
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A comparative evaluation of JavaScript execution behavior

Martinsen, Jan Kasper; Grahn, Håkan; Isberg, Anders

Published in:
Web Engineering

DOI:
10.1007/978-3-642-22233-7_35

2011

Link to publication

Citation for published version (APA):
Martinsen, J. K., Grahn, H., & Isberg, A. (2011). A comparative evaluation of JavaScript execution behavior. In
Web Engineering: 11th International Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011, Proceedings
(pp. 399-402). (Lecture Notes in Computer Science; No. 6757). Springer. https://doi.org/10.1007/978-3-642-
22233-7_35

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-642-22233-7_35
https://portal.research.lu.se/en/publications/eecc87fb-8f81-48c3-bf86-3df3473c6598
https://doi.org/10.1007/978-3-642-22233-7_35
https://doi.org/10.1007/978-3-642-22233-7_35

Draft submitted to PLDI’11, please do not re-distrubute

A Comparative Evaluation of JavaScript Execution Behavior

Jan Kasper Martinsen Håkan Grahn
Blekinge Institute of Technology, Karlskrona, Sweden

{jan.kasper.martinsen,hakan.grahn}bth.se

Anders Isberg
Sony Ericsson Mobile Communications AB, Lund,

Sweden
Anders.Isberg@sonyericsson.com

Abstract
JavaScript is a dynamically typed and object-based scripting lan-
guage with runtime evaluation. It has emerged as an important
language for client-side computation of web applications.Previ-
ous studies have shown differences in behavior between established
JavaScript benchmarks and real-world web applications. However,
there still remains several important aspects to explore.

In this paper, we compare the JavaScript execution behaviorfor
four application classes, i.e., four established JavaScript benchmark
suites, the start pages for the first 100 sites on the Alexa toplist,
22 different use cases for Facebook, Twitter, and Blogger, and
finally, demo applications for the emerging HTML5 standard.Our
results extend previous studies by identifying the importance of
anonymous functions, showing that just-in-time compilation often
decreases the performance of real-world web applications,a more
thorough and detailed analysis of the use of theeval function, and
a detailed instruction mix evaluation.

Categories and Subject Descriptors CR-number [subcategory]:
third-level; CR-number2 [subcategory]: third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
The World Wide Web has become an important platform for many
applications and application domains, e.g., social networking, elec-
tronic commerce, on-line libraries, and map services. These type
of applications are often collectively referred to as web applica-
tions [36]. Web applications [36] can be defined in differentways,
e.g., as an application that is accessed over the network from a
web browser, as a complete application that is solely executed in
a web browser, and of course various combinations thereof. Social
networking web applications, such as Facebook [27], Twitter [23],
and Blogspot [29] have turned out to be immensely popular, being
within the top-25 web sites on the Alexa list [4] of most popular
web sites. All three use the interpreted language JavaScript exten-
sively for their implementation, and as a mechanism to improve
both the user interface and the interactivity.

JavaScript [20, 13] was introduced in 1995 as a way to intro-
duce dynamic functionality on web pages that were executed on the

[Copyright notice will appear here once ’preprint’ option is removed.]

client side. JavaScript has reached widespread use throughits ease
of deployment and the increasing popularity of certain Web Appli-
cations [32]. For example, we have found that nearly all of the first
100 entries in the Alexia-top sites list have some sort of JavaScript
functionality embedded. JavaScript is a dynamically typed, object-
based scripting language with run-time evaluation. The execution
of a JavaScript program is done in a JavaScript engine [17, 38, 26],
i.e., an interpreter/virtual machine that parses and executes the
JavaScript program. The performance of the JavaScript engine is
important in order to develop and employ powerful new web appli-
cations, and different browser vendors constantly try to outperform
each other.

In order to evaluate the performance of JavaScript engines,sev-
eral benchmark suites have been proposed. The most well-known
are Dromaeo [9], V8 [16], SunSpider [37], and JSBenchmark [22].
However, two previous studies have pointed out that the execution
behavior of existing JavaScript benchmarks differs in several im-
portant aspects [30, 31].

In this study we compare the execution behavior of four differ-
ent application classes, i.e., (i) four established JavaScript bench-
mark suites, (ii) the start pages for the first 100 sites on theAlexa
top list, (iii) 22 different use cases for Facebook, Twitter, and Blog-
ger, and finally, (iv) demo applications for the emerging HTML5
standard. Our measurements are performed on WebKit [38], one of
the most commonly used browser environments in mobile termi-
nals.

We extend previous studies [30, 31] with several important
contributions.

• First, we extend the execution behavior analysis with two new
application classes, i.e., reproducible use cases of social net-
work applications and HTML5 applications.

• Second, we identify the importance of anonymous functions.
We have found that anonymous functions [8] are used much
more frequently in real-world web applications than in the
existing JavaScript benchmark suites.

• Third, our results clearly show that just-in-time compilation of-
tendecreasesthe performance of real-world web applications,
while it increases the performance for most of the benchmark
applications.

• Fourth, a more thorough and detailed analysis of the use of the
eval function.

• Fifth, we provide a detailed instruction mix measurement, eval-
uation, and analysis.

The rest of the paper is organized as follows; In Section 2 we in-
troduce JavaScript and JavaScript engines along with the most im-
portant related work. Section 3 presents our experimental methol-
ogy, while Section 4 presents the different application classes that

1 2010/11/20

we evaluate. Our experimental results are presented in Section 5.
Finally, we conclude our findings in Section 6.

2. Background and related work
2.1 JavaScript

An important trend in application development is that more and
more applications are moved to the World Wide Web [34]. There
are several reasons for this, e.g., accessibility and mobility. These
applications are commonly known as web applications [36]. Popu-
lar examples of such applications are: Webmails, online retail sales,
online auctions, wikis, and many other applications. In order to
develop web applications, new programming languages and tech-
niques have emerged. One such language is JavaScript [13, 20],
which has been used especially in client-side applications, i.e., in
web browsers, but are also applicable in the server-side applica-
tions. An example of server-side JavaScript is node.js [28], where
a scalable web server is written in JavaScript.

