performance of different operating conditions
are simulated. The results are compared to test data to evaluate the accuracy of the
simulations. In the second and final study an aerodynamic design of a radial turbine is
conducted. Initially a preliminary design is considered. This design is evaluated with
the same mean-line tool which were used to simulate the two turbines already mentioned
and additionally a blade-to-blade tool. The preliminary design is revised, based on the
evaluations, to a detailed design. The detailed design is evaluated with the same tools
as the preliminary design and changed until it meets the requirements stated.

The results from the simulations show good agreement with the test data and it can,
therefore, be concluded that it would be possible to evaluate a new design using the
mean-line tool used in this thesis. It is, however, naive to think that a mean-line analysis
is able to predict the flow completely and thus the mean-line analysis should be viewed
as a tool which is able to speed up the design process. It is difficult to judge the
aerodynamic design from the second study because it would require for the turbine to
be manufactured and tested. However, the design shows promise according to the one-
and two-dimensional analyses preformed.
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Nomenclature

α Absolute flow angle

α′ Relative flow angle

β Blade angle

∆h0s Isentropic heat drop

δ Boundary layer thickness

δ∗ Boundary layer displacement
thickness

ṁ Mass flow

η Efficiency

γ Ratio of specific heats

κ Curvature

µ Dynamic viscosity

φ Flow coefficient

ψ Stage loading

ρ Density

σ Slip factor

θ Boundary layer momentum thick-
ness

ξ Enthalpy loss coefficient

A Area

a Speed of sound

c Absolute velocity

c Chord

cf Skin friction coefficient

cm Meridional velocity

cp Specific heat at constant pressure

cθ Tangential velocity

cθ Tangential velocity

D Diameter

Ds Specific diameter

e Surface roughness

H Shape factor

h Static enthalpy

h0 Total enthalpy

I Rothalpy

i Incidence

K Metal blockage

L Velocity loss coefficient

M Mach number

m Meridional coordinate

N Shaft speed

NN Number of nozzle blades

NR Number of rotor blades

Ns Specific speed

o Throat

P Power

p Static pressure

p0 Total pressure

R Degree of reaction

R Gas constant

r Radius

r Radius

s Pitch

t Thickness

T0 Total temperature

U Blade speed

u Boundary layer velocity

w Relative velocity

Y Pressure loss coefficient

z Axial coordinate

v



1. Introduction

The three-dimensional flow of radial turbines is extremely complex. Since the turbine
was introduced great effort has been invested into modeling this flow and trying to
predict the turbine’s performance. Computational fluid dynamics are used extensively
throughout the industry, however, more time efficient methods are required. The one-
dimensional meanline analysis is one such method.

1.1. Background

Turbines are a group of turbomachines which recover energy from a fluid and in turn
transform this energy to work. The work can be of various forms, e.g. electrical or
mechanical. Turbines exist in different types, such as steam turbines, gas turbines,
water turbines, wind turbines or turbochargers. The type used depends greatly on the
application and the state of the fluid, which can be either compressible or incompressible.
The work is extracted from a fluid at high pressure and temperature and is allowed
to expand to a lower pressure level. The expansion ratios can be relatively small or
extremely large.

Most turbines are composed of several stages and each stage comprises two major parts.
A stator,1 and a rotor2. The stator is a fixed section of vanes used to guide the fluid
and accelerate it. An acceleration is always followed by an expansion and hence some
expansion will always occur in the stator. The rotor is also composed of vanes, however,
unlike in the stator they are connected to a shaft. In the rotor the fluid is accelerated,
now in the rotating plane, and expanded causing the shaft to rotate. From the shaft it is
then possible to extract the work, e.g. by connecting the shaft to a generator and thus
producing electricity. While it is possible to design a turbine without a stator, it would
undoubtedly lead to a lower thermal efficiency.

A further classification of turbines can be done in respect to the amount of expansion
occurring in the stator. This concept used is termed reaction and it is defined below.
The subscript 1, 2 and 3 are taken as the inlet, the station between stator and rotor and

1The stator is often called a nozzle or guide vanes.
2When discussing radial turbines the rotor is sometimes referred to as the impeller.
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the outlet respectively.

R =
h2 − h3

h1 − h3
≈ p2 − p3

p1 − p3
(1.1)

The degree of reaction, defined in equation (1.1), is taken as the enthalpy drop in the
rotor to the enthalpy drop of the whole stage. If the fluid is incompressible and the
expansion is taken as reversible, then equation (1.1) can be approximated with the ratio
of the pressure drop in the rotor to that of the pressure drop of the whole stage. Most
often the criterion of incompressible fluid and irreversible expansion is disregarded and
the approximation is used anyway. It is therefore important to state which definition is
used. In turbines of impulse type all the expansion takes place in the stator. It can be
seen from the definition of reaction that these turbines have zero reaction. In practice it
is not possible to design a turbine of impulse type and a compromise is often required to
be made which lets the reaction be above zero. Common gas turbine practice for axial
turbines is to have a reaction of five percent closest to the shaft [personal communication,
Magnus Genrup, 2014].

1.2. Objective

The main objective of this study has been to investigate a mean-line analysis tool for
radial turbines. Furthermore, a blade-to-blade analysis tool was used. This has been
conducted in two parts.

• Modeling and simulations of two radial turbines.

• Aerodynamic design of a radial turbine.

1.3. Limitations

The work presented in this thesis has the following limitations.

• The presented theory is focused in mean-line analysis.

• ”TurbAero” has been used as the main simulation tool.

• The calculation methods in ”TurbAero” are one- and two-dimensional.

2



1.4. Methodology

This work is based mainly on the theory presented by R.H. Aungier, [2], and all the
modeling and simulations are performed with his tool ”TurbAero”3. The theory included
in this thesis governs performance analyses on a mean-line basis. Also some examples
and guidelines for preliminary design are presented.

The program ”RIFT” is used for all performance simulations. Every component of
the radial turbine is modeled using geometry from three stations on a mean-line basis.
Calculations are performed on every station which yield the flow conditions.

The program ”RIFTSIZE” is used in chapter five to develop a preliminary stage design
for the aerodynamic design. It uses empirical correlations together with one-dimensional
physical equations.

The program ”TDB2B” is used to perform blade-to-blade analyses. It is mainly used as
an evaluation tool for the detailed design.

1.5. Outline

Chapter one gives a brief introduction to the subject. In chapter two more information
about radial turbines in general is given together with an explanation of the different
strategies for design which exist.

The work is divided into a theory part and an objective part. Chapter three is focused
on the theory and here are the equations and models which are used in the programs
explained. This is done because it makes it possible to realize the limitations of the
programs and to better understand how the results appear. In the section which concerns
the aerodynamic design of a radial turbine, programs will be handled which make use
of two-dimensional theory. Because those programs are used to a very small extent, the
two-dimensional theory governing them is not investigated in this thesis.

The objective part consists of two chapters. The fourth chapter of this thesis presents
the simulations which are performed on two different radial turbines, designed by Volvo
Powertrain AB. The simulations aim to predict the off-design performance of the tur-
bines. The fifth chapter presents an aerodynamical design of a radial turbine. Initially a
preliminary design is produced using simple correlations. This design is revised to a de-
tailed design which is analyzed using a blade-to-blade tool. Although, it was not meant

3”TurbAero” includes a number of programs. It is an aerodynamic design and analysis software system
for axial-flow and radial-inflow turbines.
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as an objective in the beginning, a simple tool for preliminary design was developed at
the end. The program is presented in the appendix.

Introduction

Theory

One Dimensional 
Analysis

Off Design 
Performance Analysis

Objectives

Design Of A Radial 
Turbine

Figure 1.1.: The report presenting the work which has been conducted during this
master thesis is divided into four major parts. In the introduction the
reader is given some background knowledge on the subject. The theory
which this thesis concerns is presented in chapter 3. The real work of
the thesis is then presented in chapter four and five which concern off
design performance analyses and aerodynamical design respectively.
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2. Radial turbines

While nowadays most radial turbines are run with compressible fluids, the first radial
turbines worked with water as the flow medium. ”Today the compressible flow radial
turbine finds applications in areas as diverse as small gas turbines; turbochargers for
cars, buses and trucks, railway locomotives, and diesel power generators; cryogenic and
process expanders; rocket engine turbopumps; and specialty steam turbines, [12]”. Tur-
bochargers are small turbomachines consisting of a centrifugal compressor and a radial
turbine (might be axial) which make use of the exhaust gases in piston engines. This
increases the power and sometimes even the efficiency. The fluid in a radial turbine
undergoes a dramatic change in direction when it is turned ninety degrees from a radial
direction to an axial one. This process can be seen in figure 2.1, which shows a cross
section of a radial turbine. The figure shows only one stage, however, a radial turbine
can be composed of several stages which can be interconnected via pipes or ducts. Due
to the fact that the fluid is turned from a radial direction to an axial direction it is
convenient to employ a cylindrical coordinate system. The coordinate system is shown
in figure 2.2.

6
5

4

3

7

8
9

10

Figure 2.1.: A cross sectional view and the notations which are used in this report
are shown in this figure.

The radial turbine stage can be composed of a stator and a rotor or the rotor alone.
The stator is often made up of an inlet scroll, generally called a volute, and a nozzled
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Figure 2.2.: It is convenient to apply a cylindrical coordinate system when describing
the geometry of a radial turbine, since the impeller is rotating about an
axis.

vane row. It is in the rotor, usually called the impeller, where the fluid is turned while
expanding and thereby exerting work on the blades which forces the shaft to rotate.
From inlet to outlet there is a dramatic change in radius and that is, together with the
turning, what signifies the radial turbine.

The fluid enters the radial turbine through the volute (inlet scroll) in a direction which
is perpendicular to the rotor vanes and is distributed equally around the perphery. The
purpose of the volute is to turn the flow toward the rotor vanes. Ideally, this is done
while maintaining a uniform static pressure and mass flow at the volute exit, otherwise
the impeller might be exposed to unsteady radial loading. The volute can be of double
entry type, which means that instead of being distributed around a perphery of 360◦, two
streams contributes 180◦ each. Ultimately, there will be some fluid which recirculates
and mixes with the incoming fluid.

From the volute, the fluid is approaching the stator vanes1. The nozzle vanes are dis-
tributed around the periphery in an annular ring which encloses the rotor and they are
used to continue the turning started in the volute. The shape of the nozzle vanes can
differ but generally they can be divided into three common groups based on the blade
camber angle. The vanes can be designed with no camber (straight blades), with nega-
tive camber (yielding concave blades) and with positive camber (yielding convex blade).

1The stator vanes are often referred to as nozzle vanes
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Figure 2.3.: The volute can be designed with a single entry or multiple entries. This
figure shows how, for a single entry type, the fluid is circulated 360◦

around the periphery and 180◦ for a double entry type. The figure is
adapted from [17].

Maki H. and Mori Y. studied the difference in pressure coefficient for the different types
and their conclusion was, a bit unexpectedly, that the smoothest pressure distribution is
obtained with concave blades [11]. Leaving the nozzle vanes the flow most likely does not
follow the trailing edge, this is term deviation. N.C. Baines describes this phenomenon
as a combination of two events. As the fluid leaves the trailing edge, an expansion occurs
due to the finite difference which the thickness at the trailing edge forms. This causes
the flow to overturn due to a decrease of the radial component of the velocity. On the
other hand the vanes do not give perfect guidance which causes the flow to underturn.
The vanes do not give perfect guidance because this would require an infinite number of
blades (or at least, a high number of blades) which would increase the wet surface and
cause friction losses.

The vaneless space between the nozzle vanes’ trailing edge and the leading edge of the
impeller must be given special attention when designing the radial turbine (this would
also apply on a radial turbine lacking nozzle vanes, then the vaneless space would exist
between the volue exit and impeller inlet). If the vaneless space is too small, wakes
which forms at the trailing edge of the nozzle vanes are not allowed to be mixed out
and the flow approaching the impeller will not be uniform. It is also possible for the
stator and impeller to be mechanically coupled which could excite blade resonances. If
instead the vaneless space is made to large the wet surface, which induces friction, could
lead to extreme pressure losses and also it would make the overall size of the turbine
unnecessary big.

The use of radial turbines in turbochargers is widely spread. A turbocharger will work
with large variations in inlet pressure and mass flow and this leads to poor performance.
A common implemented solution has been to incorporate variable nozzle vanes. They
are variable in the sense that they can shift their angle, making the throat smaller or
bigger. There will arise a void (or clearance) at the end walls and this will lead to the
leakage of some of the fluid which will not be turned in the nozzle vanes but instead

7



Figure 2.4.: Maki H. and Mori Y. studied the difference in pressure coefficient for
the different types of camber angle and their conclusion was, a bit un-
expectedly, that the smoothest pressure distribution is obtained with
concave blades, [11]. The figure is adapted from [12].

keep its radial velocity component.

Shroud

Hub

Figure 2.5.: The impeller cross section can be described with the two end walls, hub
and shroud..

The impeller is consisting of vanes attached around an axis. The end walls are often
called the hub and the shroud. The hub is attached to the axis and is rotating with
it. The shroud can be defined in two different ways. Either it is defined as the tip of

8



Figure 2.6.: Studies have shown that the best performance of the radial turbine’s
impeller is obtained when the flow enters the inducer with a negative
incidence of -20◦ to -40◦. At other angles of incidence the flow will
separate. This phenomenon is shown in this figure which is adapted
from [12].

Figure 2.7.: Studies have shown that the best performance of the radial turbine’s
impeller is obtained when the flow enters the inducer with a negative
incidence of -20◦ to -40◦. This is partly due to the circulation arising in
the inducer of the impeller. This phenomenon is shown in this figure
which is adapted from [12].

blades which means that the shroud is also rotating with the blades, however, it can
also be defined as the cover which encloses the impeller, thus it does not rotate. The
flow enters the inducer2 of the impeller with a meridional velocity component which is
largely radial. It has been found that the best performance of the impeller is achieved

2The inlet of the impeller is often called ”the inducer”
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when the flow is approaching the tip with a negative incidence. It can be found in the
literature that, highest efficiency is obtained with an incidence of -20◦ to -40◦, [12]. This
phenomenon can be explained on the basis of the figures 2.6 and 2.7. While the fluid
is entering the inducer, angular momentum is conserved which increases the tangential
velocity, however, the blade speed is decreasing at a faster rate. This forces the fluid
to move toward the pressure surface. In addition to this effect there is the Coriolis
acceleration, which, however, diminishes with radius. The effect of these events is that
at the tip the fluid is forced toward the suction surface, however, this force is not matched
at lower radius and as a consequence the fluid is pressed toward the pressure surface,
causing some flow to circulate. At large negative incidence angles the circulation will
be extensive and cause the flow to separate on the pressure surface. The contrary will
happen at small negative or positive incidence angles, the flow will then separate on the
suction surface.

The outlet of the impeller, often called the exducer or the exducer region, represents
the part of the impeller where the fluid is mainly axial and has a large component of
swirl (large tangential component). Because of the large component of swirl, a Coriolis
acceleration will arise but unlike in the inducer, this Coriolis acceleration will act in the
radial direction which will direct the flow from hub to shroud. As a consequence of the
change in tangential velocity in the impeller, another force will arise which acts between
the blade surfaces. Finally there are secondary flows resulting from these forces.

