LUND UNIVERSITY

A comparative evaluation of JavaScript execution behavior

Martinsen, Jan Kasper; Grahn, Hakan; Isberg, Anders

Published in:
Web Engineering

DOI:
10.1007/978-3-642-22233-7_35

2011

Link to publication

Citation for published version (APA):

Martinsen, J. K., Grahn, H., & Isberg, A. (2011). A comparative evaluation of JavaScript execution behavior. In
Web Engineering: 11th International Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011, Proceedings
(pp. 399-402). (Lecture Notes in Computer Science; No. 6757). Springer. https://doi.org/10.1007/978-3-642-
22233-7_35

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1007/978-3-642-22233-7_35
https://portal.research.lu.se/en/publications/eecc87fb-8f81-48c3-bf86-3df3473c6598
https://doi.org/10.1007/978-3-642-22233-7_35
https://doi.org/10.1007/978-3-642-22233-7_35

Draft submitted to PLDI’ 11, please do not re-distrubute

A Comparative Evaluation of JavaScript Execution Behavior

Jan Kasper Martinsen ~ Hakan Grahn

Blekinge Institute of Technology, Karlskrona, Sweden
{jan.kasper.martinsen,hakan.grahn}bth.se

Abstract

JavaScript is a dynamically typed and object-based sogdan-
guage with runtime evaluation. It has emerged as an impbortan
language for client-side computation of web applicatidPevi-
ous studies have shown differences in behavior betweeblissiad
JavaScript benchmarks and real-world web applicationsueder,
there still remains several important aspects to explore.

In this paper, we compare the JavaScript execution behforior
four application classes, i.e., four established JavaSioeinchmark
suites, the start pages for the first 100 sites on the Alexdisop
22 different use cases for Facebook, Twitter, and Blogged, a
finally, demo applications for the emerging HTML5 standa®dr
results extend previous studies by identifying the impuéaof
anonymous functions, showing that just-in-time compilatoften
decreases the performance of real-world web applicatensore
thorough and detailed analysis of the use ofdhel function, and
a detailed instruction mix evaluation.

Categories and Subject Descriptors CR-number $ubcategory
third-level; CR-number2qubcategorj third-level

General Terms terml, term2

Keywords keyword1, keyword2

1. Introduction

The World Wide Web has become an important platform for many
applications and application domains, e.g., social nedingr elec-
tronic commerce, on-line libraries, and map services. &hgpe
of applications are often collectively referred to as webliap-
tions [36]. Web applications [36] can be defined in differamalys,
e.g., as an application that is accessed over the netwonk &o
web browser, as a complete application that is solely execint
a web browser, and of course various combinations thereafa
networking web applications, such as Facebook [27], Twj&8],
and Blogspot [29] have turned out to be immensely populange
within the top-25 web sites on the Alexa list [4] of most papul
web sites. All three use the interpreted language JavaSodien-
sively for their implementation, and as a mechanism to impgro
both the user interface and the interactivity.

JavaScript [20, 13] was introduced in 1995 as a way to intro-
duce dynamic functionality on web pages that were executale

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Anders Isberg

Sony Ericsson Mobile Communications AB, Lund,
Sweden

Anders.Isberg@sonyericsson.com

client side. JavaScript has reached widespread use thitsughse
of deployment and the increasing popularity of certain WeiplA
cations [32]. For example, we have found that nearly all effttst
100 entries in the Alexia-top sites list have some sort of JasipSc
functionality embedded. JavaScript is a dynamically tydaject-
based scripting language with run-time evaluation. Theeen
of a JavaScript program is done in a JavaScript engine [12&8
i.e., an interpreter/virtual machine that parses and egscthe
JavaScript program. The performance of the JavaScripnenigi
important in order to develop and employ powerful new weliapp
cations, and different browser vendors constantly try tpedorm
each other.

In order to evaluate the performance of JavaScript enggsss,
eral benchmark suites have been proposed. The most wellrkno
are Dromaeo [9], V8 [16], SunSpider [37], and JSBenchmazk [2
However, two previous studies have pointed out that thelgiat
behavior of existing JavaScript benchmarks differs in s&vien-
portant aspects [30, 31].

In this study we compare the execution behavior of four diffe
ent application classes, i.e., (i) four established JawpSench-
mark suites, (ii) the start pages for the first 100 sites onAleza
top list, (iii) 22 different use cases for Facebook, Twitterd Blog-
ger, and finally, (iv) demo applications for the emerging HI3VI
standard. Our measurements are performed on WebKit [38]pbn
the most commonly used browser environments in mobile termi
nals.

We extend previous studies [30, 31] with several important
contributions.

o First, we extend the execution behavior analysis with twe ne
application classes, i.e., reproducible use cases of |soeia
work applications and HTML5 applications.

Second, we identify the importance of anonymous functions.
We have found that anonymous functions [8] are used much
more frequently in real-world web applications than in the

existing JavaScript benchmark suites.

e Third, our results clearly show that just-in-time compdatof-
tendecreaseshe performance of real-world web applications,
while it increases the performance for most of the benchmark
applications.

e Fourth, a more thorough and detailed analysis of the useeof th
eval function.

Fifth, we provide a detailed instruction mix measuremevdl-e
uation, and analysis.

The rest of the paper is organized as follows; In Section 2we i
troduce JavaScript and JavaScript engines along with thst imo
portant related work. Section 3 presents our experimensédhaof-
ogy, while Section 4 presents the different applicatiorssts that

2010/11/20

we evaluate. Our experimental results are presented inoBegt
Finally, we conclude our findings in Section 6.