JavaScript [13, 20] was introduced by Netscape in1995 as
a way to allow web developers to add dynamic functionality to
web pages that were executed on the client side. The purposes
of the functionality were typically to validate input formsand
other user interface related tasks. JavaScript has since then gained
momentum, through its ease of deployment and the increasing
popularity of certain web applications [32]. From the first100
entries in the Alexa-top sites list, we have found that nearly all of
them had some sort of JavaScript functionality embedded.

JavaScript is a dynamically typed, prototype, object-based
scripting language with run-time evaluation. The execution of a
JavaScript program is done in a JavaScript engine [17, 26, 38],
i.e., an interpreter/virtual machine that parses and executes the
JavaScript program. Due to the popularity of the language, there
have been multiple approaches to increase the performance of the
JavaScript engines, through well-known optimization techniques
such as JIT related techniques, fast property access, and efficient
garbage collections [14, 15].

The execution of JavaScript code is often invoked in web ap-
plication through events. Events are JavaScript functionalities that
are executed at certain occasions, e.g., when a web application has
completed loading all of its elements, when a user clicks on abut-
ton, or events that executes JavaScript at certain regular time inter-
vals. The last type of event is often used for so-called AJAX tech-
nologies [3]. Such AJAX requests often transmit JavaScriptcode
that later will be executed on the client side, and can be usedto au-
tomatically update the web applications. Another interesting prop-
erty of JavaScript within web applications, is that there isno mech-
anism like hardware interrupts. This means that the web browser
usually “locks” itself while waiting for the JavaScript code to com-
plete its execution, e.g., a large loop-like structure, which may de-
grade the user experience. Partial solutions exist, e.g., in Chrome
where each tab is an own process, and a similar solution exists in
WebKit 2.01.

2.2 Related work

With the increasing popularity of web applications, it has been
suggested that the web browser could serve as a general platform
for applications in the future. This would imply that JavaScript
needs increased performance. Further, it also mean that onewould
need to look deeper into the workload of actual web applications.
This process is in its early phases, but there are several examples of
interesting work [27, 5]. Two concurrent studies [30, 31] explicitly

1 http://www.techradar.com/news/software/webkit-2-0-announced-taking-
leaf-from-chrome-682414

compare the JavaScript execution behavior of web applications as
compared to existing JavaScript benchmark suites.

The study by Ratanaworabhan et al. [30] is one of the first
studies that compares JavaScript benchmarks with real-world web
applications. They instrumented the Internet Explorer 8 JavaScript
runtime in order to get their measurements. Their measurements
were focused on two areas of the JavaScript execution behavior,
i.e., (i) functions and code, and (ii) events and handlers. Based
on the results, they conclude that existing JavaScript benchmarks
are not representative of many real-world web applicationsand
that conclusions from benchmark measurements can be misleading.
Examples of important differences include different code sizes,
web applications are often event-driven, no clear hotspot function
in the web applications, and that many functions are short-lived in
web applications. They also studied memory allocation and object
lifetimes in their study.

The study by Richards et al. [31] also compares the execution
behavior of JavaScript benchmarks with real-world web applica-
tions. In their study, they focus on the dynamic behavior andhow
different dynamic features are used. Examples of dynamic features
evaluated are prototype hierarchy, the use ofeval, program size,
object properties, and hot loop (hotspots). They conclude that the
behavior of existing JavaScript benchmarks differ on several of
these issues from the behavior of real web applications.

3. Experimental methodology
3.1 Experimental procedure

In this paper we have performed the following experiments: Aset
of html5 demos, a set of use-cases of a number of webpages. From
these we have extracted how certain JavaScript functions are used,
how much time is spent on JavaScript execution and record which
opcodes that are interpreted.

3.2 Experimental environment

The measurements are made on a modified version of GTK branch
of webkit (r69918) and a modified version of Mozilla Firefox with
FireBug JavaScript profiler. The modified versions are such that
downloaded data are stored locally, so that when an operation is
repeated we reload data from local storage. When JavaScriptcode
is executed, we have enabled such that the execution is timed(in
milliseconds) and that interpreted bytecodes are recorded. In ad-
dition we have compiled two versions, one where JIT compilation
is enables and one where JIT compilation is disabled. To perform
experiments that require user interaction, we have instrumented the
Autoit scripting tool to perform a set of cases.

All the experiments are run on a centrino duo laptop with 2GB
of memory with a Windows Vista, and and Ubuntu10.04 running
as a virtual image ontop of this system. This setup was nessessary
as we found no altenatives with the equvialent number of features
as Autoit on Ubuntu.

4. Application classes
An important issue to address when executing JavaScript ap-
plications is to obtain reproducable results, especially since the
JavaScript code may change between reloads of the same url ad-
dress. We have addressed this by downloading the JavaScriptcode
locally, and run the code locally. Further, in most cases we also
execute the code several times, e.g., up to ten times in the just-in-
time compilation comparison in Section 5.1 and then take thebest
execution time for each case.

4.1 JavaScript benchmarks

There exist a number of established JavaScript benchmark suites,
and in this study we use the four most known: Dromaeo [25],

2 2010/11/20

V8 [16], Sunspider [37], and JSBenchmark [22]. The applications
in these benchmark suites generally fall into two differentcate-
gories: (i) testing of a specific functionality, e.g., string manipula-
tion or bit operations, and (ii) ports of already existing benchmarks
that are used extensively for other programming environments [2].

For instance, among the V8 benchmarks are the benchmarks
Raytrace, Richards, Deltablue, and Earley-Boyer. Raytrace is a
well-known computational extensive graphical algorithm that is
suitable for rendering scenes with reflection. The overall idea is
that for each pixel in the resulting image, we cast a ray through a
scene and the ray returns the color of that pixel based on which
scene objects each ray intersects [35].