To recover some of the static pressure after the impeller, a diffusor might be incorporated
in which the flow is allowed to expand due to an increase in flow area. The diffusor is
not always incorporated and in fact, while it will help recover static pressure it will
ultimately cause losses in total pressure and total efficiency.

2.1. Strategies for design and performance analysis of radial
turbines

The course of action when designing a radial turbine is quite different from the one
conducted when running a performance analysis. The design procedure attempts to
develop a geometry which is going to meet certain performance parameter, (e.g. mass
flow, efficiency, power and expansion ratio), at one operating point. The turbine will,
however, work at multiple running points which do not match the design point, this is
called off-design. The performance analysis is used to predict the performance of the
turbine at operating points and while the geometry is the product developed from the
design stage, the geometry is used as input in the performance analysis.

The process of aerodynamically designing a radial turbine involves several steps. Prefer-
ably the steps can be divided into one-, two- and three-dimensional design (other steps
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are possible). When the aerodynamic analysis is performed, structural simulation re-
viewing the mechanical and thermal stresses that the turbine will be exposed to has to
be performed. This analysis is just as important as the aerodynamic analysis and can
often force the designer to rethink and change the design. Finally the auxiliary systems
needs to be incorporated. These can for example consist of systems for cooling, valves
and ducts. It should be stressed that these systems together with the structural analysis
can form obstacles which might be impossible for the designer to overcome. This results
in the process having to be restarted. In this thesis only the aerodynamic analysis is
reviewed and the theory presented concerns only that part of the design process.

In the one-dimensional stage, performance analysis are conducted at the inlet and outlet
of each component (volute, nozzle, impeller, diffusor and vaneless spaces). This analysis
is made using thermodynamic and aerodynamic principles and relations and to some
extent models to predict the losses which occurs. The outcome from this simple analysis
are predictions of some geometrical parameters, such as radii, blade angles, section width
and axial length, at the inlet and outlet for the various components. It is also possible
to determine the flow conditions at one certain design point and to some extent predict
performance at points dissimilar from the design point. The one-dimensional analysis is
performed on a single streamline, a mean-line, situated in the center as can be seen in
figure 2.8.

6
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4

3

7

8
9

10

Figure 2.8.: In one-dimensional analyses a mean streamline is used. Calculations are
performed on this streamline at the inlet and outlet of each component

A two-dimensional approach includes several streamlines. This is often called a blade-
to-blade analysis. Even though the flow in a radial turbine is strongly affected by
three-dimensional effects a blade-to-blade analysis helps in understanding the basic aero-
dynamics of the flow. It can be used to analyze flow condition in a range not far away
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from the design point. Here the approximation of the blade loading and blade angle
distribution can be very precise. Both inviscid and viscous solvers exists. In the inviscid
solvers a boundary layer analysis can be performed to predict viscous losses. A signif-
icant advantage of blade-to-blade analysis is the possibility to construct blade loading
diagram which shows the velocity distribution, or pressure distribution, on the pressure
and suction surface of the blade. Such a diagram can be viewed in figure 2.9. Here the
velocity distribution is shown for the hub and shroud but similar plots can be made for
other sections across the hub and shroud. The area between the lines representing the
velocity distributions on the suction and pressure surfaces respectively in these diagrams
is proportional to the power which is possible to extract from this section of the stage.
The use of two-dimensional blade-to-blade analysis is widely spread in the industry and
used as an important tool in the design process. This is because the computational effort
is very small and simulations can be run in the frame of a few seconds. However it can
not be used when the flow is separating. It is highly likely that this will be the situation
far away from the design point. When conditions like that needs to be examined viscous
three dimensional solvers have to be used.

Meridional distance

M
a
ch

 n
u
m

b
e
r 

Shroud

Hub

Pressure side

Suction side

Figure 2.9.: Blade loading diagrams resulting from two-dimensional blade-to-blade
analyses helps the designer to evaluate the velocity distribution and spot
defects. They should not be trusted at flow conditions far away from
the design point because the flow might be separating. The separation
phenomenon will most likely not be captured by the blade-to-blade
analysis.

When designers need to understand the three-dimensional aspects of the flow they usu-
ally turn to ”CFD”. CFD, Computational Fluid Dynamics, is used to solve the Navier
Stokes equations, either in their full form or in various simplified forms. This is done

12



by discretizing the equations and solving them at grid points which cover the flow field.
Different turbulence models are applied to capture the small variations in the flow pa-
rameters. The results are presented in colorful plots showing the different flow variables,
such as pressure, temperature and velocity. CFD is mainly an evaluation tool. While the
development of faster computers is preceding as strongly as ever, it is still not possible
to run a full CFD-analysis of the flow in radial turbine in as a short time as would be
preferable. This means that the developers of radial turbines still need to employ one-
and two-dimensional tools.

Figure 2.10.: Computational fluid dynamics are used to analyze the flow through
a radial turbine in three dimensions. The results are presented in
colorful plots showing the different flow variables, such as pressure,
temperature and velocity.
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3. One-dimensional Analysis

The preliminary design of a radial turbine is an efficient way of determining the basic
component geometry and it gives a primary prediction of the performance of the turbine
at the design point. If needed, this performance analysis can be extended to generate
off-design maps which can be used to predict the performance at conditions dissimilar
from the design point. The iterative process of designing a radial turbine often returns
to the preliminary design. It speeds the process of designing the turbine because without
it, or if it is done badly, an extensive trial and error procedure might arise.

A preliminary design can be carried out in different ways, some requiring less input
data than others. According to N.C. Baines there are three different ways in which a
mean-line analysis can be conducted [12].

1. Scaling according to similitude from an existing design.

2. The use of the basic conservation principles and simple stage or component corre-
lations.

3. The use of fundamental physical models.

As reported by Baines, there is no right or wrong approach and which method is used
is dependent on the information provided to the designer [12].

14



3.1. Scaling

Scaling is used when a turbine application which is going to operate at conditions similar
to an existing turbine is desired. Instead of designing a new turbine, the existing turbine
is scaled in accordance with non dimensional groups. This will reduce the cost and effort
and thereby the time used in developing the turbine. The non dimensional groups are
made up by parameters describing the turbine, the fluid used and the flow conditions.
One group is a function of one or more of the other groups, e.g.

Π1 = f(Π2,Π3,Π4,Π5) (3.1)

The groups used when working with turbo machines handling compressible fluids can
be found in basic textbooks about turbo machinery. Here those in [7] are recited.

∆h0s

a2
01

, η,
P

ρ01a3
01D

2
= f

{
ṁ

ρ01a01D2
,
ρ01a01D

µ
,
ND

a01
, γ

}
(3.2)

When the machine is run with a perfect gas some alterations to the groups stated above
can be made. This simplifies the situation. The derivation can be found in Dixon, [7].
Here, just the results are presented.

p01

p010
, η,

∆T0

T01
= f

{
ṁ
√
γRT01

D2p01
,

ND√
γRT01

, Re, γ

}
(3.3)

The groups in equation (3.3) are readily used when running experiments on a turboma-
chine because the inlet and outlet conditions are determined in a simple manner. If the
machine under observation is running with only one gas, the ratio of specific heats, γ,
can be excluded from equation (3.3) and if the machine works only at high Reynolds
number, this group can also be omitted. The results is shown below.

p01

p010
, η,

∆T0

T01
= f

{
ṁ
√
cpT01

D2p01
,

ND√
γRT01

}
(3.4)

In the industry working with turbomachines is has become praxis to delete R, γ, cp and
D from equation (3.4). This further simplifies the situation.
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p01

p010
, η,

∆T0

T01
= f

{
ṁ
√
T01

p01
,

N√
T01

}
(3.5)

The parameters on the left hand side of equation (3.5) are then plotted against ṁ
√
T01/p01,

which is also known as the corrected mass flow, with N/
√
T01 as a parameter. N/

√
T01

is termed the corrected shaft speed. For a radial turbine such plots can look something
like those in figure 3.1. Figure 3.1 shows that at a certain pressure ratio the turbine flow
chokes and thereby makes it independent of the shaft speed.

Choking mass flow

Shaft speed increasing

Shaft speed increasing

Figure 3.1.: The dimensional groups are plotted against each other. The figure
shows, on the left hand side, p01/p010 as a function of ṁ

√
T01/p01 with

N/
√
T01 as different parameters and, on the right hand side, the efficiency

η as a function of ṁ
√
T01/p01 with N/

√
T01 as different parameters.
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3.1.1. Correlations for radial turbines

The equations derived previously can be applied on all turbomachines. For radial tur-
bines additional correlations have been proven useful to derive a starting point for a new
design.

The Flow Coefficient is defined as the ratio of meridional velocity and blade speed.

Flow coefficient : φ =
cm
U

= f

{
ṁ
√
cpT01

D2p01
,

ND√
γRT01

}
(3.6)

The Stage loading is defined as.

Stage loading : ψ =
∆h0

U2
= f

{
ṁ
√
cpT01

D2p01
,

ND√
γRT01

}
(3.7)

The derivation of equations (3.6) and (3.7) can be found in e.g. [7]. The stage loading
and flow coefficient have been used to correlate efficiency for radial turbines. N. Baines
presents one such diagram in [3]. From that diagram it can be noted that an increase
of the flow coefficient from 0.3 to 0.4 gives a decrease in efficiency by almost a 1

10th.
To achieve a low flow coefficient either the speed or the area (thereby decreasing the
meridional velocity) needs to increase.

Figure 3.2.: N. Baines presents a chart which correlates the flow and stage loading
coefficients with efficiency lines as parameters. Figure taken from [3].
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Two other parameters which are often mentioned when discussing radial turbines are the
Specific Speed and the Specific diameter. Specific speed is a function of rotational
speed, volume flow and power. This means that there is no parameter that describes
the geometry of the turbine. A remedy for this is to introduce the specific diameter
which has the desired features. They are strongly linked to the flow coefficient and stage
loading which is shown in equations (3.8) and (3.9). Figure 3.3 shows a relationship
correlating the specific speed and specific diameter.

Specific speed : Ns =
φ

1
2

ψ
3
4

=
ω
√
Q

∆h
3/4
0

(3.8)

Specific diameter : Ds =
ψ

1
4

φ
1
2

=
D∆h

1/4
0√
Q

(3.9)

Figure 3.3.: The well known correlation parameters specific speed and specific di-
ameter used in preliminary design of radial turbines can be plotted to
generate the curve shown in this figure. The theoretical curve, assum-
ing ideal conditions, is situated somewhat lower than the experimental
values. The figure is taken from [12].
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3.2. Mean-line analysis according to physical relations and
equations

A full mean-line analysis is used to predict the performance at the design point. This
analysis is based entirely on physical laws and correlations and the input data needed to
perform it is extensive in comparison with the two analysis methods described earlier.

This section serves as an investigation of the different equations in the program called
”RIFT”1. Additional equations found in the literature used for loss modeling are also
presented. Examples of equations governing simple designing can be found in appendix
where a simple design program is developed.

Examples of input parameters which are used in a performance analysis are shown in
table 3.1 below. It is readily understood that an insufficient number of input parameters
will not yield a solution. However, it is not certain that a solution is met if too many
parameters are specified. That is because the geometry is already set when conduct-
ing a performance analysis and this geometry is most often not able to meet all the
specifications at once.

Table 3.1.: Performance analyses can be conducted with different set of input vari-
ables. Three possible set are presented in this table.

Case one Case two Case three

Input ṁ, N , T01, p01 N , T01, p01, p9 ṁ, N , T01, p9

parameters All geometry All geometry All geometry

In the table 3.1, there are three different sets of input variables. If the first set is chosen
a direct solution can be obtained. The second requires an iteration where the mass flow
is chosen and the exit pressure is calculated. If the calculated exit pressure deviates from
the specified, the mass flow is adjusted and the procedure proceeds until it converges on
the exit pressure. The third case requires a similar iteration procedure, however, this
procedure converges on the inlet total pressure.

It is possible to run the analysis with different stator configurations. Generally they can
be summed up into four alternatives, shown in table 3.2.

1”RIFT” is used in this thesis to run performance analyses in chapter 4 and is based on chapter nine
in the book written by R.H. Aungier [2]
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Table 3.2.: There are in general four stator configurations fitting a radial turbine.
They are presented in this table.

1. No stator
2. Nozzle
3. Volute
4. Nozzle + Volute

In figure 3.1 it can be seen that the flow is choking at a certain pressure ratio. Expanding
further will not give an increase in mass flow as it would if the turbine was not choking.
In light of this it can be realized that to get a solution when the turbine is choking,
another constraint must be set.

The second option in table 3.1 will most often generate an unstable numerical solution.
This is because the chosen mass flow can take values, during the iteration, which are
higher than the choked mass flow. A simple solution to this problem is shown in figure
3.4.

Given: N, T01, p01, p9
            All geometry
Guess: Pressure at each station

For each component, calculate 
mass flow rate m based on 
expansion ratio across component

Check component mass flows; 
adjust station pressures until 

Figure 3.4.: When the mass flow is not given as an input variable a numerical solu-
tion might become unstable. A solution to this problem is presented in
this figure. Adapted from [12].

One-dimensional performance analyses often only need the geometry to be specified at
three different points, the inlet, the exit and somewhere in between. The analysis aims
to predict the losses. This can be done by dividing the losses into different groups. It
is possible to define the losses as loss in pressure or in enthalpy and corresponding loss
coefficients emerge from this. The pressure loss and enthalpy loss coefficients are often

20



defined as.

Y =
p0,inlet − p0,exit

p0,exit − pexit
(3.10)

ξ =
hexit − hexit,s
h0,exit − hexit

=
c2
exit

c2
exit,s

(3.11)

In equation (3.11), hexit,s is the exit static enthalpy which would be attained in an
isentropic expansion. The enthalpy loss can be modified and described as a velocity loss
coefficient given by.

L = c2
exit,s − c2

exit (3.12)

This subchapter presents different ways of modeling the various losses surrounding the
flow in a radial turbine. It is however naive to think that a one-dimensional analysis can
be able to completely predict the nature of the flow. Initially the volute is concerned,
it is followed by the nozzle, the impeller and finally the diffusor and vaneless spaces but
before going into the different components, the theory of profile loss which is defined in
[2] and used extensively of Aungier is presented.

Boundary layer analysis

When performing a mean-line analysis of a radial turbine it is convenient to use a simple
one-dimensional boundary layer model. This can help predict the profile and viscous
losses in the various components of the radial turbine. In a radial turbine the flow is
accelerating in each component, except for the diffusor. This results in a decrease in both
total and static pressure which, unlike in compressors where the flow is decelerating and
give rise to an adverse pressure gradient, provides thin boundary layers. The flow is also
more unlikely to separate because of the thin boundary layers that this accelerating flow
give rise to. According to Aungier [2], the model takes extensive use of four parameters
namely the boundary layer thickness, δ, the boundary layer displacement thickness, δ∗,
the boundary layer momentum thickness θ and the skin friction coefficient, cf . These
parameters are well defined in most elementary textbooks on fluid mechanics, for example
in reference [8]. The boundary layer thickness is defined in figure 3.5.