2. Background and related work
2.1 JavaScript

An important trend in application development is that mond a
more applications are moved to the World Wide Web [34]. There
are several reasons for this, e.g., accessibility and iitpbihese
applications are commonly known as web applications [36huP
lar examples of such applications are: Webmails, onlireglretles,
online auctions, wikis, and many other applications. Ineortb
develop web applications, new programming languages aid te
nigues have emerged. One such language is JavaScript [JL3, 20
which has been used especially in client-side applicatioas in
web browsers, but are also applicable in the server-sidécapp
tions. An example of server-side JavaScript is node.js, [28Ere
a scalable web server is written in JavaScript.

JavaScript [13, 20] was introduced by Netscapel®95 as
a way to allow web developers to add dynamic functionality to
web pages that were executed on the client side. The purpose
of the functionality were typically to validate input fornand
other user interface related tasks. JavaScript has siecegined

momentum, through its ease of deployment and the increasing

popularity of certain web applications [32]. From the fii$t0
entries in the Alexa-top sites list, we have found that nealll of
them had some sort of JavaScript functionality embedded.

JavaScript is a dynamically typed, prototype, object-ase
scripting language with run-time evaluation. The executid a
JavaScript program is done in a JavaScript engine [17, 2B, 38
i.e., an interpreter/virtual machine that parses and egscthe
JavaScript program. Due to the popularity of the languageret
have been multiple approaches to increase the performdnbe o
JavaScript engines, through well-known optimization tegbes
such as JIT related techniques, fast property access, foirf
garbage collections [14, 15].

The execution of JavaScript code is often invoked in web ap-
plication through events. Events are JavaScript funclibes that
are executed at certain occasions, e.g., when a web ajpmlidets
completed loading all of its elements, when a user clicks bata
ton, or events that executes JavaScript at certain redoiarinter-
vals. The last type of event is often used for so-called AJAcht
nologies [3]. Such AJAX requests often transmit JavaSaaute
that later will be executed on the client side, and can be tesad-
tomatically update the web applications. Another inténgsprop-
erty of JavaScript within web applications, is that thenedsnech-
anism like hardware interrupts. This means that the web &gow
usually “locks” itself while waiting for the JavaScript cetb com-
plete its execution, e.g., a large loop-like structure,clifhay de-
grade the user experience. Partial solutions exist, @g-hrome
where each tab is an own process, and a similar solutionsenrist
WebKit 2.0™.

2.2 Related work

With the increasing popularity of web applications, it hazib
suggested that the web browser could serve as a generarpiatf
for applications in the future. This would imply that Javaft
needs increased performance. Further, it also mean thataune
need to look deeper into the workload of actual web appbeati
This process is in its early phases, but there are sevenagza of
interesting work [27, 5]. Two concurrent studies [30, 31plitly

L http://www.techradar.com/news/software/webkit-2rhvaunced-taking-
leaf-from-chrome-682414

compare the JavaScript execution behavior of web applicatas
compared to existing JavaScript benchmark suites.

The study by Ratanaworabhan et al. [30] is one of the first
studies that compares JavaScript benchmarks with redthwaeb
applications. They instrumented the Internet Exploren&Saript
runtime in order to get their measurements. Their measureme
were focused on two areas of the JavaScript execution b@havi
i.e., (i) functions and code, and (ii) events and handlei@se8l
on the results, they conclude that existing JavaScript heacks
are not representative of many real-world web applicatiand
that conclusions from benchmark measurements can be wliistea
Examples of important differences include different codes
web applications are often event-driven, no clear hotspottfon
in the web applications, and that many functions are shettin
web applications. They also studied memory allocation drjdad
lifetimes in their study.

The study by Richards et al. [31] also compares the execution
behavior of JavaScript benchmarks with real-world web iappl
tions. In their study, they focus on the dynamic behavior how
different dynamic features are used. Examples of dynanaitifes
evaluated are prototype hierarchy, the useeehl, program size,

Sobject properties, and hot loop (hotspots). They conclbde the

behavior of existing JavaScript benchmarks differ on savef
these issues from the behavior of real web applications.

3. Experimental methodology
3.1 Experimental procedure

In this paper we have performed the following experimentsef

of html5 demos, a set of use-cases of a number of webpages. From
these we have extracted how certain JavaScript functienasad,

how much time is spent on JavaScript execution and recordhwhi
opcodes that are interpreted.

3.2 Experimental environment

The measurements are made on a modified version of GTK branch
of webkit (r69918) and a modified version of Mozilla Firefox with
FireBug JavaScript profiler. The modified versions are sbeth t
downloaded data are stored locally, so that when an opar#io
repeated we reload data from local storage. When JavaSoidiet
is executed, we have enabled such that the execution is fjimed
milliseconds) and that interpreted bytecodes are recordedd-
dition we have compiled two versions, one where JIT comipitat
is enables and one where JIT compilation is disabled. Tooparf
experiments that require user interaction, we have ingnied the
Autoit scripting tool to perform a set of cases.

All the experiments are run on a centrino duo laptop with 2GB
of memory with a Windows Vista, and and Uburit®.04 running
as a virtual image ontop of this system. This setup was nemsges
as we found no altenatives with the equvialent number ofifeat
as Autoit on Ubuntu.