Richards simulates an operating system task dispatcher, Deltablue
is a constraint solver, and Earley-Boyer is a classic schemetype
theorem prover benchmark. However, the Dromaeo benchmarks
do test specific features of the JavaScript language and is inthis
sense more focused on specific JavaScript features.

Typical for the established benchmarks is that they often are
problem oriented, meaning that the purpose of the benchmarkis to
accept a problem input, solve this certain problem, and thenend the
computation. This eases the measurement and gives the developer
full control over the benchmarks, and increases the repeatability.

4.2 Web applications - Alexa top 100

The critical issue in this type of study is which web applications
that can be considered as representative. Due to the distributed
nature of the Internet, knowing which web applications are popular
is difficult. Alexa [4] offers software that can be installedin the
users’ web browser. This software records which web applications
are visited and reports this back to a global database. From this
database, a list over the most visited web pages can be extracted. In
Table 2 we present the 100 most visited sites from the Alexa list.
In our comparative evaluation, we have used the start page for each
of these 100 most visited sites as representatives for popular web
applications.

In addition to evaluating the JavaScript performance and execu-
tion behavior of the first page on the Alexa top-list, we have created
use cases where we measure the JavaScript performance of a set of
social networking web applications. These use cases are described
in the next section.

4.3 Web applications - Social network use cases

There exists many so-called social networking web applications [39],
where Facebook [27] is the most popular one [4, 11]. There areeven
examples of countries where half of the population use Facebook to
some extent during the week [10]. The users of a social networking
web application can locate and keep track of friends or people that
share the same interests. This set of friends represents each user’s
private network, and to maintain and expand a user’s network, a set
of functionalities is defined.

In this paper we study the social networking web applications
Facebook [27], Twitter [23], and Blogger [6]. In a sense, Facebook
is a general purpose social networking web application, with a wide
range of different functionalities. Further, Facebook also seems to
have the largest number of users.

Twitter [23] is for writing small messages, so called ”tweets”,
which are restricted to160 characters (giving a clear association to
SMS). The users of Twitter are able to follow other people’s tweets,
and for instance add comments in form of twitts to their posts.

BlogSpot is a blogging web applications, that allows user to
share their opinion wide range of people through writing. The
writing (a so-called blog post) might read, and the person that reads
this, can often add an comments to the blog post.

BlogSpot [6].

While the benchmarks have a clear purpose, with a clearly
defined start and end state, social networking web applications
behave more like operating system applications, where the user can
perform a selected number of tasks. However, as long as the web
application is viewed by the user, it often remains active, and (e.g.,
Facebook) performs a set of underlying tasks.

To make a characterization and comparison easier, we have de-
fined a set of use cases, with clear start and end states. Theseuse
cases are intended to simulate common operations and to provide
repeatability of the measurements. The use cases representcom-
mon user behavior in Facebook, Twitter, and BlogSpot. They are
based on personal experience, since we have not been able to find
any detailed studies of common case usage for social networks. The
use cases are designed to mimic user behavior rather than exhaust-
ing JavaScript execution.

Figure 1, 2, and 3 give an overview of the different use cases that
we have defined for Facebook, Twitter, and BlogSpot, respectively.
Common for all use cases are that they start with the user login.
From here the user has multiple options.

For Facebook, the user first logs in on the system. Then, the
user searches for an old friend. When the user finds this old friend,
the user marks him as a ”friend”, an operation where the user
needs to ask for confirmation from the friend to make sure that
he actually is the same person. This operation is a typical example
of an use case, which in turn is composed of several sub use cases:
0 -login/home, 0.3 -find friend, 0.3.1 -add friend, and
0.3.1.0 -send request, as shown in Figure 1.

All use cases start with the login case, and we recognize an
individual operation, such as0.3.1 -add friend as a sub use
case, though it must complete previous use cases. Further, we do
allow use cases that goes back and forth between use cases. For
example in Figure 2, if we want to both choose the option0.1.0
-follow and 0.1.1 -mention, then we would need to visit the
following sub use cases:0 -login/home, 0.1 -find person,
0.1.0 -follow, 0.1 -find person, and0.1.1 -mention.

0.0 -twitt 0.1 -find person 0.2 -invite

0 -login/home

0.0.0 -delete 0.0.1 -favorite 0.1.0 -follow 0.1.1 -mention 0.1.2 -manage

Figure 2. Use cases to characterize the JavaScript workload of
Twitter.

To enhance repeatability, we use the AutoIt scripting environ-
ment [7] to automatically execute the various use cases in a con-
trolled fashion. As a result, we can make sure that we spend the
same amount of time on the same or similar operations, such asto
type in a password or click on certain buttons. This is suitable for
the selected use cases.

4.4 HTML5 and the canvas element

There have been several attempts to add more extensive interactive
multimedia to web applications. These attempts could be roughly

3 2010/11/20

Table 1. A summary of the benchmark suites used in this paper.
Benchmark suite Applications
Dromaeo [9] 3d-cube, core-eval, object-array, object-regexp, object-string, string-base64
V8 [16] crypto, deltablue, earley-boyer, raytrace, richards
SunSpider [37] 3d-morph, 3d-raytrace access-binary-trees, access-fannkuch, access-nbody, access-nsieve

bitops-3bit-bits-in-byte, bitops-bits-in-byte, bitops-bitwise-and, bitops-nsieve-bits
controlflow-recursive crypto-aes, crypto-md5, crypto-sha1
date-format-tofte, date-format-xparb
math-cordic, math-partial-sums, math-spectral-norm regexp-dna
string-fasta, string-tagcloud, string-unpack-code, string-validate-input

JSBenchmark [22] Quicksort, Factorials, Conway, Ribosome, MD5, Primes, Genetic Salesman, Arrays, Dates, Exceptions