The boundary layer momentum thickness is defined as.

ρeu
2
eθ =

∫ δ

0
ρu[ue − u]dy (3.13)
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u

δ
y

x

Figure 3.5.: The boundary layer on a flat plate. Acknowledgment of Marcus Thern.

Where ρe and ue is the inviscid density and velocity respectively at the boundary layer
edge. This can be rewritten according to [14] and [15] which is cited in [2] .

θ =
cf

2une

∫ L

0
une dx (3.14)

Where ue is the boundary edge velocity, L is the flow path length through the com-
ponent. Depending on the nature of the flow (i.e. if it is accelerating or defusing) the
exponent n can be varied. Pai makes no variation and says that n = 5 provides a general
solution, this is cited in [2]. Aungier makes use of the following approximation of equa-
tion (3.14) which describes the boundary layer momentum thickness at the discharge
station.

θ = cfρave

[(
u1

u3

)5

+ 2

(
u2

u3

)5

+ 1

]
L

8ρ3
(3.15)

ρave =
ρ1 + 2ρ2 + ρ3

4
(3.16)

The density average value is included to model the compressible effects. The velocities
are taken as the absolute velocities in a stationary coordinate system and as the relative
velocities in a rotational one.

The boundary layer displacement thickness is derived from the definition of shape factor,
H.

δ∗ = Hθ (3.17)

From the 1
7th power-law and for turbulent flow at discharge it can be shown that, [2].

H = 1.2857 (3.18)

The skin friction coefficient is modeled according to Aungier’s empirical model, quoted
below.
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Skin friction cf

The reynolds number for all components of the radial turbine will be based on the
discharge density ρ3, velocity u3 and dynamic viscosity. Since it is on the annular end
walls in all the radial turbine components, except the volute, that the boundary layers
occur, it is natural to base the reynolds number on the width, b3 between these end
walls as non-dimensional length instead of the usual, the diameter, d. In the volute the
dimensional length will be taken as the equivalent diameter, Deq, of the section which is
under observation. This gives.

Red →
ρ3u3b3
µ

(3.19)

Red →
ρ3u3Deq

µ
(3.20)

This assumes that the boundary layers are fully turbulent, which according to Aungier
is not completely true. However, he says that this does not flaw the model because the
skin friction coefficient is not strongly a function of the reynolds number. Aungier cites
Nikuradse’s model [13] of pipe skin friction coefficient and says that this can be used in
this case. The flow is considered to be laminar if the reynolds number does not exceed
2000.

Red < 2000 (3.21)

The skin friction coefficient is then given by the laminar skin friction coefficient.

cf = cfl =
16

Red
(3.22)

When the flow is turbulent, care most be taken to examine if the peak-to-valley surface
roughness, e, will yield a rough wall skin friction coefficient, cftr, or a smooth wall skin
friction coefficient, cfts.

1√
4cfts

= −2 log10

[
2.51

Red
√

4cfts

]
(3.23)

1√
4cftr

= −2 log10

[ e

3.71d

]
(3.24)

The actual (peak-to-valley) surface roughness, e, is estimated by assuming a sin-wave
form, [2].

e =
erms

0.3535
(3.25)
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To determine if the smooth wall or the rough wall skin friction coefficient should be used
the definition of a surface roughness reynolds number can be applied.

Ree = (Red − 2000)
e

d
(3.26)

If Ree is less than or equal to 60 the turbulent skin friction coefficient is approxi-
mated with the smooth wall skin friction coefficient, otherwise it is approximated with
a weighted value of cftr and cfts.

cft = cfts; Ree ≤ 60 (3.27)

cft = cfts + (cftr − cfts)
(

1− 60

Ree

)
; Ree > 60 (3.28)

For the case when the reynolds number is in transition between laminar and turbulent
a weighted average is used.

cf = cfl + (cft − cfl)
(
Red
2000

− 1

)
(3.29)

Assuming that fluid of the mainstream and the boundary layer are instantly mixed
and that the mass and momentum are conserved the pressure loss for radial turbine
components can be approximated according to Lieblein and Roudebush [10], cited in
[2]. While it is applicable to the volute and the vaneless spaces, the nozzle rows and the
impeller need some further evaluation. This is described within the chapters covering
the nozzle and impeller respectively.

Yp =
∆p0

p03,is − p3
=

2Θ + ∆2

(1−∆)2
+
∑

∆Y (3.30)

Θ =
∑

θ/b (3.31)

∆ =
∑

δ∗/b (3.32)

The last term in (3.30) is different for the various components and is described in the
respective chapters. When a volute or a vaneless space is under consideration the Θ and
∆ in equations (3.31) and (3.32) can be used directly. The blade surface boundary layer
which arises on the nozzle and the impeller blades also needs to be taken into account
when the component under consideration is a nozzle row or an impeller. This is modeled
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by the following relationship.

Θ = 1 −
(

1−
∑ θw

bw

)(
1−

∑ θb
bb

)
(3.33)

∆ = 1 −
(

1−
∑ δw

bw

)(
1−

∑ δb
bb

)
(3.34)

The subscripts w and b indicates the boundary layers on the end walls and the blade
surfaces respectively.

The Volute

A performance analysis can be performed with the volute divided into two sections which
yield three stations where the geometry is specified, as in figure 3.6. The geometry needed
is presented in table 3.3.

Table 3.3.: The geometrical parameters which are needed to conduct the perfor-
mance analysis.

Inlet radius r1

Inlet area A1

Mid passage radius r2

Mid passage area A2

Exit radius r3

Exit width b3
Surface finish erms

Since this is the first component of the turbine all the inlet conditions are available. From
a mass balance at the inlet station together with the fact that the velocity is in general
entirely tangential, the flow conditions can be calculated. Assuming that the velocity
is still entirely tangential at the mid passage and that half of the mass flow has turned
off toward the nozzle blades a similar analysis can be conducted at this station. The
tangential velocity at the exit station is estimated assuming that the angular momentum
is conserved between the mid passage and exit.

c3θ = c2
r2

r3
(3.35)

The volute is exposed to two types of losses. The profile loss is determined using the
relations in chapter 3.2. The second type Aungier terms ”circumferential distortion loss”
[2]. This loss occurs due to the fact that the angular momentum is in fact not conserved
and the flow is thereby mixed, hence mixing losses result. The loss coefficient for this
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Inlet

A1

r1

r2

r3

A2

Figure 3.6.: The sections in a simplified model of the volute.

loss is given by.

Yθ =

( r1
r3
c1 − c3θ

c3

)2

(3.36)

The total loss coefficient is given by.

Y = Yp + Yθ =
p01 − p03

p03 − p3
(3.37)

Since the total enthalpy is constant through this component the exit total enthalpy
together with the exit total pressure and a mass balance yields all other flow variables.
When performing the mass balance, caution must be taken to include the boundary
layer thickness. This is done by.

ṁ = A3ρ3c3m(1−∆) (3.38)

The meridional velocity takes into account both the radial component and the axial
component of velocity according to.

c2
m = c2

r + c2
z (3.39)

The blockage can be determined using the boundary layer analysis described previously.
Baines presents a different correlation in [12].

∆ = 0.04∆LRe
−1/7
∆L (3.40)

Re∆L =
ρc∆L

µ
(3.41)
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Baines also presents a way of determining the total pressure loss.

∆p0 = Cf (∆L/D)
1

2
ρc2 (3.42)

(3.43)

In the equation above, Cf is the skin friction coefficient. It can either be calculated using
the relations presented previously or by using a Moody chart. Baines, however, recom-
mends that a skin friction coefficient slightly bigger than the one taken from a Moody
chart should be used. He argues that this should be done because of the additional
curvature effects in the volute.

The Nozzle

The main purpose of the nozzle blades is to lead the flow while creating swirl. This is
optimally done without any loss in total pressure. In a real situation however losses will
occur. This sub section serves as a demonstration of how the losses can be modeled.

According to Augnier the pressure losses are a combination of two parts. The first part
includes the profile losses while the second includes losses derived from the fact that
the flow does not follow the blade at the inlet, these are called incidence losses. The
incidence phenomenon is demonstrated in figure 3.7.

Y = Yp + Yinc =
p04 − p06

p06 − p6
(3.44)

p06 =
p04 + Yp6

1 + Y
(3.45)

i = α − β (3.46)
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β

βb

i

Figure 3.7.: The incidence phenomenon.

The performance analysis, described in [2], begins with the nozzle blades being divided
into two sections yielding three stations. An inlet station, an exit station and one in
between. At all of these stations the radius, r, the axial coordinate, z, the passage width,
b, the blade angle, β and blade thickness, t, are specified. Additionally the number of
blades, the surface finish and the throat length and width, o and bth are specified.

r4
rth

r6

o

β4

β6

t

Figure 3.8.: The nozzle row geometry. Adapted from Aungier [2].
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The meridional distances can then be calculated by a numerical integration.

m2 =

∫ m

0
dr2 + dz2 (3.47)

The throat radius can then be estimated. Aungier [2] derives an expression which is
recited here.

rth = r6 −
(
∂r

∂m

)
6

o2

2s6
(3.48)

In the equation above s6 corresponds to the exit nozzle pitch. The first derivative of r
with respect to m can be approximated, according to Aungier, as follows.(

∂r

∂m

)
6

=
m6(r6 − r5)

m5(m6 −m5)
− (m6 −m5)(r6 − r4)

m5m6
(3.49)

The pitch at every station is defined as.

s =
2πr

NN
(3.50)

When the throat radius, rth, is determined it is possible to calculate the exit flow angle.
First the throat flow angle has to be determined. This is done, as cited in [2], by slightly
modifying the sine rule, specified earlier.

sinαth =
btho

s6b6
(3.51)

Then the exit flow angle is determined according to.

tanα6 =
r6

rth
tanαth (3.52)

Finally it is possible to calculate the deviation angle, δ6. Deviation results from the fact
that the flow does not follow the blade at the trailing edge, much like incidence for the
leading edge. Baines, [12], explains the deviation comes from an underturning caused
by the fact that the flow is diffusing from the throat to the trailing edge but it also
exposed to a sudden expansion caused by the finite trailing edge thickness. Baines also
shows how the deviation depends on nozzle exit mach number, the deviation tends to
be a bit higher for high mach number. He also mentions how difficult it is to predict
the deviation and gives an example of how the sine rule, equation (3.51), predicts the
flow angle rather poorly for nozzles of radial turbines. Instead Baines proposes another
model, [3]

For M < 0.3 : α4 = a0 + a1 cos−1(o/s) (3.53)

For M > 0.3 : α4 = a0 + a1 cos−1(o/s) + a2(M − 0.3) (3.54)
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The deviation is given by.

δ6 = β6 − α6 (3.55)

The flow path length, needed to determine the profile loss, can be integrated using the
following expression

L =

∫ m

0

dm

sinβ
(3.56)

The flow area at every station is determined according to.

A = b(2πr sinβ − tNN ) (3.57)

At the inlet station to every section all flow data can be calculated using the upstream
flow angle and a mass balance. The flow data at the mid station of each section can also
be calculated using a mass balance and assuming that α = β. At the exit station the
losses need to be taken into account.

The profile loss is approximated using the assumptions in the sub chapter about bound-
ary layer. To approximate the incidence loss Aungier uses a relationship which includes
a parameter called ”optimum incidence angle”, i∗. It is defined below.

i∗ =

√
L

s6

(
3.6

√
10t5
L

+
|β6 − β4|

3.4

)
− |β6 − β4|

2
(3.58)

This relationship was originally developed by Herrig et al. [9]. The corresponding
optimal flow angle is defined as.

α∗ = β4 − i∗ sign(β6 − β4) (3.59)

The incidence loss can now be calculated.

Yinc = sin2(α4 − α∗)
p04 − p4

p06 − p6
(3.60)

Baines also derives an expression which correlates the enthalpy loss over the nozzle blade,
[3].

ξ =
0.05

Re0.2
b

(
tan2 β6

s/c
+
o

b

)
(3.61)

It can be noted that Baines correlation is much easier to apply.
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It is mentioned in section 3.2 that for nozzle and impeller blades not only end walls
have boundary layers which need to be taken into account when estimating the losses.
There are also boundary layers building up on the blade surfaces. A simple blade loading
diagram is used to approximate the velocity distribution on the pressure surface and the
suction surface. An example of such a diagram is presented in figure 3.9.

Meridional distance

Mean su
rfa

ce

Pr
es

su
re

 s
ur

fa
ce

Suction surface

c1

c2p

c2

c2s

c3

Δc

Δc

Figure 3.9.: Simple blade loading diagram used to approximate the surface distri-
bution on the pressure surface and the suction surface. Figure adapted
from [2].

The velocity difference, ∆c, in figure 3.9 is approximated according to the following
relationship.

∆c =
2π(r6c6θ − r4c4θ)

LNN
(3.62)

It is possible for the flow to be choked and a check needs to be performed to control
whether this is the case or not. The throat is the station at which the flow will choke
first. Consequently the check will be performed at this station. The mass flow which is
associated with a choked flow is.

ṁ∗ = NN bth o (1−∆)ρ∗c∗ (3.63)

In this equation, ∆ is taken from equation (3.32). The static pressure which is desired
under supersonic conditions is less than the static pressure at sonic conditions. This
ultimately requires the calculation process to make additional iterations. An isentropic
expansion from the choked solution will be assumed to yield the right static pressure.
This however, is only possible as long as the static pressure does not yield a meridional
velocity greater than the sonic velocity.

c6m =
ṁ

(1−∆)2πr6b6ρ6
6 a6 (3.64)
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When c6m > a6 a shock wave might occur adding losses. To include these losses they
have to be modeled.

It is possible to use variable nozzle blades, which often is called a ”VGT”-arrangement.
In this arrangement the nozzle blades can be turned to hold up a constant pressure level
at the inlet to the nozzle blades. The fact that the blades are turned inevitable means
that a clearance at the tip and bottom will arise. Baines shows that this clearance
becomes significant when the blade width becomes small and that the loss which arises
from it must be taken into account [12]. The losses arise due to the fact that the leakage
flow is not turned to the same degrees as the flow inside the nozzle row which can cause
large incidence at the impeller tip. Qiu et. al. developed a mean-line method to predict
the losses which arise from the clearance [16]. Their conclusion is the same as Baines’s
with the addition that with a smaller nozzle opening, the clearance effect decreases and
that the presence of a clearance increases the choking limit of the nozzle.

The Impeller

The performance analysis of the impeller is far more difficult and complex than those of
the other components. The fluid is in general turned 90 degrees and this generates hub-
to-shroud flow profile gradients which are difficult to model. The geometry is specified
at the inlet, the mid passage, the outlet and the throat. The geometry variables are
presented in table 3.4. The geometry can be seen in figure 3.10 and in figure 3.11.

r7
r9s

r9h

Figure 3.10.: The geometry of the impeller vanes.