4. Application classes

An important issue to address when executing JavaScript ap-
plications is to obtain reproducable results, especiatyges the
JavaScript code may change between reloads of the same-url ad
dress. We have addressed this by downloading the JavaSodet
locally, and run the code locally. Further, in most cases ige a
execute the code several times, e.g., up to ten times in génu
time compilation comparison in Section 5.1 and then takebdst
execution time for each case.

4.1 JavaScript benchmarks

There exist a number of established JavaScript benchmitdssu
and in this study we use the four most known: Dromaeo [25],

2010/11/20

V8 [16], Sunspider [37], and JSBenchmark [22]. The applicatio
in these benchmark suites generally fall into two differeate-
gories: (i) testing of a specific functionality, e.g., strimanipula-
tion or bit operations, and (ii) ports of already existingnblemarks
that are used extensively for other programming envirornsj.

For instance, among the8wbenchmarks are the benchmarks
Raytrace, Richards, Deltablue, and Earley-Boyer. Ragtiaca
well-known computational extensive graphical algorithinattis
suitable for rendering scenes with reflection. The ovedshiis
that for each pixel in the resulting image, we cast a ray tiinoa
scene and the ray returns the color of that pixel based onhwhic
scene objects each ray intersects [35].

Richards simulates an operating system task dispatchkatDes
is a constraint solver, and Earley-Boyer is a classic schigyme

While the benchmarks have a clear purpose, with a clearly
defined start and end state, social networking web appicsti
behave more like operating system applications, wheregbeaan
perform a selected number of tasks. However, as long as the we
application is viewed by the user, it often remains activel .g.,
Facebook) performs a set of underlying tasks.

To make a characterization and comparison easier, we have de
fined a set of use cases, with clear start and end states. libese
cases are intended to simulate common operations and ta@erov
repeatability of the measurements. The use cases repras@nt
mon user behavior in Facebook, Twitter, and BlogSpot. They a
based on personal experience, since we have not been abie to fi
any detailed studies of common case usage for social neswbhie
use cases are designed to mimic user behavior rather thaosxh

theorem prover benchmark. However, the Dromaeo benchmarksing JavaScript execution.

do test specific features of the JavaScript language andttgsin
sense more focused on specific JavaScript features.

Typical for the established benchmarks is that they often ar
problem oriented, meaning that the purpose of the benchiaaok
accept a problem input, solve this certain problem, and éneirthe
computation. This eases the measurement and gives theopewel
full control over the benchmarks, and increases the repiiata

4.2 Web applications- Alexa top 100

The critical issue in this type of study is which web applicas
that can be considered as representative. Due to the distrib
nature of the Internet, knowing which web applications aneypar
is difficult. Alexa [4] offers software that can be installedthe
users’ web browser. This software records which web apjiica
are visited and reports this back to a global database. Fiisn t
database, a list over the most visited web pages can be edrac
Table 2 we present the 100 most visited sites from the Alesta li
In our comparative evaluation, we have used the start pagsafin
of these 100 most visited sites as representatives for poptdb
applications.

In addition to evaluating the JavaScript performance aedex
tion behavior of the first page on the Alexa top-list, we haeated
use cases where we measure the JavaScript performancetaffa se
social networking web applications. These use cases aceiloed
in the next section.

4.3 Web applications- Social network use cases

There exists many so-called social networking web apitinaf39],
where Facebook [27] is the most popular one [4, 11]. Therew®r
examples of countries where half of the population use Faaletn
some extent during the week [10]. The users of a social n&ngr
web application can locate and keep track of friends or methzt
share the same interests. This set of friends represertisusacs
private network, and to maintain and expand a user’s netveosket
of functionalities is defined.

In this paper we study the social networking web application
Facebook [27], Twitter [23], and Blogger [6]. In a sense,dfmok
is a general purpose social networking web applicatior aivide
range of different functionalities. Further, Facebooloasems to
have the largest number of users.

Twitter [23] is for writing small messages, so called "tw&et
which are restricted té60 characters (giving a clear association to
SMS). The users of Twitter are able to follow other peophe/adts,
and for instance add comments in form of twitts to their posts

BlogSpot is a blogging web applications, that allows user to
share their opinion wide range of people through writingeTh
writing (a so-called blog post) might read, and the persanrigads
this, can often add an comments to the blog post.

BlogSpot [6].

Figure 1, 2, and 3 give an overview of the different use cdsas t
we have defined for Facebook, Twitter, and BlogSpot, resmyt
Common for all use cases are that they start with the usen.logi
From here the user has multiple options.

For Facebook, the user first logs in on the system. Then, the
user searches for an old friend. When the user finds this igddy
the user marks him as a "friend”, an operation where the user
needs to ask for confirmation from the friend to make sure that
he actually is the same person. This operation is a typicahgke
of an use case, which in turn is composed of several sub uss:cas
0 -login/home, 0.3 -find friend, 0.3.1 -add friend, and
0.3.1.0 -send request, as shown in Figure 1.

All use cases start with the login case, and we recognize an
individual operation, such a8.3.1 -add friend as a sub use
case, though it must complete previous use cases. Furtbedpw
allow use cases that goes back and forth between use cases. Fo
example in Figure 2, if we want to both choose the optioh0
-follow and0.1.1 -mention, then we would need to visit the
following sub use cased) -login/home, 0.1 -find person,
0.1.0 -follow, 0.1 -find person, and0.1.1 -mention.

60 1 -favorite) @1.0 ~follow) @1 1 rmenﬂon> @.12 —manage)

0-login/home

Figure 2. Use cases to characterize the JavaScript workload of
Twitter.