Table 2. A summary of the 100 most visited sites in the Alexa top-siteslist [4] used in this paper (listed alfabetically).
163.com 1e100.net 4shared.com about.com adobe.com amazon.com ameblo.jp
aol.com apple.com ask.com baidu.com bbc.co.uk bing.com blogger.com
bp.blogspot.com cnet.com cnn.com conduit.com craigslist.org dailymotion.com deviantart.com
digg.com doubleclick.com ebay.com ebay.de espn.go.com facebook.com fc2.com
files.wordpress.com flickr.com globo.com go.com google.ca google.cn google.co.id
google.co.in google.co.jp google.co.uk google.com google.com.au google.com.br google.com.mx
google.com.tr google.de google.es google.fr google.it google.pl google.ru
hi5.com hotfile.com imageshack.us imdb.com kaixin001.com linkedin.com live.co
livedoor.com livejasmin.com livejournal.com mail.ru mediafire.com megaupload.com megavideo.com
microsoft.com mixi.jp mozilla.com msn.com myspace.com nytimes.com odnoklassniki.ru
orkut.co.in orkut.com orkut.com.br photobucket.com pornhub.com qq.com rakuten.co.jp
rapidshare.com redtube.com renren.com sina.com.cn sohu.com soso.com taobao.com
tianya.cn tube8.com tudou.com twitter.com uol.com.br vkontakte.ru wikipedia.org
wordpress.com xhamster.com xvideos.com yahoo.co.jp yahoo.com yandex.ru youku.com
youporn.com youtube.com

0.1 -create event 0.2 -add entry 0.3 -find friend 0.4 -chat 0.5 -photos0.0 -messages 0.6 -logout

0 -login/home

0.3.0 -choose friend 0.3.1 -add friend

0.3.1.0 -send request0.3.0.0 -show friends 0.3.0.1 -show others

0.3.0.0.0 -browse friends

0.3.0.0.0.0 -choose last entry

0.3.0.0.0.0.0 -click on share 0.3.0.0.0.0.1 -click on wall

0.0.0 -Click on first message in list

Figure 1. Use cases to characterize the JavaScript workload of Facebook.

divided into two groups: plug-in technologies and scriptable ex-
tension to web browsers. Plug-ins are programs that run on top of
the web browser. The Plug-ins can execute some special type of
programs, and well known examples are Adobe Flash, Java Ap-
plets, Adobe Shockwave, Alambik, Internet C++, and Silverlight.
These require that the user downloads and installs a plug-inpro-
gram before they can execute associated programs. Scriptable ex-

tensions introduce features in the web browser that can be manipu-
lated through, e.g., JavaScript.

HTML5 [19] is the next standard version of the HyperText
Markup Language. The Canvas in element HTML5 [18] has been
agreed on by a large majority of the web browser vendors, suchas
Mozilla FireFox, Google Chrome, Safari, Opera and InternetEx-

4 2010/11/20

0.0 -wrong user 0.1 -right user

0 -login/home

0.1.1 -message 0.1.2 -click advert

Figure 3. Use cases to characterize the JavaScript workload of
BlogSpot.

plorer 92. The Canvas element opened up for adding rich inter-
active multimedia to web application. The canvas element allows
the user to add dynamic scriptable rendering of geometric shapes
and bitmap images in a low level procedural manner to web appli-
cations. A similar technology, albeit at a higher level, is scalable
vector graphics [24].

This element opens up for more interactive web applications.
As an initiative for programmers to explore and develop the canvas
element further, a series of competitions have been arranged [1, 33,
21]. The JS1k competition got460 entries. The premise for this
competition was that the entries should be less than1024 bytes in
total (with an extra bonus if they would fit inside a tweet). Further, it
was forbidden to use external elements such as images. The entries
vary in functionality and features, which can be illustrated by the
top10 entries, shown in Table 3, where half of them are something
else than a game.

Table 3. The top-10 contributions in the JS1K competition.

Name Developer
1 Legend Of The Bouncing Beholder @marijnjh
2 Tiny chess Oscar Toledo G.
3 Tetris with sound @sjoerdvisscher
4 WOLF1K and the rainbow characters@p01
5 Binary clock (tweetable) @alexeym
6 Mother fucking lasers @evilhackerdude
7 Graphical layout engine Lars Ronnback
8 Crazy multiplayer 2-sided Pong @feiss
9 Morse code generator @chrissmoak
10 Pulsing 3d wires @unconed

2 However is unclear whenever it will be supported in the final version of
Internet Explorer9.

5. Experimental results
5.1 Comparison of the effect of just-in-time compilation

We have compared the execution time for WebKit where just-in-
time compilation(JIT) has been enabled, against the execution time
where the JIT compiler has been disabled (NOJIT). When JIT
has been disabled the JavaScript is interpreted as bytecode. All
modifications are made to the JavaScriptCore engine, and we have
used the GTK branch of the WebKit source distribution (r69918).

We have divided the execution time of a JIT version (JIT)
with the execution time of the interpretive mode (NOJIT), i.e.,
Texe(JIT)/Texe(NOJIT). That means, if

Texe(JIT)/Texe(NOJIT) ≥ 1

then the JavaScript program runs slower when just-in-time compi-
tation is enabled. We have measured the execution time that each
method call uses in the JavaScriptCore in WebKit.

In Figure 4, Figure 5, and Figure 6 we have plotted the values
of Texe(JIT) / Texe(NOJIT) for the Alexa top-100 web sites,
a number of use cases for social network applications, and the
first 109 JS1K demos, respectively. We have plotted Figure 4 and
Figure 6 with a logarithmic scale on the y-axis, enabling us to make
comments about how effective JIT is when it is successful. Due to
a small number of entries and variation in the data, we have plotted
the results in Figure 5 in a linear scale on the y-axis (in contrast
to Figures 4 and 6). We have sorted the results such that the least
successful are placed to the left.

We have measured the workload of the first100 web applica-
tions on the Alexa list, without supplying these with any kind of
interaction. We have measured the first109 JavaScript demos from
the JS1K competition that had a strong focus on the canvas element
from html5 without any interaction, even though some of them sug-
gested interaction (such as computer games).