There is a greater amount of different losses which have to be taken into consideration
besides the ones described for the volute and the nozzle row. Aungier defines six loss

32



bLb7

r9

b8
r8

ψ8

b9
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Figure 3.11.: The impeller geometry with notations. Figure adapted from [2].

Table 3.4.: The geometry needed to run the performance analysis.

Inlet radius r7 Mid passage radius r8 Outlet radius r9

Inlet width b7 Mid passage width b8 Outlet width b9
Inlet axial coord. z7 Mid passage axial coord. z8 Outlet axial coord. z9

Inlet tangent angle φ7 Mid tangent angle φ8 Outlet tangent angle φ8

Inlet blade angle β7 Mid blade angle β8 Outlet blade angle β9

Inlet blade thickness t7 Mid blade thickness t8 Outlet blade thickness t9

Throat blade to blade width o Throat passage width bth Number of blades NR

Clearance bc Clearance bL Surface finish erms

sources.

Y = Yp + Yinc + YBL + YHS + YCL + YQ (3.65)

The profile loss, Yp, derived in chapter 3.2, is determined in a similar manner as the
one for the nozzle blades. While the velocities used in expression for the nozzle blades
profile loss are absolute, relative velocities are used when calculating the profile loss
on the impeller. The meridional path length can be approximated using a third-order
polynomial that matches the end-point coordinates and slopes. The is according to
Aungier an accurate approximation. The mean surface curvature is then given by.

κm =
|φ9 − φ7|
m9

(3.66)
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The flow path length is given by.

L =

∫ m

0

dm

sinβ
(3.67)

The sub sonic flow angle is determined according to.

rth = r9 −
o2 sinφ9

2s9
(3.68)

sinα′th =
btho

s9b9
(3.69)

tanα′9 =
r9

rth
tanα′th (3.70)

The incidence loss can be determined using a relationship derived by Carmichael [6], it
is recited in [2] and the results in [2] are presented here.

c∗7θ = σ(U7 − c7m) cotβ7 (3.71)

cotα∗7 =
c7m

c∗7θ
(3.72)

Yinc = sin2(α7 − α∗7)
p′07 − p7

p′09 − p9
(3.73)

In the expressions above, c∗7θ and α∗7 are the ideal inlet tangential velocity and ideal inlet
flow angle respectively. The slip factor can be modeled according to Aungier’s expression
from [2]. It is a modification to Wiesner’s model.

σ = | sinφ7|
√

sinβ7

N0.7
(3.74)

Aungier argues that the expression yielding the slip factor above needs correction if the
solidity becomes too low. The expression above can be used until the radius ratio r9/r7

exceeds a value of r9/r7 > (r9/r7)lim.

(r9/r7)lim =
σ − σ0

1 − σ0
(3.75)

σ0 = sin(19◦ + β7/5) (3.76)

When this value is exceeded, the slip factor is calculated according to.

σcorrected = σ(1− ξ) (3.77)

ξ =

(
r9/r7 − (r9/r7)lim

1− (r9/r7)lim

)√β7/10

(3.78)
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Clearance losses emerge from the fact that the flow does not follow the blade and hence
does not tribute any work. Aungier proposes that this loss be modeled using a pressure
difference over the clearance gap.

∆p (ρm(rb)mLNN ) = ṁ|r7c7θ − r9c9θ| (3.79)

ρm and (rb)m is approximated using the relationship in equation (3.16). The velocity
of the flow across the clearance gap must be determined and Aungier uses the following
relationship.

uCL =

√
2∆p

ρm
(3.80)

Then the mass flow across the clearance can be approximated.

ṁCL = 0.816ρmuCLNRδc (3.81)

Finally the clearance loss is given by.

YCL =
ṁCL∆p

ṁ(p′09 − p9)
(3.82)

The losses which arise from the blade loading and hub-to-shroud loading must be taken
into account. Aungier derives relationship for both losses which are presented here.

YBL =
1

24

[
∆w

w9

]2

(3.83)

YHS =
1

6

[
κmb9w8

w9 sinα9

]2

(3.84)

It has been mentioned that the total enthalpy is kept constant across the nozzle row
and the volute. It is possible to use a similar relationship across the impeller. However,
the parameter which is constant is the rothalpy. The rothalpy is defined as.

I = h07 − ωr7c7θ (3.85)

The disk friction loss can be included in the expression for the rothalpy.

I = h07 + ∆HDF − ωr7c7θ (3.86)

The disk friction loss, ∆HDF can be modeled and Aungier presents one example [2].
The exit relative total enthalpy can then be determined.

h′09 = I +
1

2
(ωr9)2 (3.87)

The various losses can now be summed up to yield the total loss coefficient.

Y = Yp + Yinc + YBL + YHS + YCL + YQ (3.88)
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The moisture loss, YQ, takes into account that the fluid might condensate during the
expansion. In that case the part of the fluid which condensates will not contribute to
the work.

Finally the total relative pressure is given by.

p′09 =
p′09,ideal + Yp9

1 + Y
(3.89)

Where p′09,ideal is the ideal total relative pressure and can be determined using the exit
total relative enthalpy and the entropy.

Baines takes on a slightly different approach. He categorizes the losses into following
groups. Incidence loss, passage loss, trailing edge loss, tip clearance loss, shock loss (due
to supersonic expansion) and windage loss. Correlations for the different losses can be
found in [12].

Finally the exit static enthalpy together with a mass balance and the equation of state
yield all the flow variables. The mass balance at the impeller exit is performed according
to.

ṁ = (1−∆)2πr9b9ρ9w9 sinα′9 (3.90)

Where ∆ is the blockage arising from the boundary layer on the end walls. Similarly to
the nozzle blades, the impeller must be checked to see if a choke is present or not. The
choking mass flow is given by.

ṁ∗ = NRbtho(1−∆)ρ∗w∗ (3.91)

In the case of choking an isentropic expansion from the throat to the impeller exit yields
all flow variables. A check must be done to make sure that the meridional exit velocity
does not exceed the sonic speed.

The Diffusor

The performance analysis of the diffusor presented here is a simple analysis. More
detailed analyses can be found in the literature regarding exhaust diffusor. The analysis
described in this subsection is taken from Aungier, [2]. He describes it as a direct analysis
which often can be more convenient in cases where the total-to-static pressure ratio is
defined rather than the mass flow. The geometry which is needed to perform the analysis
is presented in figure 3.12 and in table 3.5.
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Figure 3.12.: The geometry used for the performance analysis of the diffusor.

Table 3.5.: The geometry needed for the performance analysis.

Inlet Exit
Radius r9 r10

Axial coordinate z9 z10

Slope angle φ9 φ10

Initially the linear distance and the slope difference is approximated.

d =
√

(z10 − z9)2 + (r10 − r9)2 (3.92)

∆φ = |φ9 − φ10| (3.93)

Aungier defines the flow path length according to.

L =
d∆φ

2 sin(∆φ
2 )

: ∆φ > 0 (3.94)

L = d : ∆φ 6 0 (3.95)

Unlike the other components of the radial turbine, the flow is decelerating in the diffusor.
The resulting boundary layers are much thicker than in an accelerating flow. This
analysis serves to measure the thickness of the boundary layers at the exit, much as the
boundary layer analysis in chapter 3.2. The divergence angle, mentioned in the section
describing preliminary diffusor design, has an impact on the blockage and is given by.

2θc = 2 tan−1

(
b9
A10/A9 − 1

2L

)
(3.96)
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The exit blockage is according to Aungier, given by.

∆10 =
{K1 +K2(D − 1)}LA9

A10b9
(3.97)

D =
(
√
pvr + 1)2

4
(3.98)

pvr =
p09 − p9

p09 − p10,ideal
(3.99)

In equation (3.97), pvr is the ideal velocity-pressure ratio and D is the diffusion factor.

The Vaneless Space

The radial turbine consists of one or two vaneless spaces. One after the volute and
possibly one after the nozzle blades. The performance analysis presented here is rather
simple. The vaneless space is divided into two sections yielding three stations. The
geometry which is needed is presented in table 3.6.

Table 3.6.: The geometry needed for the performance analysis.

Inlet Mid Exit
Radius r1 r2 r3

Axial Coordinate z1 z2 z3

Passage width b1 b2 b3

A simple integration of the coordinates yields the meridional coordinates.

m =

∫ √
dz2 + dr2 (3.100)

The passage areas for the different stations are calculated according to.

A = 2πrb (3.101)

The inlet flow conditions are taken from the performance analysis of the upstream com-
ponent. The angular momentum is assumed to be conserved and the tangential velocity
of the downstream station is given by.

cθ = cupstream,θ
rupstream

r
(3.102)

Aungier defines an entrance loss according to.

Yin =

([
A1

Aupstream
− 1

]
sinα1

)2 p01 − p1

p03 − p3
(3.103)
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The total loss coefficient is given by.

Y = Yp + Yin =
p0,upstream − p03

p03 − p3
(3.104)

Where Yp is the profile loss coefficient. The flow conditions are given by a mass balance
together with the static enthalpy and the equation of state. Finally a check must be
performed to make sure that the meridional velocity does not exceed the sonic speed.
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4. Off-Design Performance Analyses

”TurbAero” uses a program called ”RIFT” to conduct off-design analyses. With the
help of ”RIFT”, two radial turbines have been analyzed. The results from ”RIFT” are
then compared to data from experimental testings to investigate the ability of ”RIFT”
to predict off-design performance of radial turbines. The turbines and test data are
provided by Volvo Powertrain AB and the chapter is divided into two sections containing
the different simulations of the different turbines. The governing equations which are
implemented in ”RIFT” have been introduced in chapter 3.

”RIFT” uses three stations of every component of the radial turbine (i.e. one for the
volute, nozzle, rotor and diffusor). At every station the geometry is specified on a mean-
line basis, (e.g. the radius, axial coordinate, blade angle and width are given). The
geometry can be inserted manually but that would inevitable lead to errors. Instead
”RIGPAC” is used to model the geometry of the nozzles and rotors. The geometry
is imported into ”RIGPAC”, this is done in a different way depending on whether it
is the nozzle or the rotor which is modeled. When a rotor is modeled the geometry
is specified for the hub and shroud contours. A series of points connecting the two
contours are defined using radial and axial coordinates. The blade angle and thickness
is also specified at every point. The nozzle blades are modeled using the x-, y- and
z- coordinates for the suction and pressure surfaces respectively. From ”RIGPAC” the
desired geometry is exported to ”RIFT”.

The geometry of the volute is modeled using a program called ”VOLDES”. The outlet
radius, width and flow angle are specified. The resulting geometry is exported to ”RIFT”.
The vaneless spaces’ geometry are specified directly in ”RIFT”. The inlet radius, axial
coordinate and width are taken as the exit equivalents from the upstream component.
The corresponding procedure is applied for the outlet, however, with the downstream
component’s inlet radius, axial coordinate and width.

It is possible to use different sets of input parameters when performing simulations in
”RIFT”. The inlet total pressure and temperature together with the shaft speed must
be specified. Then it is possible to specify either the mass flow, total-to-static pressure
or the static pressure.
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Figure 4.1.: The geometry of the modeled rotor is specified on the hub and shroud
contours. A series of points connecting the two contours are defined
using radial and axial coordinates.

4.1. The first radial turbine

The tests by Volvo Powertrain AB were performed in a so called ”cold-rig”. The turbine
is designed to run at a high inlet total temperature, however, when Volvo run their tests
the inlet total temperature was held at 373 K. Additionally the turbine was scaled by
a factor of 0.7. In light of this, two different analyses were performed. One where the
turbine was scaled and operating at flow conditions similar to those at which the tests
were made and one where the turbine was not scaled and the flow conditions were similar
to those at which the turbine was designed to operate at. This was done to evaluate if
it made any difference to the results.

The test results was provided by Volvo Powertrain AB. Only the expansion ratios were
given and, consequently, it was necessary to calculate the inlet pressures from these
ratios. The speed and mass flow are given as corrected mass flow and corrected speed
respectively. They were converted to give the appropriate mass flow and speed using
equation (3.5).

4.1.1. Simulations on the original turbine

The first simulation used the original geometry and inlet conditions. An attempt was
made to resemble the actual gas which is supposed to flow through the turbine, the mole
fractions of this gas are shown in table 4.1. The geometry was given as coordinates
and imported to program ”RIGPAC” in ”TurbAero”. From ”RIGPAC” the mean-line
geometry was exported to ”RIFT”. No diffusor was used and a volute was created,
using ”VOLDES” in ”TurbAero”, to guide the flow onto the nozzle blades with as little
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incidence as possible. A surface roughness of 64 µm was used for all components. An
axial clearance of 0.5 mm was used between the impeller and the disk. A radial clearance
of 0.5 mm was used for the impeller.

Table 4.1.: The simulations with the original radial turbine were attempting to re-
semble the real inlet flow conditions. The mole fractions of the gas used
in ”RIFT” are presented in this table.

Carbon dioxide, CO2 0.12
Nitrogen, N2 0.55
Oxygen, O2 0.23
Water, H2O 0.10

In the performance analyses the inlet total temperature and the inlet total pressure were
held constant. The rotational speed and the total-to-static expansion ratio were then
altered to generate the performance maps. It was explained in chapter two that the
expansion ratio and mass flow could not be specified at the same time. In the light of
this it was decided to specify the expansion ratio and compare the mass flow to the mass
flow from the experimental tests and thus see if they converged. The input variables are
summarized in table 4.2.

Table 4.2.: The simulations, on the original radial turbine, were performed with a
constant inlet total temperature and pressure. The total-to-static ex-
pansion ratio and shaft speed were altered. The mass flow was used as
a convergence parameter.

Inlet total temperature, T01 Hot
Inlet total pressure, p01 High
Expansion ratio, p01/p9 Varying
Rotational speed, N Varying
Mass flow, ṁ Calculated

The efficiency were measured in two different ways. ηTT,m corresponds to torque mea-
sured efficiency and ηTT,T corresponds to temperature measured efficiency. Which one
that has best compliance is hard to determine. The error between the experimental
results and simulation results is demonstrated in figures 4.2 and 4.3. It was decided to
see if the simulated turbine’s geometry in ”RIFT” corresponded to the tested turbine’s.
Since the simulations used the total-to-static expansion ratio as an input variable, it was
decided to compare the simulated mass flow with the mass flow measured in the test
rig. They should be consistent with each other. This comparison can be viewed in figure
4.4 which shows the mass flow versus total-to-static expansion ratio with different speed
lines.
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Figure 4.2.: The error from comparing the temperature measured efficiency and the
simulated efficiency. The fifteen and five percent error lines are shown.
Respective minus five and minus fifteen can be imagined.
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Figure 4.3.: The error from comparing the torque measured efficiency and the sim-
ulated efficiency. The fifteen and five percent error lines are shown.
Respective minus five and minus fifteen can be imagined.
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Figure 4.4.: The mass flow as a function of total-to-total expansion ratio with dif-
ferent dimensionless shaft speeds. The circles represent the simulation
results and the squares represent the experimental results.