To enhance repeatability, we use the Autolt scripting emsr
ment [7] to automatically execute the various use cases mna c
trolled fashion. As a result, we can make sure that we spead th
same amount of time on the same or similar operations, sutth as
type in a password or click on certain buttons. This is slgtébr
the selected use cases.

4.4 HTMLS5 and the canvas element

There have been several attempts to add more extensivadtiver
multimedia to web applications. These attempts could bghiyu

2010/11/20

Table 1. A summary of the benchmark suites used in this paper.

[Benchmark suite |

Applications

bitops-3bit-bits-in-byte, bitops-bits-in-byte, bitepg&wise-and, bitops-nsieve-bits
controlflow-recursive crypto-aes, crypto-md>5, cryptakh

date-format-tofte, date-format-xparb

math-cordic, math-partial-sums, math-spectral-nornexpeina

string-fasta, string-tagcloud, string-unpack-codengtwvalidate-input

Dromaeo [9] 3d-cube, core-eval, object-array, object-regexp, okj&atg, string-base64
V8[16] crypto, deltablue, earley-boyer, raytrace, richards
SunSpider [37] 3d-morph, 3d-raytrace access-binary-trees, acces&fahnaccess-nbody, access-nsieve

JSBenchmark [22]

Quicksort, Factorials, Conway, Ribosome, MD5, Primes,glierSalesman, Arrays, Dates, Exceptions

Table2. A summary of the 100 most visited sites in the Alexa top-ditg4] used in this paper (listed alfabetically).

163.com 1e100.net 4shared.com about.com adobe.com amazon.com ameblo.jp
aol.com apple.com ask.com baidu.com bbc.co.uk bing.com blogger.com
bp.blogspot.com cnet.com cnn.com conduit.com craigslist.org dailymotion.com | deviantart.com
digg.com doubleclick.com | ebay.com ebay.de espn.go.com | facebook.com fc2.com
files.wordpress.com flickr.com globo.com go.com google.ca google.cn google.co.id
google.co.in google.co.jp google.co.uk google.com google.com.au| google.com.br google.com.mx
google.com.tr google.de google.es google.fr google.it google.pl google.ru
hi5.com hotfile.com imageshack.us | imdb.com kaixin001.com | linkedin.com live.co
livedoor.com livejasmin.com | livejournal.com | mail.ru mediafire.com | megaupload.com megavideo.com
microsoft.com mixi.jp mozilla.com msh.com myspace.com | nytimes.com odnoklassniki.ru
orkut.co.in orkut.com orkut.com.br photobucket.com| pornhub.com | gg.com rakuten.co.jp
rapidshare.com redtube.com renren.com sina.com.cn sohu.com S0S0.com taobao.com
tianya.cn tube8.com tudou.com twitter.com uol.com.br vkontakte.ru wikipedia.org
wordpress.com xhamster.com xvideos.com yahoo.co.jp yahoo.com yandex.ru youku.com
youporn.com youtube.com

0.3.0.0.0.0.0 -click on share 0.3.0.0.0.0.1 -click on wall
0.3.0.0.0.0 -choose last entry

0.3.0.0.0 -browse friends

0.3.0.0 -show friends

6.3.0.1 -show othe@ @.1 .0 -send requ@

@0 -Click on first message inE

0.3.0 -choose friend 0.3.1 -add friend

I
@O -messages) 61 -create eve@ 6_2 -add entry

0.3 -find friend

"/

(0.4 -chat) (0.5 -photos) ‘ 0.6 -logout ’

0 -login/home

Figure 1. Use cases to characterize the JavaScript workload of Fakebo

divided into two groups: plug-in technologies and scrifeadx- tensions introduce features in the web browser that can béma
tension to web browsers. Plug-ins are programs that run pofto lated through, e.g., JavaScript.

the web browser. The Plug-ins can execute some special fype o HTML5 [19] is the next standard version of the HyperText
programs, and well known examples are Adobe Flash, Java Ap- Markup Language. The Canvas in element HTMIL8] has been
plets, Adobe Shockwave, Alambik, Internet C++, and Siigéil agreed on by a large majority of the web browser vendors, aach
These require that the user downloads and installs a plygein Mozilla FireFox, Google Chrome, Safari, Opera and Intefet

gram before they can execute associated programs. Sdeigab

4 2010/11/20

@1 A —messa99 @1 .2 -click adveD

0.1 -right user

0 -login/home

5. Experimental results
5.1 Comparison of the effect of just-in-time compilation

We have compared the execution time for WebKit where just-in
time compilation(JIT) has been enabled, against the eixettime
where the JIT compiler has been disabled (NOJIT). When JIT
has been disabled the JavaScript is interpreted as byteédide
modifications are made to the JavaScriptCore engine, ancavee h
used the GTK branch of the WebKit source distributics9@r18).

We have divided the execution time of a JIT version (JIT)
with the execution time of the interpretive mode (NOJIT.,i.
Tewe(JIT)/Teze (NOJIT). That means, if

Tewe(JIT)/Tene(NOJIT) > 1

then the JavaScript program runs slower when just-in-tiorepi-
tation is enabled. We have measured the execution time ticht e
method call uses in the JavaScriptCore in WebKit.

In Figure 4, Figure 5, and Figure 6 we have plotted the values
Of Tewe(JIT) / Tewe (NOJIT) for the Alexa top-100 web sites,
a number of use cases for social network applications, aed th
first 109 JS1K demos, respectively. We have plotted Figuredd a
Figure 6 with a logarithmic scale on the y-axis, enablingousiake
comments about how effective JIT is when it is successfue u
a small number of entries and variation in the data, we havtbgul
the results in Figure 5 in a linear scale on the y-axis (in @it
to Figures 4 and 6). We have sorted the results such thatake le

Figure 3. Use cases to characterize the JavaScript workload of syccessful are placed to the left.