We have also measured a set of web applications that could be
loosely described as social networks (facebook.com, twitter.
com andblogsplot.com). Each of these are among the first100
entries in the Alexa list. For these we have defined a set of use-
cases. The use-cases presented in Figure 5 are extension of each
other, as discussed in Section 4. For instance, case0 is extended
into case1, and case1 is then extended into case2. Further, we have
evaluated the effect of just-in-time compilation also on four bench-
mark suites, i.e., Dromaeo, V8, Sunspider, and JSBenchmark.

Each application, both for web applications or benchmarks,is
executed10 times each, where the best one out of the10 exe-
cutions is selected for comparison. For the web applications we
record queries with a proxy server to minimize the chance that the
JavaScript code changes between each time.

In Figure 4 we see that for58 out of the100 web applications,
JIT compilation actuallyincreasesthe execution time. Two of the
web applications,googleusercontent.com andbp.blogspot.
com, were both unavailable at the time of the experiment3. We
see that even though more than half of the web applications had
a prolonged execution time when using JIT compilation, those
applications that did benefit from JIT compilation did improve their
execution time significantly. For example, forcraiglist.com JIT
improved the execution time with a factor of5000. For the search
engineyahoo.co.jp JIT did increasethe execution time by a
factor of3.99.

In Figure 6 we see that JIT compilation didincreasethe exe-
cution time for59 out of the109 JS1K demos. When JIT fails, it
increases the execution time by a factor of up to75.02 times. When
JIT is successful, it decreases the execution time by up to a factor
of 263.

3blogspot.com was available as we see in later experiments, but Alexa
specifiedbp.blogspot.com

5 2010/11/20

 0.0001

 0.001

 0.01

 0.1

 1

 10

y
a

h
o

o
.c

o
.jp

a
lib

a
b

a
.c

o
m

g
o

o
g

le
.c

o
m

.h
k

m
e

g
a

u
p

lo
a

d
.c

o
m

tu
d

o
u

.c
o

m
x
v
id

e
o

s
.c

o
m

m
e

d
ia

fire
.c

o
m

h
o

tfile
.c

o
m

y
o

u
k
u

.c
o

m
m

ic
ro

s
o

ft.c
o

m
a

m
e

b
lo

.jp
liv

e
d

o
o

r.c
o

m
ife

n
g

.c
o

m
p

a
y
p

a
l.c

o
m

y
o

u
p

o
rn

.c
o

m
g

o
d

a
d

d
y
.c

o
m

a
o

l.c
o

m
tw

itte
r.c

o
m

g
o

o
g

le
.c

n
a

p
p

le
.c

o
m

g
o

o
g

le
.c

o
.jp

v
k
o

n
ta

k
te

.ru
a

s
k
.c

o
m

c
n

e
t.c

o
m

b
lo

g
s
p

o
t.c

o
m

liv
e

.c
o

m
y
o

u
tu

b
e

.c
o

m
1

6
3

.c
o

m
s
in

a
.c

o
m

.c
n

g
o

o
g

le
.d

e
x
h

a
m

s
te

r.c
o

m
s
o

h
u

.c
o

m
a

b
o

u
t.c

o
m

e
b

a
y
.c

o
m

tu
m

b
lr.c

o
m

th
e

p
ira

te
b

a
y
.o

rg
liv

e
ja

s
m

in
.c

o
m

im
a

g
e

s
h

a
c
k
.u

s
lin

k
e

d
in

.c
o

m
n

y
tim

e
s
.c

o
m

g
o

o
g

le
.ru

o
rk

u
t.c

o
m

q
q

.c
o

m
g

o
o

g
le

.c
o

m
.a

u
g

o
o

g
le

.c
o

m
.m

x
m

a
il.ru

c
n

n
.c

o
m

g
o

o
g

le
.c

o
.id

g
o

o
g

le
.c

o
m

.tr
h

a
o

1
2

3
.c

o
m

c
o

n
d

u
it.c

o
m

e
b

a
y
.d

e
g

o
o

g
le

.c
o

m
liv

e
jo

u
rn

a
l.c

o
m

b
in

g
.c

o
m

m
e

g
a

v
id

e
o

.c
o

m
w

ik
ip

e
d

ia
.o

rg
fc

2
.c

o
m

ra
p

id
s
h

a
re

.c
o

m
g

o
o

g
le

.fr
g

o
o

g
le

.c
o

.in
o

rk
u

t.c
o

m
.b

r
g

o
.c

o
m

im
d

b
.c

o
m

g
o

o
g

le
.c

o
.u

k
b

a
id

u
.c

o
m

ra
k
u

te
n

.c
o

.jp
y
a

n
d

e
x
.ru

g
o

o
g

le
.c

a
a

m
a

z
o

n
.d

e
g

o
o

g
le

.c
o

m
.b

r
a

d
o

b
e

.c
o

m
a

m
a

z
o

n
.c

o
m

fa
c
e

b
o

o
k
.c

o
m

w
o

rd
p

re
s
s
.c

o
m

e
s
p

n
.g

o
.c

o
m

g
o

o
g

le
.it

m
s
n

.c
o

m
p

h
o

to
b

u
c
k
e

t.c
o

m
e

b
a

y
.c

o
.u

k
tu

b
e

8
.c

o
m

g
o

o
g

le
.e

s
y
a

h
o

o
.c

o
m

ta
o

b
a

o
.c

o
m

m
y
s
p

a
c
e

.c
o

m
g

o
o

g
le

.c
o

m
.s

a
4

s
h

a
re

d
.c

o
m

p
o

rn
h

u
b

.c
o

m
m

o
z
illa

.c
o

m
g

o
o

g
le

.p
l

y
ie

ld
m

a
n

a
g

e
r.c

o
m

u
o

l.c
o

m
.b

r
d

o
u

b
le

c
lic

k
.c

o
m

b
b

c
.c

o
.u

k
s
o

s
o

.c
o

m
flic

k
r.c

o
m

s
o

g
o

u
.c

o
m

c
ra

ig
s
lis

t.o
rg

g
o

o
g

le
u

s
e

rc
o

n
te

n
t.c

o
m

b
p

.b
lo

g
s
p

o
t.c

o
m

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 J
IT

/N
O

J
IT

JIT successfull 42/100 (Top 100 Alexa websites)

Figure 4. Relative execution timeTexe(JIT) / Texe(NOJIT)
for the Alexa top100 web sites.