4.1.2. Simulations on the tested turbine

The second part of simulations was performed on the tested turbine. ”Tested” in the
meaning that it refers to the scaled turbine. The tests in the rig were performed with air
as fluid and as a consequence so were the simulations. The inlet total temperature and
the outlet static pressure was fixed at 373 K and 1.07 bar respectively. The inlet total
pressure and the rotational speed were then altered while the mass flow was calculated to
generate the convergence described previously. The input flow variables are summarized
in table 4.3. The geometry for the original turbine where scaled by a factor of 0.7 and
then imported into program ”RIGPAC”. From ”RIGPAC” the mean-line geometry was
exported to ”RIFT”. No diffusor was used and a volute was created to guide the flow
onto the nozzle blades with as little incidence as possible. A surface roughness of 64
µm was used for all components. An axial clearance of 0.5 mm was used between the
impeller and the disk and a radial clearance of 0.5 mm was used for the impeller.

The results are presented in the same manner as for the original turbine discussed previ-
ously. Figures 4.5 and 4.6 show the error between the experimental results and simulation
results. It was decided to see if the simulated turbine’s geometry in ”RIFT” corresponded
to the tested turbine’s. Since the simulations used the total-to-static expansion ratio as
an input variable, it was decided to compare the simulated mass flow with the mass flow
measured in the test rig. They should be consistent with each other. This comparison
can be viewed in figure 4.7, which shows the mass flow versus total-to-total expansion
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Table 4.3.: The simulations, on the scaled radial turbine, were performed with a
constant outlet static pressure and inlet total temperature. The inlet
total pressure and shaft speed were altered. The mass flow was used as
a convergence parameter.

Inlet total temperature, T01 373 K
Inlet total pressure, p01 Varying
Outlet static pressure, p9 1.07 bar
Rotational speed, N Varying
Mass flow, ṁ Calculated

ratio with different dimensionless speed lines.
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Figure 4.5.: The error from comparing the temperature measured and simulated
total-to-total efficiency. The fifteen and five percent error lines are
shown. Respective minus five and minus fifteen can be imagined.
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Figure 4.6.: The error from comparing the torque measured and simulated total-
to-total efficiency. The fifteen and five percent error lines are shown.
Respective minus five and minus fifteen can be imagined.
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Figure 4.7.: The mass flow as a function of total-to-total expansion ratio with dif-
ferent dimensionless shaft speeds. The circles represent the simulation
results and the squares represent the experimental results.
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4.1.3. Summary

Off-design performance of the first radial turbine have been simulated using ”RIFT”.
When Volvo performed tests on this turbine, they used a scaled prototype and the test
were performed in a cold rig. To evaluate the influence of that and what difference it
may bring to the results, the turbine was modeled and the performance was simulated in
”RIFT” for two cases. One in which the original turbine was modeled and the analyses
used the imaginary input data, and one in which the turbine and input data were
modeled according to the prototype used in the tests. The results from the cold rig
were comprehensive which helped in modeling the input data to the simulation analyses.

The results show relatively good agreement when comparing the total-to-total efficiency
for both cases. Depending on which total-to-total efficiency is used in the comparison,
the torque- or the temperature measured, small differences can be seen. The torque
measured efficiency shows rather large difference for small expansion ratios, this can be
seen for both cases.

It is of great importance when evaluating the results that the geometry used in the
simulations is consistent with the one used in the rig. With such a small device, which
this radial turbine is, even small deviations from the original design is going to influence
the results. The mass flow is mainly controlled by the stator throat, hence great care
should be taken when modeling it. The geometry which was given as input to this
simulation was the imaginary geometry and it is possible that when the turbine was
manufactured, due to tolerances and the fact that the geometry is modeled in different
CAD applications, it did not result in the same geometry. A deviating geometry will not
only lead to that the mass flow is wrongly predicted, but the pressure loss and thus the
efficiency will not be accurately determined either. Thus the comparison in mass flow
is a good measurement on how well the modeled geometry complies with the geometry
used in the rig and consequently how well the losses can be predicted. The mass flow
presented in figures 4.4 and 4.7 show good agreement for the case when the scaled turbine
was modeled. However, the same cannot be said for the case with the original turbine.
An explanation may come from the fact the mass flow and shaft speed are calculated
from the dimensionless mass flow and shaft speed using equation (3.3) and it does not
take which fluid is used into account.

The surface roughness was not given together with the geometry and had to be estimated.
It is a parameter which is hard to determine and which greatly influence the prediction of
the losses. This was discovered early in the simulations and it was decided to specify the
surface roughness as constant in all components. In retrospect, it can be thought that
the estimated surface roughness was a bit high which probably led to an underestimated
efficiency. The efficiency was, however, probably also overestimated due to the fact that
the tip of the impeller is scalloped. E.A. Baskharone presents a graph, figure 4.8, which
can be used to estimate the losses due to scalloping of the impeller tip, [5]. From this
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graph and the geometry of the impeller it is possible to predict how much the scalloping
will influence the performance.

Figure 4.8.: The use of scalloping of the impeller tip generates losses. This graph,
presented by E.A. Baskharone, can be used to predict them, [5], and
shows the relative efficiency as a function of the portion of scalloping.
The figure is taken from [5].

When analyzing the results one has to bear in mind that ”RIFT” uses a meanline
modeling of the losses and it would be naive to think that it could predict them in a way
which would be possible with ”CFD”. It should also be clear that different measurement
errors may be included into the test results. With that in mind the results show very
good agreement with the results from the test rig.

The simulation results from the case which tried to resemble the conditions from the cold
rig showed best agreement, according to flow and because of that, future simulations will
be performed in the same manner.
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4.2. The second radial turbine

Volvo have performed tests on the radial turbine in their cold rig. The tests were per-
formed with air as fluid and a constant inlet total temperature of 373 K. The rotational
shaft speed were altered together with the total-to-total expansion ratio in order to gen-
erate performance maps. It is possible to give the total-to-static expansion ratio, the
mass flow and the static exit pressure as input variables in ”RIFT” but since none of
those are available from the test results a total-to-static expansion ratio was guessed and
iterated until the simulated total-to-total expansion ratio converged with the one from
the tests.

4.2.1. Simulations

The simulations in ”RIFT” were performed with the geometry, generated in a similar
fashion as previously described in chapter 4.1. The inlet total temperature was held
constant at 373 K and the outlet total pressure was held constant at 1.05 bar. The inlet
total pressure was then calculated using the total-to-total expansion ratio (taken from
the test results) and the outlet total pressure. The total-to-total expansion ratio varied
and consequently also did the inlet total pressure. The simulations were performed to
converge on the total-to-total expansion ratio as discussed previously. The same surface
finish was used as for the first radial turbine presented in chapter 4.1, namely 64 µm.
When performing the first couple of simulations it was observed that the simulated mass
flow did not match the mass flow measured in the rig. It was concluded that the nozzle
throat of the modeled geometry did not match the nozzle throat of the tested turbine.
A simple fix to this problem was applied, namely to change the nozzle throat until
convergence of the mass flow was achieved at the design point. The geometry was then
locked and all simulation performed without changing it.

Table 4.4.: The simulations on the second turbine were performed with a constant
inlet total temperature and outlet total pressure. The inlet total pressure
and shaft speed were altered. Each simulation used a number of iteration
to converged on the specified total-to-total expansion ratio. The mass
flow and total-to-total efficiency were calculated.

Inlet total temperature, T01 373 K
Outlet total pressure, p09 1.05 bar
Inlet total pressure, p01 Varying
Rotational speed, N Varying
Expansion ratio, p01/p09 Specified
Mass flow, ṁ Calculated
Efficiency, ηTT Calculated
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Figure 4.9 shows the error between the experimental results and simulated results. It
was decided to see if the simulated turbine’s geometry in ”RIFT” corresponded to the
tested turbine’s. Since the simulations used the total-to-total expansion ratio as an
input variable, it was decided to compare the simulated mass flow with the mass flow
measured in the test rig. They should be consistent with each other. This comparison
can be viewed in figure 4.10 which show the mass flow versus total-to-total expansion
ratio with different dimensionless shaft speed lines.
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Figure 4.9.: The error from comparing the torque measured and simulated total-
to-total efficiency. The fifteen and five percent error lines are shown.
Respective minus five and minus fifteen can be imagined.

4.2.2. Summary

Off-design performance of the second radial turbine has been simulated using ”RIFT”.
The tests, performed by Volvo, where conducted in a cold rig. It could be seen, earlier,
from the results from the simulations of the first radial turbine that best agreement
where met when the simulated geometry and flow conditions resembled those which
prevail during the tests. In light of this it was decided to simulate the performance of
the second turbine in a similar manner.

The results from the simulations can be seen in figures 4.9 and 4.10 which show the
total-to-total efficiency and mass flow as a function of the total-to-total expansion ratio
with different dimensionless shaft speed lines respectively. The total-to-total efficiency
show good agreement except for small expansion ratio. However, since the efficiency
was calculated using torque measurement (from the test results), this trend was rather
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Figure 4.10.: The mass flow is presented as a function of total-to-total expansion
ratio with different dimensionless shaft speed lines. The circles repre-
sent the simulation results and the squares represent the experimental
results.

expected (remembering the same pattern from the first turbine).

The comparison of the simulated mass flow and the mass flow from the rig show very
good agreement which indicates that the geometries matched. As mentioned earlier the
nozzle throat was changed before the simulations from the one calculated by ”RIGPAC”.
It should be understood that different sources of errors may arise along the way from
design to manufacturing. It is possible that the nozzle geometry changed from the one
at the sketch table to the final manufactured and tested version.
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5. Design Of A Radial Turbine

In the previous chapter, performance analyses on a mean-line basis were conducted on
two turbines provided by Volvo Powertrain AB. It was shown that the program tool used,
”TurbAero”, was able to match the experimental data in a relatively good manner. In
this chapter, ”TurbAero” is further used with the aim to aerodynamically design a radial
turbine. It can be of convenience for the reader of this report to get familiarized with
the programs and procedures which are used and therefore a short introduction will be
provided next.

TurbAero was introduced in chapter four, however, a big part of the program package
was not presented. ”TurbAero” is a complete design system for radial and axial turbines.
In this work, however, only those programs used when operating with radial turbines
are employed. The working procedure when designing a radial turbine and executing
performance analyses on existing radial turbines differ.

When designing a radial turbine the programs shown in figure 5.1 are employed. In this
figure also the working procedure is demonstrated. Before anything can be done the
operating fluid needs to be specified. This is done in the program called ”RKMOD”.
The design process is then initiated in the program called ”RIFTSIZE”. ”RIFTSIZE”
develops ”preliminary stage designs from performance specifications and empirical cor-
relations, with minimal input by the user”[TurbAero manual].

RIFTSIZE

RIFT

RIFTNOZ

FLOW3D

VOLUTE

GASPATH

BEZIER

RIGPACB2B2D

TDB2B

RKMOD

Figure 5.1.: The programs used in TurbAero and the iteration process when design-
ing a turbine.
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The preliminary design performed in ”RIFTSIZE” can be updated to a detailed design.
This can be seen in figure 5.1. Input files to a variety of programs can be exported
from ”RIFTSIZE”. ”VOLUTE” is a program which sizes the volute. ”RIFTNOZ” is an
equivalent program which sizes the nozzle. ”BEZIER”, ”GASPATH” and ”RIGPAC”
are all programs which develop the geometry of the radial turbine. ”RIFT” is a mean-line
performance program which can be used to generate off-design maps. From ”RIFT” it
is possible to export an input file with flow conditions to a program called ”FLOW3D”.
”FLOW3D” uses a quasi-three-dimensional solver which supports end-wall and blade
surface boundary layer calculations. The geometry can be supplied either from ”GAS-
PATH” or ”RIGPAC”. In ”FLOW3D” flow calculations are performed and the output
includes preliminary blade loading charts. The calculations performed in ”FLOW3D”
can be updated in either ”B2B2D” or ”TDB2B”. They are program which perform
blade-to-blade analyses. ”B2B2D” should be used when subsonic or slightly transonic
conditions prevail. This is because it uses a potential flow solver. When supersonic
conditions prevail the time-marching solver in program ”TDB2B” is much better suited.
The computational time required for ”TDB2B” is a bit longer than for ”B2B2D”.

RIFT

RIFTNOZVOLUTE

RIGPACFLOW3D

B2B2D

TDB2B

RKMOD

Geometrical input 

Flow conditions

Figure 5.2.: The programs used in TurbAero and the iteration process when con-
ducting performance analyses on radial turbines.

The working procedure when conducting performance analyses on existing radial tur-
bines is a bit different from that of designing. The procedure was introduced in chapter
four, however, a more in-depth view is given here. The programs used and in what
manner they are used in is demonstrated in figure 5.2. The working fluid is composed
and chosen in program ”RKMOD”. The geometry of the turbine is employed in pro-
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gram ”RIGPAC”. All the geometry variables can either be inserted manually or im-
ported using a simple text file. The geometry is then exported to programs ”RIFT” and
”FLOW3D”. The flow conditions are specified in ”RIFT”. Together with the geometry
imported from ”RIGPAC” it is possible to simulate mean-line performance analyses in
”RIFT”. In this way full off-design maps can be constructed. If one operating point
is chosen, further performance evaluation can be performed in program ”FLOW3D”.
The geometry is imported from ”RIGPAC” and it is possible to achieve preliminary
blade loading plots. These blade loading plots can then be updated in either program
”B2B2D” or program ”TDB2B”. The program chosen is depending on the component
mach-number value.

To have any qualitative meaning, this study needed to take on some delimitation. It was
decided that to define the design point, the input data from the second radial turbine,
described previously, should be used.

From tests of the second radial turbine it was concluded that the turbine was too large.
It was decided, therefore, to make an effort to let the new design be smaller.

Initially a preliminary design resulting from a mean-line analysis is conducted. This
preliminary design is then analyzed with one- and two-dimensional tools. As mentioned
before the preliminary design would most certainly have to be updated in a detailed
design making the design procedure iterative.

5.1. Preliminary design

Design in RIFTSIZE

The preliminary design starts in the program ”RIFTSIZE”. Since the only parameter
which is not specified is the speed, the geometry of the impeller tip will depend solely
on it. It was mentioned earlier that either the rotational speed or the specific speed
can be used and that they are functions of each other. In this case the specific speed is
chosen to specify the geometry of the impeller tip. According to Aungier [2], the specific
speed should be in the range of 0.45-0.75. The highest possible efficiency to be attained
in ”RIFTSIZE” is achieved with a specific speed of 0.55. This gives a total to static
efficiency of 0.87. Unfortunately the radius of the impeller tip is then estimated to 66.4
mm. To achieve a reasonable radius, which in this case means lower, it is necessary to
increase the specific speed to 0.77. This gives a lower radius of the impeller tip.

The next step in the preliminary design is to size the impeller. In this case the default
settings are chosen. They are summarized in table 5.1 and derived in the appendix. It
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should be noted that the angles are taken with respect to tangent.

Table 5.1.: The specifications for the rotor sizing.