BlogSpot.

plorer 92. The Canvas element opened up for adding rich inter-
active multimedia to web application. The canvas elemdotval

the user to add dynamic scriptable rendering of geometapesh
and bitmap images in a low level procedural manner to webi-appl
cations. A similar technology, albeit at a higher level, éalable
vector graphics [24].

This element opens up for more interactive web applications
As an initiative for programmers to explore and develop tevas
element further, a series of competitions have been ardgiig&3,
21]. The JS1k competition gat60 entries. The premise for this
competition was that the entries should be less e bytes in
total (with an extra bonus if they would fit inside a tweet)rther, it
was forbidden to use external elements such as images. Tiesen
vary in functionality and features, which can be illustcht®y the
top 10 entries, shown in Table 3, where half of them are something
else than a game.

Table 3. The top-10 contributions in the JS1K competition.

| | Name | Developer |
1 Legend Of The Bouncing Beholder | @marijnjh
2 Tiny chess Oscar Toledo G.
3 Tetris with sound @sjoerdvisscher
4 WOLF1K and the rainbow charactefs @p01
5 Binary clock (tweetable) @alexeym
6 Mother fucking lasers @evilhackerdude
7 Graphical layout engine Lars Ronnback
8 Crazy multiplayer 2-sided Pong @feiss
9 Morse code generator @chrissmoak
10 | Pulsing 3d wires @unconed

2However is unclear whenever it will be supported in the fireision of
Internet Explore®.

We have measured the workload of the fit80 web applica-
tions on the Alexa list, without supplying these with any iof
interaction. We have measured the firg89 JavaScript demos from
the JS1K competition that had a strong focus on the canvasele
from html5 without any interaction, even though some of them sug-
gested interaction (such as computer games).

We have also measured a set of web applications that could be
loosely described as social networka¢ebook. com, twitter.
com andblogsplot.com). Each of these are among the fit§0
entries in the Alexa list. For these we have defined a set of use
cases. The use-cases presented in Figure 5 are extensianhof e
other, as discussed in Section 4. For instance,(casextended
into caseé, and caseis then extended into ca&eFurther, we have
evaluated the effect of just-in-time compilation also oarfbench-
mark suites, i.e., Dromaeo 8y Sunspider, and JSBenchmark.

Each application, both for web applications or benchmaigks,
executedl0 times each, where the best one out of flieexe-
cutions is selected for comparison. For the web applicatiop
record queries with a proxy server to minimize the chancetttea
JavaScript code changes between each time.

In Figure 4 we see that fai8 out of the100 web applications,
JIT compilation actuallyncreaseshe execution time. Two of the
web applicationsgoogleusercontent . com andbp.blogspot.
com, were both unavailable at the time of the experirﬁem/e
see that even though more than half of the web applicatiods ha
a prolonged execution time when using JIT compilation, ¢hos
applications that did benefit from JIT compilation did impedheir
execution time significantly. For example, faraiglist.com JIT
improved the execution time with a factor 00. For the search
engineyahoo.co. jp JIT did increasethe execution time by a
factor of3.99.

In Figure 6 we see that JIT compilation ditcreasethe exe-
cution time for59 out of the109 JS1K demos. When JIT fails, it
increases the execution time by a factor of ugi®?2 times. When
JIT is successful, it decreases the execution time by up actarf
of 263.

Sblogspot.com was available as we see in later experiments, but Alexa
specifiedbp . blogspot . com

2010/11/20

JIT successfull 42/100 (Top 100 Alexa websites) oz

cution time JIT/NOJIT

100

JIT successfull 59/109 (JS1K demos) =z

Relative execution time JIT/NOJIT

0.01

0.001

Figure 4. Relative execution tim&eee(JIT) / Tewe(NOJIT)
for the Alexa top100 web sites.

Facebook 2000y
Tuitter swwm
BlogSpot T3t-%

ution time JIT/NOJIT

Figure 5. Relative execution tim&epe(JIT) / Texe(NOJIT)
for 4 use cases from three different social network applications

In Figure 7 we have evaluatelout of the5 V8 benchmarks.
The last benchmark, earley-boyer, did not execute coyredth
the selected version of WebKit. We see that JIT compilat®n i
successful irB out of 4 cases. We see that best improvement is a
factor of1.9, while in the worst case the execution time is increased
by a factor ofl.14.

In Figure 8 we see that JIT compilation improves the exeautio
time for 3 out of 6 applications in the Dromaeo benchmark suite.
The largest improvement is by a factor b4, while in the case
where JIT performs worst the execution time is is increased b
factor of1.32.

In Figure 9, where the results for the SunSpider benchmaie su
is presented, all the entries run equally fast or faster wiiEicom-
pliation is enabled. The largest improvement is by a factar6ot
for the string-validate-input application, and the smallest
improvement isl.0, i.e., none, for thelate-format-tofte ap-
plication.

In Figure 10 we see that JIT compilation successfully desgea
the execution time foF out of 10 applications in the JSBenchmark
suite. The largest decrease in execution time is by a faétoréo
The largest decrease in the execution time is by a factbrogt

Figure 6. Relative execution tim&.ee(JIT) / Tewe(NOJIT)
for the first109 JS1K demos.