 0

 0.5

 1

 1.5

 2

case0

case1

case2

case3

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 J
IT

/N
O

J
IT

Facebook
Twitter

BlogSpot

Figure 5. Relative execution timeTexe(JIT) / Texe(NOJIT)
for 4 use cases from three different social network applications.

In Figure 7 we have evaluated4 out of the5 V8 benchmarks.
The last benchmark, earley-boyer, did not execute correctly with
the selected version of WebKit. We see that JIT compilation is
successful in3 out of 4 cases. We see that best improvement is a
factor of1.9, while in the worst case the execution time is increased
by a factor of1.14.

In Figure 8 we see that JIT compilation improves the execution
time for 3 out of 6 applications in the Dromaeo benchmark suite.
The largest improvement is by a factor of1.54, while in the case
where JIT performs worst the execution time is is increased by a
factor of1.32.

In Figure 9, where the results for the SunSpider benchmark suite
is presented, all the entries run equally fast or faster whenJIT com-
pliation is enabled. The largest improvement is by a factor of 16.4
for the string-validate-input application, and the smallest
improvement is1.0, i.e., none, for thedate-format-tofte ap-
plication.

In Figure 10 we see that JIT compilation successfully decreases
the execution time for7 out of10 applications in the JSBenchmark
suite. The largest decrease in execution time is by a factor of 1.6.
The largest decrease in the execution time is by a factor of1.07.

 0.001

 0.01

 0.1

 1

 10

 100

id
8

1
id

1
7

8
id

1
5

3
id

7
9

id
1

2
9

id
4

9
id

1
6

5
id

1
0

0
id

2
4

id
2

2
id

2
2

3
id

2
2

4
id

3
id

1
3

id
5

4
id

2
0

6
id

3
5

id
1

1
6

id
4

1
id

1
6

3
id

2
id

1
1

1
id

2
0

2
id

1
9

id
1

5
7

id
1

0
4

id
1

5
4

id
1

1
7

id
1

5
8

id
6

5
id

1
4

id
2

1
0

id
1

6
0

id
1

3
1

id
1

2
6

id
4

3
id

1
8

3
id

7
6

id
1

2
4

id
1

7
1

id
1

5
1

id
2

1
3

id
1

2
5

id
4

7
id

1
8

6
id

9
6

id
2

2
0

id
2

1
6

id
7

4
id

2
6

id
8

4
id

2
1

2
id

2
7

id
2

9
id

1
5

id
2

2
7

id
1

5
6

id
1

7
9

id
8

0
id

9
3

id
2

2
8

id
1

6
4

id
7

3
id

1
6

1
id

1
5

9
id

2
1

9
id

5
2

id
1

2
7

id
5

0
id

1
6

2
id

1
1

0
id

1
1

3
id

1
8

7
id

1
0

3
id

1
0

2
id

4
id

3
8

id
2

0
1

id
4

8
id

1
7

3
id

1
4

9
id

1
8

8
id

1
2

0
id

1
9

2
id

1
1

4
id

1
5

5
id

1
7

2
id

7
1

id
6

2
id

1
9

0
id

1
6

8
id

1
3

0
id

4
5

id
4

6
id

8
id

2
3

id
5

1
id

2
1

7
id

9
9

id
4

2
id

2
0

7
id

7
5

id
9

0
id

1
3

3
id

1
7

4
id

1
6

id
1

9
1

id
1

9
5

id
8

2

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

JI
T

/N
O

JI
T

JIT successfull 59/109 (JS1K demos)

Figure 6. Relative execution timeTexe(JIT) / Texe(NOJIT)
for the first109 JS1K demos.

 0

 0.5

 1

 1.5

 2

raytrace richards crypto deltablue

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e
 J

IT
/N

O
J
IT

JIT successfull 3/4 (V8 benchmarks)

Figure 7. Relative execution timeTexe(JIT) / Texe(NOJIT)
for the V8 benchmarks.

In summary, we can conclude that JIT compilation decreases
the execution time for most the benchmarks. However, for theweb
applications JIT compilation actuallyincreasesthe execution time
for more than half of the studied web applications. In the worst
case, we found that the execution time was prolonged by up to 75
times in the worst case (id81 in the JS1K demos).

5.2 Comparison of bytecode instruction usage

We have recorded the number of executed bytecode instructions
in the JavaScriptCore for all the benchmarks and for the first100
entries in the Alexa top list. We do present the results of theAlexa
top 100 applications versus the SunSpider benchmark, sincethese
two application sets differed most.

The SunSpider benchmark uses a smaller subset of the available
instructions than the Alexa websites do. The Alexa websitesuse
118 out of 139 instructions while the SunSpider benchmarks only
use82 out of the139 available bytecode instructions (this includes
instructions that are used mostly for debugging purposes inWe-
bKit). We have grouped the instructions loosely based on instruc-
tions that have similar behavoir. The instruction groups are: arith-

6 2010/11/20

 0

 0.5

 1

 1.5

 2

base64 regex array 3dcube string eval

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 J
IT

/N
O

J
IT

JIT successfull 3/6 (Dromaeo benchmarks)

Figure 8. Relative execution timeTexe(JIT) / Texe(NOJIT)
for the Dromaeo benchmarks.