Inlet blade angle 84.73◦

Inlet absolute flow angle 19.22◦

Inlet blade thickness 2.0 mm
Exit blade thickness 1.0 mm
Exit hub radius 9.40 mm
Exit shroud radius 37.50 mm
Rotor axial length 42.10 mm
Number of blades #

A selection of results from the impeller sizing is presented in table 5.2. It can be seen
from the results that the incidence angle is equal to the ideal incidence angle. This is not
a coincidence as the default setting in ”RIFTSIZE” is to achieve this. The squareness
is a bit high but according to Balje [4] it should not cause any problems. The ratio of
exit meridional velocity to inlet blade speed, c9m/U7 is within the range which Balje has
specified. The ratio of exit to inlet meridional velocity is well within the range which
Wood [18] has stated. The exit absolute mach number is estimated to 0.27 and this can
be considered relatively low. This should make the preliminary impeller design a good
starting point. The impeller blade angle distribution, the impeller passage area and
curvature distribution and the impeller contours are shown in figures 5.3, 5.4 and 5.5.
The blade angles determines the velocity levels and they should be carefully examined.
The curvature is qualitatively measured using the parameter, b/Rc, which is the ratio of
width over radius of curvature. This parameter should not exceed unity and it can be
said that it measures the degree of distortion which can be expected [2].

Table 5.2.: A selection of results from the rotor sizing.

Incidence angle 20.28◦

Ideal incidence angle 20.28◦

Squareness, r9s/r7 0.7351
c9m/U7 0.3807
c9m/c7m 1.298
c7m/U7 0.2934
Impeller static isentropic efficiency 0.8235
Impeller total isentropic efficiency 0.8852
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Figure 5.3.: The impeller blade angle distribution as a function of dimensionless
length of the preliminary design.
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Figure 5.4.: The impeller passage area and curvature distribution of the preliminary
design.
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Figure 5.5.: The impeller contour plots of the preliminary design.

When the impeller has been sized, the aim is directed to the nozzle row. The nozzle row
is sized with default settings except for the nozzle exit radius to impeller inlet radius
ratio and the location of maximum camber. The radius ratio is lowered to make the
overall size of the turbine smaller. The location of maximum camber is moved closer
to the trailing edge to achieve a more even distribution of camberline blade angle. The
specifications for the nozzle sizing are summarized in table 5.3 and they are derived in
the appendix.

Table 5.3.: The specifications for the nozzle sizing.

Nozzle exit radius to rotor inlet radius, r6/r7 1.1
Camber angle, θ 0◦

Location of maximum camber, a/c 0.65
Leading edge thickness to chord, t4/c 0.025
Trailing edge thickness to chord, t6/c 0.012
Maximum thickness to chord, tmax/c 0.06
Location of maximum thickness, d/c 0.4
Exit blade pitch to chord, s6/c 0.75
Number of blades, NN #

A selection of results from the nozzle sizing is presented in table 5.4 (all angles are taken
with respect to tangent). The nozzle-impeller interspace is compared to the correlation of
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Wanabe et al and for the preliminary design it is 2.32 which is close to their suggested 2.0.
The incidence angle is fairly small and should be satisfactory. The preliminary loading
of 1.06 is according to Aungier, satisfactory. The nozzle camberline angle distribution
and a cascade plot of the two nozzle blades can be seen in figures 5.6 and 5.7.

Table 5.4.: A selection of results from the nozzle sizing.

Inlet radius, r4 65.3 mm
Exit radius, r6 56.1 mm
Incidence angle -0.4705◦

Deviation angle 7.396◦

Exit mach number, M6 0.5492
Leading edge blade angle, β4 33.13◦

Trailing edge blade angle, β6 12.6◦

Nozzle radius ratio, r4/r6 1.165
Preliminary loading, ∆c/c 1.06
Blade chord, c 23.5 mm
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Figure 5.6.: The nozzle blades camberline angle distribution of the preliminary de-
sign.
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Figure 5.7.: The cascade plot of two nozzle blades of the preliminary design.

Finally the volute and diffusor are sized. It is necessary to achieve a smaller radius of
the volute than the one of the second turbine to make the whole turbine smaller. This
is accomplished with an external volute of elliptical size. The aspect ratio, A/B, is set
to 1.15. The preliminary exhaust diffusor uses an area ratio of 1.5 giving a pressure
recovery coefficient of 0.518. The mach number drops approximately 40 percent from
diffusor inlet to diffusor outlet.

The gas used in the design is a mixture attempted to resemble an exhaust gas composition
from a diesel engine. The mole fractions are summarized in table 5.5.

Table 5.5.: The mole fractions of the gas used.

Carbon dioxide, CO2 0.12
Nitrogen, N2 0.55
Oxygen, O2 0.23
Water, H2O 0.10

1-D performance analysis in RIFT

The preliminary design produced in the previous subsection is evaluated using the pro-
gram ”RIFT” which is a mean-line performance analysis tool. The results are presented
as figures, 5.8 and 5.9 showing the stage total-to-total efficiency and the mass flow. To
be able to make a qualitative comparison with the second turbine the same corrected
speeds are used and no diffusor was incorporated.
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Figure 5.8.: Total-to-total efficiency as a function of total-to-total expansion ratio
with different shaft speed lines.
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Figure 5.9.: Mass flow as a function of total-to-total expansion ratio with different
shaft speed lines.
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2-D blade to blade analysis

The preliminary design is thereafter analyzed in a blade-to-blade flow solver. The anal-
yses are performed at the design point, one for the nozzle and one for the impeller.

The blade loading diagram of the nozzle blade-to-blade analysis is presented in figure
5.10. The blade loading diagram from the rotor blade-to-blade analysis is presented in
figure 5.11 and shows the mach number distribution on the hub and shroud contours’
suction and pressure surfaces respectively.
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Figure 5.10.: The blade loading diagram of the nozzle blade-to-blade analysis.
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Figure 5.11.: The blade loading diagram of the rotor blade-to-blade analysis. The
figure shows the mach number distribution of the hub and shroud
suction and pressure surfaces respectively.

5.2. Detailed design

The preliminary design presented above showed satisfactory off-design performance but
the blade loading diagram indicated a poor impeller shroud contour. In the detailed
design an attempt is made to improve the design of the shroud velocity levels. It can
be seen in figure 5.11 that the fluid is quickly accelerated on the suction side and then
decelerated toward the trailing edge. However the fluid is also accelerated on the suction
side and just before the trailing edge the flow is overturned and the blade force is reversed.
It would be preferable to attain a slow to moderate acceleration on the suction surface
and just before the trailing edge decelerate to meet the flow on the pressure surface and
thereby minimize the deviation. An attempt was made to accomplish this by changing
the camberline blade angles and the thickness distribution. These changes are presented
in figures 5.12 and 5.13. It would be possible to alter the end wall contour but after
reviewing the b/rc distribution it was decided to leave it be. The flow on the hub side is
not ideal but according to Aungier it is hardly possible to change this by adjusting the
design. This is due to relatively low blade speeds and high blade angles. While this is
true for the present case, the thickness is increased to protect the hub from centrifugal
stresses and thereby ensuring the strength of the hub. The thickness of the hub contour
at the trailing edge is decreased to insure a smoother transition at the exit. The hub
camberline blade angles are changed to an inlet angle of 90 degrees (with respect to
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tangent) to minimize the bending stresses. These changes are also demonstrated in
figures 5.12 and 5.13. The blade loading diagram demonstrating the velocity on the
nozzle suction and pressure surfaces shows a smooth acceleration on both these surfaces.
This is decided to be satisfactory and no changes are made on the nozzle design.

The new impeller blade loading diagram is presented in figure 5.14 showing the velocity
levels on the hub and shroud contours’ suction and pressure surface respectively. An
off-design performance analysis is also performed and a resulting comparison of the
total-to-static efficiencies is presented in figure 5.17.
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Figure 5.12.: A comparison of the blade angles for the preliminary and detailed
design. The angles from the detailed design are presented with smooth
lines while the angles from the preliminary design are presented with
dashed lines.
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Figure 5.13.: A comparison of the thickness distribution for the preliminary and
detailed design. The thickness distribution from the detailed design
are presented with smooth lines while the thickness distribution from
the preliminary design are presented with dashed lines.

Dimensionless length starting from inlet

M
a
ch

n
u

m
b

er

Figure 5.14.: The blade loading diagram of the rotor blade-to-blade analysis. The
figure shows the mach number distribution of the hub (dashed) and
shroud (smooth) suction and pressure surfaces respectively.
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Figure 5.15.: Comparison of the preliminary and detailed design which shows the
blade loading diagram for the shroud contour. Smooth lines corre-
spond to detailed design and dashed lines to preliminary.
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Figure 5.16.: Comparison of the preliminary and detailed design which shows the
blade loading diagram for the hub contour. Smooth lines correspond
to detailed design and dashed lines to preliminary.
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Figure 5.17.: The comparison of the total-to-total efficiency as a function of total-
to-total expansion ratio for the preliminary (dots) and detailed design
(squares).

5.3. Summary

In this chapter an aerodynamic design of a radial turbine is developed. This is ac-
complished in two steps. Initially a preliminary design is produced with the program
”RIFTSIZE”. The preliminary design is analyzed using a mean-line performance tool,
”RIFT”, and two blade-to-blade performance tools, ”Q3D” and ”TDB2B”. Based on
those analyses the design is revised resulting in a detailed design.

The preliminary design showed good off-design performance, however, from the blade-to-
blade analyses it was possible to conclude that the velocity levels were not satisfactory.
To remedy this, it was decided to change the blade angles and thickness distribution
of the shroud and hub contours. The detailed design showed small improvement in
off-design performance, however, the improvement of the velocity levels was extensive.

Finally a comparison can be made with the real second turbine. When comparing the
total-to-total efficiency, it can be seen that the real turbine is slightly better. It should
be clear that the effort and time which was put to develop the real turbine do not even
come close to the time and effort spent on the turbine presented in this chapter. It is,
therefore, possible to argue that the design tool ”TurbAero” can be used to develop a
good design in a relatively short amount of time with relatively small effort.
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6. Conclusions

The main objective of this master thesis was to evaluate a tool for aerodynamic design
and analysis. This has been conducted in two parts. The first part aimed to model the
geometry and simulate the performance of two radial turbines and then compare the
results with test data. In the second part an aerodynamic design of a radial turbine
was developed. The results from the first part show that it is possible to simulate the
performance of radial turbines using mean-line analyses (particularly with the tool used
in this thesis, namely ”TurbAero”).

The tests, involved in the first part, were performed by Volvo and conducted in a cold
rig for both turbines. Air was used as fluid in the tests and the inlet temperature was
kept at 373 K (thereby making it ”cold”).

The first turbine was modeled in two cases, one in which the turbine was scaled (the
turbine which Volvo performed tests on was also scaled) and all other conditions were
attempted to resemble those which prevailed during the tests and one case with the
original turbine and ”hot” conditions. The simulations were performed in two cases to
see the modeling differences that could arise. It is possible to see differences, particularly
if comparing the two figures presenting the two cases’ mass flows, figures 4.4 and 4.7.
It was explained what influence the geometry and gas could have on the mass flow in
section 4.1.3. The mass flow that can be brought through the turbine at a specific
expansion ratio is mainly determined by the nozzle throat. It can be shown that for a
change by one degree that the throat turns, the flow will lead to a change in mass flow by
five percent [personal communication, Magnus Genrup, 2014]. This makes the flow very
sensitive to changes of the throat’s geometry. Best agreement in mass flow was achieved
in the case which tried to resemble the conditions which prevailed during the tests (the
first case). The total-to-total efficiency was measured using two different techniques in
the tests, one measuring the torque on the shaft and one measuring the temperature
and thereby the heat drop1. The results from the simulations show best agreement
with the temperature measured total-to-total efficiency. The torque measured total-to-
total efficiency, however, prove defective at small expansion ratios. There is no clear
difference in total-to-total efficiency in the two different simulation cases, however, from
the comparison in mass flow it can be concluded that it is best to perform simulations
using similar conditions to the tests.

1The efficiency was then calculated using the torque and temperature.
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After concluding that the modeling and simulating should be performed using similar
conditions to the tests, the second turbine was modeled and simulated in this manner.
The comparison in mass flow and total-to-total efficiency can be seen in figures 4.10
and 4.9. The results are similar to those of the first turbine, and shows that the good
agreement, achieved for the first turbine, was not a coincidence. The total-to-total
efficiency was only measured using the torque on the shaft in the tests on the second
turbine, as opposed to the first turbine where the efficiency also was measured using
the heat drop, and it can be seen that for small expansion ratios, there is fairly large
discrepancy.

From the simulations it is concluded that there are a few parameters which have large
influence on how the results from a simulation are affected. The surface roughness is hard
to measure and it was estimated for the simulations. The same surface roughness was
used for all components for both turbines. The first turbine’s tip was scalloped, however,
it is not possible to model that in ”RIFT”. It is assumed that the overestimating of the
efficiency which this leads to is compensated by a to high surface roughness. Another
feature which is often implemented in radial turbines is the usage of variable nozzle
vanes. Neither this feature is possible to model in ”RIFT”.

The geometry which was used to model the turbines in ”RIFT” was taken from the
aerodynamic design. As mentioned in chapter 4.1.3 it is possible for errors to arise during
either manufacturing or when the drawing is produced leading to that the simulated and
tested geometry deviate from one another. The existence of measurement errors should
not be underestimated and it should be clear that the results from the tests probably are
not fully accurate, particularly when the turbines are run with small expansion ratios.

Finally it should be clear that, however good the results are, it would be naive to think
that a mean-line analysis is able to predict the performance with the accuracy of a CFD
analysis. Instead the mean-line analysis should be used as a quick way of estimating
trends. With that in mind the results of this thesis are promising.

The second big objective of this thesis was to develop an aerodynamic design of a radial
turbine similar to the design of the second turbine from the first part the thesis. This
has been accomplished in two steps. First a preliminary design was produced. The off-
design performance was simulated and a blade-to-blade analysis was performed at the
turbine’s design point. Based on the results from those analyses, the design was revised
in a detailed design. The detailed design shows promise and it was developed with a
relatively small amount of time and effort making the design tool preferable to use when
designing radial turbines.

More studies should be performed to ensure the accuracy of the mean-line program,
however, the results presented in this thesis are promising.
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A. Preliminary Design

The work leading up to this point has mostly been performed with the program ”Tur-
bAero”. The design process which is conducted in ”TurbAero”, most often starts with
the program ”RIFTSIZE”. It has already been described how the designer will return
to ”RIFTSIZE” multiple times to check his or her design. In light of this, I thought it
would be fitting to try to implement the equations in [2], which, according to Aungier,
is the basis of ”RIFTSIZE”. The choice on platform fell on MATLABr and its build-in
graphical user interface, ”GUI”.

The main task of the program is to, with as little input parameters as possible and as
fast as possible, construct a preliminary design of a radial turbine. This will help the
designer to quickly get a candidate design which will come close to meet the performance
requirements.

Most of the equations are presented in chapter 3, however, the steps are not as thoroughly
investigated as would be convenient if an attempt to redo this work were to be made.
Because of this, I have chosen to present all the equations and steps which are conducted.
This will also help in the process, in which possible errors can be corrected. The schemes
which are used to numerically solve the equations that include differential terms will be
presented. Also where it were required to used iteration loops, an explanation of how
that was done is included.