T T
JIT successfull 3/4 (V8 benchmarks) zzzzzz

Relative execution time JIT/NOJIT

Figure 7. Relative execution tim&eee(JIT) / Tewe(NOJIT)
for the V8 benchmarks.

In summary, we can conclude that JIT compilation decreases
the execution time for most the benchmarks. However, fonble
applications JIT compilation actuallpcreaseghe execution time
for more than half of the studied web applications. In the swor
case, we found that the execution time was prolonged by up to 7
times in the worst case {81 in the JS1K demos).

5.2 Comparison of bytecodeinstruction usage

We have recorded the number of executed bytecode instnsctio
in the JavaScriptCore for all the benchmarks and for the fivet
entries in the Alexa top list. We do present the results offtlexa
top 100 applications versus the SunSpider benchmark, tese
two application sets differed most.

The SunSpider benchmark uses a smaller subset of the deailab
instructions than the Alexa websites do. The Alexa websites
118 out of 139 instructions while the SunSpider benchmarks only
use82 out of the139 available bytecode instructions (this includes
instructions that are used mostly for debugging purpose&/en
bKit). We have grouped the instructions loosely based ofnlins
tions that have similar behavoir. The instruction groupes arith-

2010/11/20

2 T T T T

T T
JIT successfull 3/6 (Dromaeo benchmarks) ez

execution time JIT/NOJIT

Relative

2 T T T T T T

T T T T
JIT successfull 7/10 (jsbenchmarks benchmarks) ez

execution time JIT/NOJIT

Relative

Figure 8. Relative execution tim&eee(JIT) / Tewe(NOJIT)
for the Dromaeo benchmarks.

JIT

23/24

Relative execution time JIT/NOJIT

%, % %, S G % D, Qo By % % O % % O 2 G G O B % 2 M

%, Y, % T, %,s K Oy 28, % éo% KNI %40%& %5 %o, o,
, 3 % e O , s 0 S, o, CF,

Ty O g e, M © B, Y % %, 0 G P %
% Ty, G, e %% 7 % %, % %, % % %
% . % W %, 6, 8, %o 6@ 3 %,

T P a“% %, R, U % %, kS 0,

Vi Y ® Y, K ”»

Figure 9. Relative execution tim&eee(JIT) / Tewe(NOJIT)
for the Sunspider benchmarks.

metic/logical, prototype and object manipulation, anchichees and
jumps.

In Figure 11 we see that arithmetic/logical instructiorsrauch
more intensively used in the SunSpider benchmarks thariwéto
applications covered by Alexa top 100. We also see that time Su
Spider benchmarks often use bit operations (such as leftightl
shift) which are very rarely used in the websites. This olatén
suggests that even though most of these operations aretanpor
and well known in programming languages such as C, it sedms li
these are rarely used in web applications. JavaScript maovayg
from hardware, making little use of bit oriented operatiohke
only operation that seems to be used more in web applicatiams
in the benchmarks is theot instruction, which could be used in,
e.g., comparisons.

We notice that Alexa top 100 web applications seem to use
the object model of JavaScript, and therefore use the objest
cial features more extensively than the benchmarks. Inrgig@
we see that instructions suchgest_by_id, get_by_id_self, and
get_by_id_proto are used much more in the web applications
than in the benchmarks. Features such as classless pexdqtyp-
gramming, are usually associated with research orientegram-

Figure 10. Relative execution tim&e,e(JIT) / Tewe(NOJIT)
for the JSBenchmark.

Alexa top 100 ooz
Sunspider maman

Figure 11. Aritmetic instructions for Alexa websites and Sunspi-
der benchmarks

ming languages, and it is likely that these concepts are mdit w
reflected in a set of benchmarks that have been ported froax a tr
ditional programming language. A closer inspections ofstharce
code of the benchmarks confirms this. It seems like many of the
benchmarks are embedded into typically object-based manst
tions, which assist in measuring execution time and othachye
marks related tasks. However, these object-based cotistrsiare
only rarely a part of the compute intensive parts of the berark.

The observation above is further supported in Figure 13, by
looking at instructions such agt_val andput_val, which the
SunSpider benchmarks use more extensively than the web appl
cations. This suggests that the benchmarks do not take -advan
tage of the JavaScript feature of classless prototype riestand
rather tries to emulate the data structures in the origisatbmarks
which they often were ported from.

For the branch and jump bytecode instruction group, we ob-
serve in Figure 14 that jumps related to objects are common in
Alexa, while jumps that are typically assosiated with ctindal
statements, such as loops are much more used in the benchmark
A larger number ofjmp instructions also illustrates the importance
of function calls in web applications.

2010/11/20

Alexa top 100 ooz
Sunspider maman

g
s
5
£
k|
&

Alexa top 100 ooz
Sunspider maman

Relative number of execution calls

Figure 12. Prototype related instructions for the Alexa top 100

websites and the SunSpider benchmarks.

Alexa top 100 ooz
Sunspider maman

s
5
g
H
&

% P % %
Yy Y % % % % % 4 %
%% % % %, %, 3 4,
Yo Yo Yo %, o, %o, %, %%, %,
% e o, &
% o R,
B, 4
78, %
@

Figure 13. Prototype related instructions for the Alexa top 100
websites and the SunSpider benchmarks.