 0

 0.5

 1

 1.5

 2

date-form
at-tofte

m
ath-cordic

date-form
at-xparb

string-tagcloud

aes
string-fasta

raytrace

controlflow
-recursive

3dm
orph

nsieve

string-validate-input

crypto-sha1

string-unpack-code

nbody

bitops-bits-in-byte

m
ath-partial-sum

s

bitops-3bit-bits-in-byte

bitops-bitw
ise-and

bitops-nsieve

fannkuch

access-binary-trees

m
d5

m
ath-spectral-norm

regex-dna

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e
 J

IT
/N

O
J
IT

JIT successfull 23/24 (Sunspider benchmarks)

Figure 9. Relative execution timeTexe(JIT) / Texe(NOJIT)
for the Sunspider benchmarks.

metic/logical, prototype and object manipulation, and branches and
jumps.

In Figure 11 we see that arithmetic/logical instructions are much
more intensively used in the SunSpider benchmarks than in the web
applications covered by Alexa top 100. We also see that the Sun-
Spider benchmarks often use bit operations (such as left andright
shift) which are very rarely used in the websites. This observation
suggests that even though most of these operations are important
and well known in programming languages such as C, it seems like
these are rarely used in web applications. JavaScript movesaway
from hardware, making little use of bit oriented operations. The
only operation that seems to be used more in web applicationsthan
in the benchmarks is thenot instruction, which could be used in,
e.g., comparisons.

We notice that Alexa top 100 web applications seem to use
the object model of JavaScript, and therefore use the objectspe-
cial features more extensively than the benchmarks. In Figure 12
we see that instructions such asget by id, get by id self, and
get by id proto are used much more in the web applications
than in the benchmarks. Features such as classless prototyped pro-
gramming, are usually associated with research oriented program-

 0

 0.5

 1

 1.5

 2

salesman quicksort primes basic conway except array md5 factorial ribosome

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 J
IT

/N
O

J
IT

JIT successfull 7/10 (jsbenchmarks benchmarks)

Figure 10. Relative execution timeTexe(JIT) / Texe(NOJIT)
for the JSBenchmark.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

negate

add
m

ul
div

m
od

sub
lshift

rshift

urshift

bitand

bitxor

bitor
bitnot

not

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

e
x
e

c
u

ti
o

n
 c

a
lls

Alexa top 100
Sunspider

Figure 11. Aritmetic instructions for Alexa websites and Sunspi-
der benchmarks

ming languages, and it is likely that these concepts are not well
reflected in a set of benchmarks that have been ported from a tra-
ditional programming language. A closer inspections of thesource
code of the benchmarks confirms this. It seems like many of the
benchmarks are embedded into typically object-based construc-
tions, which assist in measuring execution time and other bench-
marks related tasks. However, these object-based constructions are
only rarely a part of the compute intensive parts of the benchmark.

The observation above is further supported in Figure 13, by
looking at instructions such asget val andput val, which the
SunSpider benchmarks use more extensively than the web appli-
cations. This suggests that the benchmarks do not take advan-
tage of the JavaScript feature of classless prototype features, and
rather tries to emulate the data structures in the original benchmarks
which they often were ported from.

For the branch and jump bytecode instruction group, we ob-
serve in Figure 14 that jumps related to objects are common in
Alexa, while jumps that are typically assosiated with conditional
statements, such as loops are much more used in the benchmarks.
A larger number ofjmp instructions also illustrates the importance
of function calls in web applications.

7 2010/11/20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

instanceof

typeof

is
u ndefined

is
b oolean

is
n um

ber

is
s tring

is
o bject

is
f unction

in resolve

resolve
s kip

resolve
g lobal

resolve
g lobald ynam

ic

get
g lobalv ar

put
g lobalv ar

get
s coped

v ar

put
s coped

v ar

resolve
b ase

resolve
w ith

b ase

get
b y

i d

get
b y

i d
s elf

get
b y

i d
p roto

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

e
x
e

c
u

ti
o

n
 c

a
lls

Alexa top 100
Sunspider

Figure 12. Prototype related instructions for the Alexa top 100
websites and the SunSpider benchmarks.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

get
b y

i d
c hain

get
b y

i d
g etter

s elf

get
b y

i d
c ustom

s elf

get
b y

i d
g eneric

get
b y

i d
g etter

c hain

get
b y

i d
c ustom

c hain

get
a rray

l ength

get
s tring

l ength

put
b y

i d

put
b y

i d
t ransition

put
b y

i d
r eplace

put
b y

i d
g eneric

delb y
i d

get
b y

p nam
e

get
a rgum

ents
l ength

get
a rgum

ent
b y

v al

get
b y

v al

put
b y

v al

delb y
v al

put
b y

i ndex

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

e
x
e

c
u

ti
o

n
 c

a
lls

Alexa top 100
Sunspider

Figure 13. Prototype related instructions for the Alexa top 100
websites and the SunSpider benchmarks.

5.3 Usage of the eval function

One feature of JavaScript is that it uses evaluate (eval) func-
tion calls, that executes a given string of JavaScript source code
at runtime. To extract information of how frequentlyeval calls
are executed, we have used the FireBug [12] JavaScript profiler
to extract this information. We have then measured the num-
ber of eval calls relative to the total number of function calls
(No.ofevalcalls/Totalno.offunctioncalls).

In Figure 15 we see that such functions are rather rare in
the benchmarks, apart from three instances. For the benchmarks,
we observe thateval is used in only4 out of 35 benchmarks.
However, they use it quite extensively. Thedromaeo-core-eval
benchmark has0.27, sunspider-date-format-tofte has0.54,
sunspider-date-format-xparb has 0.28, and sunspider-
string-tagcloud has0.15 relative number ofeval calls. This
accounts for an average relative number ofeval calls of0.31 for
these four benchmarks. From their name (e.g.,eval-test in the
Dromaeo benchmark), by inspection of the JavaScript code and
the amount ofeval calls, we suspect that these benchmarks were
designed to test the eval function.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

jm
p

loop
i ft rue

jtrue
jfalse

jeq
n ull

jneq
n ull

jneq
p tr

loop
i fl ess

loop
i fl esseq

jnless

jless
jnlesseq

jlesseq

sw
itch

i m
m

sw
itch

c har

sw
itch

s tring

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

e
x
e

c
u

ti
o

n
 c

a
lls

Alexa top 100
Sunspider

Figure 14. Branch and jump related instructions for the Alexa top
100 websites and the SunSpider benchmarks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d
ro