The program goes through the following steps. Initially the impeller tip is sized. The
designer can then choose to use default values, which are presented below, to construct
the rotor and stator geometry, or he can change the default values according to his own
preferences. Finally the volute can be designed. If the incorporation of an exhaust
diffusor is preferable, it is easily accomplished by the designer. In the following sections,
I will go through each part which the program are consisting of.

Impeller

To initiate the design process, the designer is asked to specify the following input pa-
rameters. The stage inlet total temperature and pressure, the stage mass flow, the stage
total to static expansion ratio and the speed. Concerning the speed, he needs to choose
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whether he wants to use the rotational speed or if he would like to use the concept of
specific speed. Depending on which he chooses, different methodologies will be used to
size the impeller tip. To make the implementations a great deal easier, I decided to use
the concept of perfect gas as flow media. This does not only simplify the implementa-
tions but also makes the life a bit easier for the designer, who only needs to specify the
specific heat (at constant pressure) and the ratio of the specific heats of the gas which
the turbine is supposed to run with. The drawback of assuming that the gas is perfect
is that the calculations are not as accurate as they would be if a more sophisticated gas
model would be implemented. The control panel which meets the user is shown in figure

Figure A.1.: The design of the impeller in the radial turbine is control by certain
input parameters. These are presented to the user in the impeller
control panel.
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With these input parameters, the impeller tip is sized using the following relations. All
equations are taken from R.H. Aungier’s book - ”Turbine Aerodynamics - Axial-flow
and radial-inflow turbine design and analysis” [2].

The static pressure at the impeller exit is calculated using the total to static expansion
ratio and the total inlet pressure.

p9 =
p01

p01/p9
(A.1)

Assuming that the flow through the turbine is adiabatic it can be stated that the total
temperature at the impeller tip is equal to the stage inlet total temperature and since
it has been assumed that the gas is perfect the total enthalpy is easily determined.

T07 = T01 (A.2)

h01 = h07 = cpT01 (A.3)

It can be shown that for a perfect gas the following relationship holds

R = cp

(
1 − 1

γ

)
(A.4)

Where, R, is the gas constant and γ is the ratio of specific heats.

R =
Ru
M

J/kg K (A.5)

γ =
cp
cv

(A.6)

The spouting velocity is determined, using the definition which where stated in chapter
3. It is rewritten here.

c0s =
√

2∆h0,ideal (A.7)

The ideal total enthalpy drop, ∆h0,ideal can be calculated using an isentropic efficiency
of unity.

η =
h01 − h09

h01 − h09,s
=

cpT01 − cpT09

cpT01 − cpT09,s
(A.8)

⇔

T09

T01
=

(
p09

p01

) γ−1
γ

⇒ T09 = T01

(
p09

p01

) γ−1
γ

(A.9)

⇒ ∆h0 = cp(T01 − T09) = cpT01

[
1 −

(
p09

p01

) γ−1
γ

]
(A.10)
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Depending on whether the designer is choosing to specify a rotational speed or a spe-
cific speed, different ways of calculating the conditions at the impeller tip have to be
conducted. If he is choosing to specify a rotational speed an iterative approach has to
be undertaken, however, if the choice fall on the specific speed, a direct approach is
possible.

Specific speed

If the specific speed is chosen as speed variable it is possible to apply a direct calculation
scheme. The total to static velocity ratio, νt−s was defined in chapter 3 as the ratio of
blade speed to spouting velocity.

νts =
U

c0s
(A.11)

In Aungier’s book , [2], he provides two equations which correlates the total to static
velocity ratio and the total to static efficiency as functions of specific speed.

νts = 0.737N0.2
s (A.12)

ηts = 0.87 − 1.07(Ns − 0.55)2 − 0.5(Ns − 0.55)3 (A.13)

The equations are plotted in figure A.2. When the total to static velocity ratio and the
spouting velocity are calculated the blade tip speed is given by.

U7 = νts c0,s (A.14)

The total enthalpy and temperature at the impeller outlet can be calculated using the
stage inlet total enthalpy, the ideal heat drop, the total to static efficiency, given by
equation (A.13) and the specific heat.

h09 = h01 − ∆h0,idealηts (A.15)

T09 = cpT09 (A.16)

Since I have chosen to use a perfect gas the ideal gas law can be applied. From it the
density at the impeller outlet is calculated.

ρ9 =
p9

RT9
(A.17)

Since it is not possible to determine the static temperature, T9, without applying some
loss model the density will have to approximated using the total temperature, T09 instead
of the static temperature. This can be said not to influence the results greatly because
the absolute velocity at the impeller outlet should be kept low to yield a proper design.
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Figure A.2.: The equations, (A.12) and (A.13) are plotted against specific speed.
They are used in the preliminary design process.

The density is needed to calculate the volume flow at the impeller outlet, which following
the discussion outlined above will only be approximate.

Q9 =
ṁ

ρ9
(A.18)

The specific speed and the rotational speed are related according to.

N =
Ns(∆h0,ideal)

3/4

Q
1/2
9

(A.19)

From the rotational speed, the radius at the tip can be determined.

r7 =
U7

N
(A.20)
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Finally the total pressure and the tangential velocity at the tip are determined. To
calculate the total pressure at the tip I am using the relationship found in [2].

ρ01 =
p01

RT01
(A.21)

p07 = p01 − ρ01∆h0,ideal
1− ηts

4
(A.22)

The tangential velocity at the impeller tip is approximated using the assumption that
the flow at the outlet of the impeller is entirely meridional, giving: c9θ = 0.

∆h0 = U7 c7θ − U9 c9θ = U7 c7θ (A.23)

⇒ c7θ =
∆h0

U7
=

∆h0,ideal ηts
U7

(A.24)

Rotational speed

While the method of sizing the tip when the specific speed is used as input variable
is a direct one, an iterative manner has to be conducted when the rotational speed is
provided. Initially a guess of the specific speed is made. This guess will be updated until
the iteration converge on the specific speed. The equations used are the following.

ηts = 0.87 − 1.07(Ns − 0.55)2 − 0.5(Ns − 0.55)3 (A.25)

h09 = h01 − ∆h0,ideal ηts (A.26)

T09 =
h09

cp
(A.27)

ρ09 =
p9

RT09
(A.28)

Q9 =
ṁ

ρ09
(A.29)

Ns =
N
√
Q9

∆h0.75
0,ideal

(A.30)

When the specific speed is determined the total to static velocity ratio, the tip blade
speed, the tip radius, the tip total pressure and the tip tangential velocity will be calcu-
lated using equations (A.12), (A.14), (A.20), (A.21), (A.22) and (A.24). This completes
the sizing of the impeller tip.

The designer will now proceed with the geometrical design of the impeller. I have, just
like in ”RIFTSIZE”, chosen to let the user decided whether to use the default values
provided by Aungier or to specifies the variables. The benefit of using the default values
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as a starting point in the design is that in that it is possible to relatively quickly attain a
reasonable design which later can be revised. The variables which are considered are the
impeller inlet absolute flow and blade angles, the leading and trailing edge thicknesses,
the hub and shroud outlet radius, the axial length of the impeller and finally the number
of blades. While in ”RIFTSIZE” it is possible to include splitter blades, I have chosen
not to implement that detail here. Whether the designer choice fall on using the default
values or not the implementation is slightly different. I will present both approaches.

Input variables according to default values

The process of providing default values to the user takes on an initial stating of almost
every input variable according to correlation taken from [2], except the inlet blade angle
which has to be determined in an iterative manner taking the optimal incidence angle
into account. Initially the flow angle is approximated using the specific speed (all angles
are taken with respect to tangent). Then the leading and trailing edge thicknesses and
the hub radius at the outlet are calculated as functions of the tip radius.

α7 = 10.8 + 14.2N2
s (A.31)

t7 = 0.04r7 (A.32)

t9 = 0.02r7 (A.33)

r9h = 0.185r7 (A.34)

The meridional velocity at the tip can be determined using the absolute flow angle and
tangential velocity. Next it is possible to calculate the absolute velocity and afterwards
the other flow conditions at the tip including the static temperature, pressure and density
and the corresponding mach number. The cross sectional width is needed to calculate
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the exit meridional velocity and is determined using a mass balance at the tip.

c7m = c7θ tanα7 (A.35)

c7 =
√
c2

7m + c2
7θ (A.36)

T7 = T07 −
c2

7

2cp
(A.37)

M7 =
c7√
γRT7

(A.38)

p7 = p07

(
T7

T07

) γ
γ−1

(A.39)

ρ7 =
p7

RT7
(A.40)

b7 =
ṁ

2 r7 π c7m ρ7
(A.41)

The calculation at the outlet follows a similar approach. The meridional velocity is
calculated using a relationships which Aungier explains in the following way.

The exit shroud radius and axial length are selected based on maintaining
a reasonable ratio of passage width-to-the flow path radius of curvature. The
following procedure has been found effective in estimating values for these
parameters that achieve that goal.
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The following equations estimates the flow conditions at the outlet and determines the
values of the axial length, the shroud radius, the width and the number of blades.

c9m = c7m

[
1 + 5

(
b7
r7

)2
]

(A.42)

c9θ = 0 ⇒ c9 = c9m (A.43)

T9 = T09 −
c2

9

2cp
(A.44)

p09 = p9

(
T09

T9

) γ
γ−1

(A.45)

M9 =
c9√
γRT9

(A.46)

ρ9 =
p9

RT9
(A.47)

r9s =

√
r2

9h +
ṁ

πc9mρ9
(A.48)

b9 = r9s − r9h (A.49)

r9 =
r9s + r9h

2
(A.50)

∆ZR = 1.5(r9s − r9h) (A.51)

NR = 12 + 0.03(33◦ − α7)2 (A.52)

The inlet blade angle has to be calculate. I have chosen to let the default value of this
angle be the one at which optimum incidence occur. This is the same practice which
Aungier uses. The optimum incidence angle is derived from the definition of slip factor
which often is mentioned when discussing centrifugal compressors. The blade angle is
then derived from an iterative process which takes the metal blockage at the inlet into
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account. The procedure is shown below.

σ = 1 −
√

sinβ7

N0.7
R

(A.53)

KB7 = 1 − Nr tB7

2π r7 sinβ7
(A.54)

c∗7θ = σ

(
U7 −

c7m cotβ7

KB7

)
(A.55)

i∗7 = β7 − 90◦ + tan−1

(
(U7 − c∗7θ)KB7

c7m

)
(A.56)

i7 = β7 − 90◦ + tan−1

(
(U7 − c7θ)KB7

c7m

)
(A.57)

The default inlet blade angle occur when the incidence angle, i, is equal to the optimum
incidence angle, i∗. It is my intent to give the user of the program as much information
as possible, and due to that fact the designer will be given values on the following
parameters. The outlet blade speed, relative velocity, relative mach number, flow and
blade angles and the pitch. At the inlet the relative velocity and the corresponding mach
number are given. The throat is a very important component and the blade to blade
width at throat is provided. The throat is calculated differently depending on whether
the relative mach number, M9,rel, is exceeding unity or not.

M9,rel 6 1 ⇒ o9 =
s9 c9m

w9
(A.58)

M9,rel > 1 ⇒ o9 = s9
ρ9c9m

ρ∗w∗
(A.59)

In equation (A.59), ρ∗ and w∗, are the density and relative velocity at sonic conditions.
Finally the designer will be given information about the power and efficiency. The
parameters just described are not difficult to calculate and the equations are omitted
here.

Input variable according to the designer

If the designer feels that he has got adequate knowledge about how the impeller should
be designed or if he would like to vary some of the parameters from the default values it
is possible in this program. Naturally the calculation procedure takes a different coarse
of action than the one I have used in the previous case. Initially the meridional velocity
is calculated using equation (A.35), then the absolute velocity at the tip is followed
using equation (A.36). Because the inlet blade angle now is specified, the parameters
defined in equations (A.53)-(A.57) can be determined without having to use the iterative
procedure. The equations (A.37), (A.38), (A.39), (A.40) and (A.41) can be applied to
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give the static temperature, mach number, static pressure and density and width at the
tip. While the outlet mean radius and width are given directly by the input parameter
according to equations (A.60) and (A.61), the other flow conditions at the outlet, given
by equations (A.44),(A.45),(A.47) and (A.46) together with a mass balance given by
equation (A.62) yielding the outlet meridional velocity, require an iterative procedure to
converge on the outlet static density.

r9 =
r9h + r9s

2
(A.60)

b9 = r9s − r9h (A.61)

c9m =
ṁ

2π r9 b9 ρ9
(A.62)

c9θ = 0 ⇒ c9 = c9m (A.63)

When these parameters are calculated the procedure follows the same as the one dis-
cussed in the previous section. Special care have to be taken regarding the flow conditions
at the throat. This was mention above and the equations (A.58) and (A.59) are used
now as well. With all the variables described thus far it is possible to construct the
impeller end wall geometry, camberline and blade angles.

Impeller geometry construction

The procedure follows the one presented by Aungier in [2, p. 244-248]. Since it follows the
same procedure the interested reader is referred to the original text. I am only interested
in presenting the sections where numerical schemes are used. It involves three equations.
One describing how the meridional distance is integrated along the impeller blade, one
describing the blade angles along the hub and shroud camberline and one describing the
curvature. The meridional distance is integrated using a first order discretization scheme
given by.

dm =
√
dz2 + dr2 (A.64)

mi − mi−1 =
√

(zi − zi−1)2 + (ri − ri−1)2 (A.65)

Since the inlet and outlet blade angles are given at this point, the equation yielding the
blade angles are discretized following a second order finite approximation given by.

cotβ = r
∂θ

∂m
(A.66)

cotβi = ri
θi+1 − θi−1

mi+1 −mi−1
(A.67)
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The calculation of the curvature distribution is derived from the simple equation describ-
ing curvature of any curve. The equation can be found in for example J.D. Anderson
Jr. ”Fundamentals Of Aerodynamics SI”, [1] and is stated as.

κ =
∂φ

∂s
(A.68)

The radius of curvature is simply taken as the inverse, Rc = 1/κ. Firstly the angle is
approximated using a first order finite approximation.

φi = tan−1 ri − ri−1

zi − zi−1
(A.69)

Then κ is approximated using a second first order finite approximation.

κi =
φi − φi−1

si − si−1
(A.70)

The derivatives are a very unsteady when ∆s → ∞ and to solve that problem I have
chosen to use a mean value of the curvature taken at intervals with steps of 3.3 percent
of the total line segment.

Results

Following the calculations the designer is faced with the results in four different ways.
The geometry is presented as plots and data. The plots are showing the contours,
the blade angles, the passage area distribution, the curvature and the passage width
distribution. It is also possible to keep the old graphs and compare them with graphs
from a new calculation. General flow data and geometry are presented under ”Overall
results”. Under ”Overall results” the designer is also provided with parameters which
can be used to evaluate the design. It is also possible for the user to see the specifications
resulting from the default values defined above. They can be viewed under ”Updated
specifications”. Examples of the result panels are shown in figure A.3, A.4
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Figure A.3.: To allow the designer to evaluate the design the program provides
graphical plots showing key parameters as functions of the meridional
distance. The plots are showing the contours, the blade angles, the
passage area distribution, the curvature and the passage width distri-
bution.