5.3 Usageof theeval function

One feature of JavaScript is that it uses evaluateal) func-

tion calls, that executes a given string of JavaScript soaare

at runtime. To extract information of how frequentyal calls

are executed, we have used the FireBug [12] JavaScript grofil
to extract this information. We have then measured the num-
ber of eval calls relative to the total nhumber of function calls
(No.ofevalcalls/Totalno.of functioncalls).

In Figure 15 we see that such functions are rather rare in
the benchmarks, apart from three instances. For the bemkbma
we observe thagval is used in only4 out of 35 benchmarks.
However, they use it quite extensively. Theomaeo-core-eval
benchmark ha.27, sunspider-date-format-tofte has0.54,
sunspider-date-format-xparb has 0.28, and sunspider-
string-tagcloud has0.15 relative number okval calls. This
accounts for an average relative numbeerw#l calls of0.31 for
these four benchmarks. From their name (eegal-test in the
Dromaeo benchmark), by inspection of the JavaScript code an
the amount okval calls, we suspect that these benchmarks were
designed to test the eval function.

Figure 14. Branch and jump related instructions for the Alexa top
100 websites and the SunSpider benchmarks.

Relative number of eval function calls
LN s s s s B B s B s B B S S S B S

T T Benthrharks —T

eval-function calls relative to total number of function calls

Benchmark

Figure 15. Number ofeval calls relative to the number of total
function calls in the Dromaeo,8/ and SunSpider benchmarks.

For the Alexa top sites list, we see in Figure 16 thatd¢hel
function is used more frequently4 out of 100 sites use theval
function. On average, the relative numbereafal calls is0.11.
However, we see in the figure that there are web applicatigtis w
a large relative number efval calls, such asina.com.cn where
55% of all function calls areval calls.

5.4 Anonymous function calls

An anonymous function call is a call to a function that does no
have a name. In many programming languages this is not pessib
but it is possible to create such functions in JavaScriptc&this
programming construct is allowed in JavaScript, we wouke i
to find out how common it is in JavaScript benchmarks and web
applications

By inspection, we found that of the anonymous function calls
in the benchmarks were instrumentation of the benchmarke@ m
sure execution time. We have measured the number of anorsymou
function calls with the FireBug JavaScript profiler. If wemeved
these3 function calls we found that7 out of the35 benchmark
use anonymous function calls (to a variable degree). Fognirées

2010/11/20

Relative number of eval function calls

LR RN LA AR R RN AR AR AR ARy

0s
0p 1b0"EbS1ES

TTTTT
LAY

eval-function calls relative to total number of function calls

AT Anud\u,unn A D H““A““A/‘\muﬁ\‘ o [\4 L m[\m/

Website

Figure 16. Number ofeval calls relative to the number of total
function calls for the first00 entries in the Alexa list.

in the top100 Alexa websites, we found that out of 100 sites
use anonymous function calls. The relative number of anaogn
function calls in the benchmarks and the Alexa top 100 sites a
shown in Figure 17.

1 T T T T T T

T T T
Alexa top 100 sites
' Dromaeo, sunspider and V8 benchmarks

09+ 1 i

08|t i
07 kit 4

06 i ! 1

Number of anonymous function calls relative to total number of function calls

AN

70

40

50
Benchmark/website

60 90 100

Figure 17. Use of anonymous function calls.

We see that certain of the benchmarks use anonymous function

calls more extensively. Some of these are tailored to spatifitest
the use of anonymous function calls, much like certain berark
were tailored to test eval in Section 5.3.

6. Conclusions

In this paper we have evaluated the execution behavior aSenpt
for four different application classes, i.e., four Javé@cbench-
mark suites, popular web sites, use cases from social niatvgor
applications, and the emerging HTML5 standard. The measure
ments have been performed in the WebKit browser and Jay@Scri
execution environment.

We have found that the behavior of benchmarks and real-world
web applications differ in several significant ways:

e Just-in-time compilation is beneficial for most of the bench
marks, but actuallyncreaseshe execution time for more than
half of the web applications.

e Arithmetic byte code instructions are significantly morenco
mon in benchmarks, while prototype related instructiond an
branches are more common in real-world applications.

e Theeval function is much more commonly used in web appli-
cations than in benchmark applications.

e We found that approximately half of the benchmarks used
anonymous functions, while approximately 75% of the web
applications used anonymous functions.

Based on the findings above, in combinations with findings
in previous studies [30, 31], one can conclude that the iegist
benchmark suites do not reflect the execution behavior df rea
world web applications.

Acknowledgments

This work was partly funded by the Industrial Excellence ©€en
EASE - Embedded Applications Software Engineeringtp:
//ease.cs.1lth.se).

References

[1] 10KApart. Inspire the web with just 10k, 201tattp://10k.
aneventapart.com/.

[2] Ole Agesen. GC points in a threaded environment. Teethmeport,
Sun Microsystems, Inc., Mountain View, CA, USA, 1998.

[3] Therese J. Albert, Kai Qian, and Xiang Fu. Race conditioajax-
based web application. IACM-SE 46: Proceedings of the 46th
Annual Southeast Regional Conference on pages 390-393, New
York, NY, USA, 2008. ACM.

[4] Alexa. Top 500 sites on the web, 2010. http://www.alera/topsites.

[5] Anneliese A. Andrews, Jeff Offutt, Curtis Dyreson, Gltapher J.
Mallery, Kshamta Jerath, and Roger Alexander. Scalahiityies
with using fsmweb to test web applicationgnf. Softw. Technal.
52(1):52-66, 2010.

[6] Blogger: Create your free blog, 201Rttp://www.blogger.com/.