Figure A.4.: To allow the designer to evaluate the design the program provides over-
all results showing flow conditions at key stations.
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Figure A.5.: To allow the designer to evaluate the design the program provides the
geometry as data.

Nozzle

The nozzle geometry can be constructed once the impeller design is completed. I have
chosen to minimize the number of variables which are open to the designer to vary. The
control panel which the user is faced with is shown in figure A.6. The user can either
choose to specify values and run the analysis directly or the user can calculate input
variables which are suitable by clicking on ”Calculate default input variables”. The
input variables are summarized and can be found in table A.1.
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Table A.1.: The design of the nozzle blades in the radial turbine is controlled by
certain input parameters. In this program I have chosen to minimize
them, however, they are still a few which have to be specified. They are
presented in this table.

Nozzle exit to rotor inlet radius ratio r6/r7

Camber angle, relative to straight blade θ
Location of maximum camber normalized by the chord length a/c
Leading edge thickness normalized by the chord length t4/c
Trailing edge thickness normalized by the chord length t6/c
Maximum thickness normalized by the chord length tmax/c
Location of maximum thickness normalized by the chord length d/c
Trailing edge pitch normalized by the chord length s6/c
Number of nozzle blades NN

Figure A.6.: The design of the nozzle blades in the radial turbine is controlled by
certain input parameters. In this program I have chosen to minimize
them, however, they are still a few which have to be specified. They
are presented to the user in the nozzle control panel.

The calculations are initiated with the construction of the nozzle blade camberline given
by equation (A.71). This equation are then normalized by the blade chord yielding
equation (A.72). After some sifts in equation (A.72) it can be written as in equation
(A.73). Now equation (A.73) is solved from x/c = 0 to x/c = 1 while at every point the
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solution is converged on the right y-value.

x2 +
c− 2a

b
xy +

(c− 2a)2

4b2
y2 − cx − c2 − 4ac

4b
y = 0 (A.71)

(x
c

)2
+

1− 2ac
b
c

x

c

y

c
+

(
1− 2ac

)2
4
(
b
c

)2 (y
c

)2
− x

c
−

1− 4ac
4 bc

y

c
= 0 (A.72)

y

c
=
(x
c

[
1− x

c

])
/

(
(1− 2(a/c))2

4(b/c)2

y

c
+

1− 2(a/c)

b/c

x

c
− 1− 4(a/c)

4(b/c)

)
(A.73)

Figure A.7.: The notation and geometry used when designing the nozzle blades.
Adapted from Aungier [2].

The blade geometry is completed once the suction and pressure surfaces are attained.
They are constructed by adding a thickness distribution which superimposes the cam-
berline. The equations describing the thickness can be obtained from Aungier’s book,
however, his equations do not yield a smooth distribution at the trailing edge and in-
stead I have chosen to make some adjustment to his equations and normalized them by
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the chord length.

ξ/c =
x/c

d/c
; x/c ≤ d/c (A.74)

ξ/c =
1− x/c
1− d/c

; x/c > d/c (A.75)

tref/c = t4/c + (t6/c − t4/c)x/c (A.76)

e =
√

0.4d/c(0.03(1− x/c)(1− ξ/c) + 0.97) (A.77)

t = tref/c + (tmax/c− tref/c)(ξ/c)e (A.78)

Figure A.8.: The thickness distribution and notation used when designing the nozzle
blades. Adapted from Aungier [2].
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The suction and pressure surfaces are now given by.

xp/c = xc/c +
1

2
t/c sinχ (A.79)

yp/c = yc/c −
1

2
t/c cosχ (A.80)

xs/c = xc/c −
1

2
t/c sinχ (A.81)

ys/c = yc/c +
1

2
t/c cosχ (A.82)

tanχ =
∂(yc/c)

∂(xc/c)
(A.83)

The angle χ is calculated using a second order finite difference approximation.

χi =
yc,i+1/c − yc,i−1/c

xc,i+1/c − xc,i−1/c
(A.84)

It is possible to use a second order approximation and calculate at all points except the
first and last point since they are calculated separately according to.

χ4 = tan−1

(
4b/c

4a/c− 1

)
(A.85)

χ6 = tan−1

(
4b/c

3− 4a/c

)
(A.86)

The normalized blade is now created, however, it is described in the Cartesian coordinate
system. To direct the blade towards the impeller it has to be rotated. The rotation is
accomplished by a simple transformation according to.

x′/c = (x/c− 1) cos δ6 + y/c sin δ6 (A.87)

y′/c = r6/c − (x/c− 1) sin δ6 + y/c cos δ6 (A.88)

r6/c =
s6/cNN

2π
(A.89)

r =
√

(x′/c)2 + (y′/c)2 (A.90)

tan θ =
x′/c

y′/c
(A.91)

A second blade is constructed using equations (A.90) and (A.91) and adding an angle
of 2π/NN in equation (A.91). The angle, δ6, is called the blade setting angle and it is
defined in figure A.9. The setting angle is not known beforehand but must be found
during the calculation process. This will be done by varying the setting angle until the
blade to blade throat is set to give properly guidance upon the rotor blades. To be able
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to approximate the proper throat width, I have to determine the flow angle at the trailing
edge. I say ”approximate” because there are no existing relationship which correlates
the flow angle and the throat precisely, but I have chosen to use the simple sine rule.
Baines shows that the sine rule does not determine the flow angle very good, especially
not at high mach numbers, [12], however, since this program just aims to find a first and
preliminary design it is preferable to use such a simple relation. The tangential velocity
at the rotor tip is known from the rotor analysis and the ratio of the nozzle exit radius-to
rotor inlet radius, r6/r7, is taken from the input variables. Using the relationship which
states that the angular momentum is conserved it is possible to determine the tangential
velocity at the trailing edge of the nozzle blades.

Figure A.9.: The nozzle airfoil setting angle. Adapted from Aungier [2].

c6θ = c7θ
r7

r6
(A.92)

The flow angle can be determined if the meridional velocity is known. To calculate this
velocity a mass balance will be performed. The static density at the trailing is, however,
not known and it is therefore necessary to apply an iterative calculation procedure. First
an initial guess of the static density is made and then the iteration begins and proceeds
until the correct static density is found. I have chosen to take the static density as equal
to the total density as an initial guess. This will be a relatively good guess and will, in
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most cases, minimize the number of iterations to about five to six, yielding a satisfactory
small numerical error. I am setting the hub to shroud width at the trailing edge to be
equal to the one at the rotor inlet. This simplifies the analysis since it removes one
possible input variable to be specified. Constructing the impeller design, I was using a
correlation to determine the inlet total pressure of the impeller, equation (A.22), and
consequently the total pressure loss as far as to the impeller tip. In this program I am
assuming that this pressure loss arises entirely from the nozzle row passage and that
the total pressure at the leading edge of the nozzle blades is equal to stage inlet total
pressure. I am also assuming that the turbine is adiabatic and consequently the total
temperature is constant and equal to the one at the stage inlet as far as to the impeller
tip.

Initial guess: ρ6 =
p07

T06R
(A.93)

c6m =
ṁ

2π r6 b6 ρ6
(A.94)

c6 =
√
c2

6m + c2
6θ (A.95)

T6 = T06 −
c2

6

2 cp
(A.96)

p6 = p06

(
T6

T06

) γ
γ−1

(A.97)

ρ6 =
p6

T6R
(A.98)

Now the exit meridional velocity is known and therefore it is possible to calculate the
required throat width. I said that I would be using the sine rule and while that is still
true, when the mach number exceeds unity I have chosen to use a different approach in
which I am using the conservation of mass flow between the throat and exit. This brings
the determination of the throat width down to two equations, shown below.

tanα6 =
c6m

c6θ
(A.99)

M6 =
c6

T6 γ R
(A.100)

o = s6 sinα6 M6 ≤ 1 (A.101)

o = s6
ρ6 c6m

ρ∗ a∗
M6 > 1 (A.102)

The density, ρ∗, and velocity, a∗, are the sonic density and speed respectively and they
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are given by.

T∗ = T06
2

1 + γ
(A.103)

p∗ = p06

(
T∗
T06

) γ
γ−1

(A.104)

ρ∗ =
p∗
T∗R

(A.105)

a∗ =
√
T∗Rγ (A.106)

The equation (A.103) is derived from the following equation when the mach number is
set to unity. Equation (A.107) can be found derived in for example [1].

T0

T
= 1 +

γ − 1

2
M2 (A.107)

There are some constraints regarding the calculation of the setting angle, δ6. If the
calculated setting angle is found to be below five degrees the analysis will be terminated
and a message box shown making the user observant to this fault. Another message box
will be shown and the analysis will be terminated if the nozzle inlet to outlet radius ratio
exceed the following interval, 1.1 ≤ r4/r6 ≤ 1.7. The blade angle distribution can be
determined using the following relationships.

r cos δ = r6 cos δ6 (A.108)

β = δ − χ (A.109)

We are now at the point where the blade angle distribution and most of the geometry
is designed. The numerical algorithms for the complete design and for the case when
only the default values are calculated are the same up until now. The only difference
being that when the default values are desirable all of the variable in table A.1 except
the number of blades are determined by the algorithm and not by the user which is the
case when the design analysis is run. The default values are set according to.

r6

r7
= 1 +

2b7 sinα7

r7
(A.110)

θ = 0◦ (A.111)

a/c = 0.5 (A.112)

t4/c = 0.025 (A.113)

t6/c = 0.012 (A.114)

tmax/c = 0.06 (A.115)

d/c = 0.4 (A.116)

s6/c = 0.75 (A.117)
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The number of nozzle blades corresponding to default value is determined using a model
in which a simple blade loading velocity is calculated. The interested reader is referred
to [2] for the derivation, I will only present the resulting criteria here.

4 s6 sin(β4 − α6)

c sinβ4

(
1 + r6 sinα6

r4 sinα4

) ≤ 1 (A.118)

The algorithm will iterate, starting with a number of blades equal to seven, until it finds
a number of blades fulfilling the criteria in equation (A.118).

The design analysis proceeds from the determination of the blade angles with the calcu-
lation of the flow conditions at the leading edge. The algorithm is designed to give an
inlet flow angle corresponding to optimum incedence according to.

ideal incidence, i∗ =

(
3.6

√
10t4
L

+
|β6 − β4|

3.4

) √
L

s6
− |β6 − β4|

2
(A.119)

inlet flow angle, α4 = β4 − i∗ sign(β6 − β4) (A.120)

I feel I should mention that before the inlet flow angle is determined all the geometry is
unnormalized by a multiplication of all the geometry with the chord length. The length,
L in equation (A.119) is determined from a numerical integration given by.

L =

∫ m

0

dm

sinβ
=

∫ m

0

dr

sinβ
(A.121)

Li = Li−1 +
ri − ri−1

sin βi−βi−1

2

(A.122)

It is possible to approximate dm as dr since the inlet width is taken equal to the outlet
width makin dz = 0. The inlet area is determined according to.

A4 = 2π r4 b4 (A.123)

Neither at the inlet will the static density be known and an iterative procedure like
the one performed at the exit will be required. This summarizes the calculation algo-
rithm. The user will be provided with a preliminary maximum velocity difference and
corresponding blade loading. These parameters are given by.

(∆c)max =
4π (r6c6θ − r4c4θ)

cNN
(A.124)

Blade loading :
2 (∆c)max
c4 + c6

(A.125)
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Results

The user is provided with results showing the geometry, the flow conditions and param-
eters helping the designer to evaluate the design. An example of how the results may
look like is shown in figures A.10 and A.11.

Figure A.10.: The overall results, including flow conditions and key parameters help-
ful to evaluate the design, from the design analysis of the nozzle blades
are presented to the user.
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Figure A.11.: The geometry results, including cascade plots, a plot showing the
blade angle distribution and the geometry as raw data, from the design
analysis of the nozzle blades are presented to the user.

Volute

The volute is very easily to design with this program. The only parameters which are
available to the designer are summarized and shown in table A.2 and in figure A.12. The
user can choose to use an elliptically or rectangular shaped volute, he can also choose to
use an external or internal volute, finally he must specify the aspect ratio, A/B.

Table A.2.: The volute is very easy to design for the user. The control panel used
to vary the input variables contain three variables. They are presented
in this table.

Elliptic or rectangular shaped volute
External or internal volute
Aspect ratio, A/B
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Figure A.12.: The volute is very easy to design for the user. The control panel used
to vary the input variables contain three variables. They are presented
in this figure

Figure A.13.: The geometry which is used to size the volute in [2]. The figure is
inspired by [2]

Depending on whether the user chooses an external or internal volute the calculation
algorithm takes different approaches. Both approaches, however, include these initial
steps. The vaneless space between the nozzle leading edge and the volute exit is set to
fulfill the following requirement.

r3 = 1.05r4 (A.126)

I am assuming that no pressure losses arise in the volute passage and consequently,
p03 = p01. Angular momentum is conserved in the vaneless passage yielding the tangen-
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tial velocity at the volute exit.

c3θ = c4θ
r4

r3
(A.127)

The outlet area is given by.

A3 = 2π r3 b4 (A.128)

Figure A.14.: The difference between an external and an internal volute shape. The
figure is inspired by [2]

External volute

The algorithm calculating the external volute takes on an iterative approach. It starts
with a guess of the inlet radius. It proceeds with the calculation of the inlet velocity,
using angular momentum and the fact that inlet velocity is entirely tangential. When
the inlet velocity is found the static temperature, pressure and density are determined.
Finally the inlet area is calculated, depending on if the shape of the volute is elliptical or
rectangular the expression determining the inlet area takes different forms. The area will
yield the parameter, B, and then the new inlet radius can be calculated. The iterations
stops when the new inlet radius is equal to the initial. The other flow conditions are
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then easily determined.

Initial guess : r1 = r3 (A.129)

c1 = c3θ
r3

r1
(A.130)

T1 = T01 −
c2

1

2 cp
(A.131)

p1 = p01

(
T1

T01

) γ
γ−1

(A.132)

ρ1 =
p1

T1R
(A.133)

A1 =
ṁ

ρ1 c1
(A.134)

Elliptic : B =

√
A1

(3
4 π + 1)A/B

(A.135)

Rectangular : B =
√
A1B/A (A.136)

r1 = r3 + B (A.137)

Internal volute

The iterative procedure in the algorithm calculating the external volute is not needed
when the designer chooses an internal volute, instead it is possible to apply a direct
approach because the inlet radius is equal to the outlet radius. The algorithm follows
the same procedure as the one for the external except the expressions calculating the
coefficient, B, which is given by.

Elliptic : B =
b3B/A

2(3/4π + 1)
+

√(
b3B/A

2(3/4π + 1)

)2

+
A1B/A

3/4π + 1
(A.138)

Rectangular : B =
b3

2A/B
+

√(
b3

2A/B

)2

+
A1

A/B
(A.139)

The results are given to the designer as shown in figure A.15.
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Figure A.15.: The results form the volute design analysis are presented to the user.
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