[7] Jason Brand and Jeff Balvanz. Automation is a breeze auitit.
In SIGUCCS '05: Proceedings of the 33rd annual ACM SIGUCCS
conference on User servigegages 12-15, New York, NY, USA,
2005. ACM.

[8] Ravi Chugh, Jeffrey A. Meister, Ranijit Jhala, and Sorierrer.
Staged information flow for javascript. IRLDI '09: Proc. of the
2009 ACM SIGPLAN conference on Programming language design
and implementatignpages 50-62, New York, NY, USA, 2009. ACM.

[9] Dromaeo. Dromaeo: JavaScript performance testing,0201
http://dromaeo.com/.

[10] Eric Eldon. Facebook used by the most people withiraicé] norway,
canada, other cold places, 2009. http://www.insidefagklnom/2009/09/25/fac
used-by-the-most-people-within-iceland-norway-canather-cold-
places/.

[11] Facebook, 2010. http://www.facebook.com/pressljptip?statistics.

[12] FireBug. Firebug, javascript profiler, 2010. httpeffirebug.com.

[13] David Flanagan. JavaScript: The Definitive Guide, 5th edition
O’Reilly Media, 2006.

[14] Andreas Gal, Brendan Eich, Mike Shaver, David Anderdaavid
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydonreloa
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin WhSm
Rick Reitmaier, Michael Bebenita, Mason Chang, and Mickaahz.
Trace-based just-in-time type specialization for dynalaiguages.

In PLDI '09: Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementatipages 465-478,
New York, NY, USA, 2009. ACM.

[15] Google. V8 Google JavaScript interpreter, 2008. Httpde.google.com/intl/fr/a
[16] Google. V8 benchmark suite - version 5, 2010. http:fe®glecode.com/svn/de

2010/11/20

[17] Google. V8 JavaScript Engine, 2010. http://code.d@com/p/v8/.

[18] Michael Grady. Functional programming using Javg3cand
the HTML5 canvas elementJ. Comput. Small Coll.26:97-105,
December 2010.

[19] W3C HTML Working Group, 2010http://www.w3.org/html/
wg/.

[20] JavaScript, 2010. http://en.wikipedia.org/wikia&cript.

[21] JS1k. This is the website for the 1k JavaScript demoesintjsik,
2010.http://jsik.com/home.

[22] JSBenchmark, 2010. http://jsbenchmark.celtickeora/.

[23] Balachander Krishnamurthy, Phillipa Gill, and Mar#mlitt. A few
chirps about twitter. I'WOSP ’'08: Proceedings of the first workshop
on Online social networkpages 19-24, New York, NY, USA, 2008.
ACM.

[24] Francis Molina, Brian Sweeney, Ted Willard, and Andkénter.
Building cross-browser interfaces for digital librariegttwscalable
vector graphics (svg). IProc. of the 7th ACM/IEEE-CS joint
conference on Digital librariesJCDL '07, pages 494-494, New
York, NY, USA, 2007. ACM.

[25] Mozilla. Dromaeo: JavaScript performance testingl@0
http://dromaeo.com/.

[26] Mozilla. What is SpiderMonkey?, 2010. http://www.niltez org/js/spidermonkey/.

[27] Atif Nazir, Saqgib Raza, and Chen-Nee Chuah. Unveiliagébook:
A measurement study of social network based applicatiom$MC
'08: Proceedings of the 8th ACM SIGCOMM conference on Irgern
measuremenpages 43-56, New York, NY, USA, 2008. ACM.

[28] Node.js. Evented I/O for V8 JavaScript, 201Bttp://nodejs.
org/.

[29] Ulrike Pfeil, Raj Arjan, and Panayiotis Zaphiris. Agéferences
in online social networking - a study of user profiles and theiad
capital divide among teenagers and older users in mysgzaeput.
Hum. Behay.25(3):643-654, 2009.

[30] Paruj Ratanaworabhan, Benjamin Livshits, and Benja®i Zorn.
JSMeter: Comparing the behavior of JavaScript benchmaitksreal
web applications. IfProceedings of the 2010 USENIX conference
on Web application developmeit/ebApps’10, pages 3-3, Berkeley,
CA, USA, 2010. USENIX Association.

[31] Gregor Richards, Sylvain Lebresne, Brian Burg, and \Jaek.
An analysis of the dynamic behavior of javascript progranhs.
Proceedings of the 2010 ACM SIGPLAN conference on Progragimi
language design and implementatiddLDI '10, pages 1-12, New
York, NY, USA, 2010. ACM.

[32] Erick Schonfeld. Gmail grew 43 percent last year. aoil @ad hot-
mail need to start worrying, 2009. http://techcrunch.c®08/01/14/gmail-
grew-43-percent-last-year-aol-mail-and-hotmail-néedtart-
worrying/.

[33] The 5K. An award for excellence in web design and proidugct
2002.http://www.thebk.org/.

[34] W3C. World Wide Web Consortium, 2010. http://mww.w8a/.

[35] Alan Watt. 3d Computer Graphics Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1993.

[36] Web applications, 2010. http://en.wikipedia.ord{ifiVeb_application.

[37] WebKit. SunSpider JavaScript Benchmark, 2010. hitpuiv2.webkit.org/perf/sunspider-

0.9/sunspider.html.
[38] WebKit. The WebKit open source project, 2010. httpwhmwebkit.org/.

[39] Wikipedia. List of social networking websites, 201@&pv/en.wikipedia.org/wiki/Listof_socialnetworkingwebsites.

10

2010/11/20