m
a

e
o

-3
d

-c
u

b
e

d
ro

m
a

e
o

-c
o

re
-e

v
a

l

d
ro

m
a

e
o

-o
b

je
c
t-a

rra
y

d
ro

m
a

e
o

-o
b

je
c
t-re

g
e

x
p

d
ro

m
a

e
o

-o
b

je
c
t-s

trin
g

d
ro

m
a

e
o

-s
trin

g
-b

a
s
e

6
4

s
u

n
s
p
id

e
r-3

d
-m

o
rp

h

s
u

n
s
p
id

e
r-3

d
-ra

y
tra

c
e

s
u

n
s
p
id

e
r-a

c
c
e

s
s
-b

in
a
ry

-tre
e

s

s
u

n
s
p
id

e
r-a

c
c
e

s
s
-fa

n
n

k
u

c
h

s
u

n
s
p
id

e
r-a

c
c
e

s
s
-n

b
o

d
y

s
u

n
s
p
id

e
r-a

c
c
e

s
s
-n

s
ie

v
e

s
u

n
s
p
id

e
r-b

ito
p

s
-3

b
it-b

its
-in

-b
y
te

s
u

n
s
p
id

e
r-b

ito
p

s
-b

its
-in

-b
y
te

s
u

n
s
p
id

e
r-b

ito
p

s
-b

itw
is

e
-a

n
d

s
u

n
s
p
id

e
r-b

ito
p

s
-n

s
ie

v
e

-b
its

s
u

n
s
p
id

e
r-c

o
n

tro
lflo

w
-re

c
u
rs

iv
e

s
u

n
s
p
id

e
r-c

ry
p

to
-a

e
s

s
u

n
s
p
id

e
r-c

ry
p

to
-m

d
5

s
u

n
s
p
id

e
r-c

ry
p

to
-s

h
a

1

s
u

n
s
p
id

e
r-d

a
te

-fo
rm

a
t-to

fte

s
u

n
s
p
id

e
r-d

a
te

-fo
rm

a
t-x

p
a
rb

s
u

n
s
p
id

e
r-m

a
th

-c
o

rd
ic

s
u

n
s
p
id

e
r-m

a
th

-p
a

rtia
l-s

u
m

s

s
u

n
s
p
id

e
r-m

a
th

-s
p

e
c
tra

l-n
o

rm

s
u

n
s
p
id

e
r-re

g
e

x
p

-d
n

a

s
u

n
s
p
id

e
r-s

trin
g
-fa

s
ta

s
u

n
s
p
id

e
r-s

trin
g
-ta

g
c
lo

u
d

s
u

n
s
p
id

e
r-s

trin
g
-u

n
p

a
c
k
-c

o
d

e

s
u

n
s
p
id

e
r-s

trin
g
-v

a
lid

a
te

-in
p

u
t

v
8

-c
ry

p
to

v
8

-d
e

lta
b
lu

e

v
8

-e
a

rle
y
-b

o
y
e
r

v
8

-ra
y
tra

c
e

v
8

-ric
h
a

rd
s

e
v
a

l-
fu

n
c
ti
o

n
 c

a
lls

 r
e

la
ti
v
e

 t
o

 t
o

ta
l
n

u
m

b
e

r
o

f
fu

n
c
ti
o

n
 c

a
lls

Benchmark

Relative number of eval function calls

benchmarks

Figure 15. Number ofeval calls relative to the number of total
function calls in the Dromaeo, V8, and SunSpider benchmarks.

For the Alexa top sites list, we see in Figure 16 that theeval
function is used more frequently.44 out of 100 sites use theeval
function. On average, the relative number ofeval calls is0.11.
However, we see in the figure that there are web applications with
a large relative number ofeval calls, such assina.com.cn where
55% of all function calls areeval calls.

5.4 Anonymous function calls

An anonymous function call is a call to a function that does not
have a name. In many programming languages this is not possible,
but it is possible to create such functions in JavaScript. Since this
programming construct is allowed in JavaScript, we would like
to find out how common it is in JavaScript benchmarks and web
applications

By inspection, we found that3 of the anonymous function calls
in the benchmarks were instrumentation of the benchmark to mea-
sure execution time. We have measured the number of anonymous
function calls with the FireBug JavaScript profiler. If we removed
these3 function calls we found that17 out of the35 benchmark
use anonymous function calls (to a variable degree). For theentries

8 2010/11/20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1
6
3
.c

o
m

1
e
1
0
0
.n

e
t

4
s
h
a
re

d
.c

o
m

a
b
o
u
t.c

o
m

a
d
o
b
e
.c

o
m

a
m

a
z
o
n
.c

o
m

a
m

e
b
lo

.jp
a
o
l.c

o
m

a
p
p
le

.c
o
m

a
s
k
.c

o
m

b
a
id

u
.c

o
m

b
b
c
.c

o
.u

k
b
in

g
.c

o
m

b
lo

g
g
e
r.c

o
m

b
p
.b

lo
g
s
p
o
t.c

o
m

c
n
e
t.c

o
m

c
n
n
.c

o
m

c
o
n
d
u
it.c

o
m

c
ra

ig
s
lis

t.o
rg

d
a
ily

m
o
tio

n
.c

o
m

d
e
v
ia

n
ta

rt.c
o
m

d
ig

g
.c

o
m

d
o
u
b
le

c
lic

k
.c

o
m

e
b
a
y
.c

o
m

e
b
a
y
.d

e
e
s
p
n
.g

o
.c

o
m

fa
c
e
b
o
o
k
.c

o
m

fc
2
.c

o
m

file
s
.w

o
rd

p
re

s
s
.c

o
m

flic
k
r.c

o
m

g
lo

b
o
.c

o
m

g
o
.c

o
m

g
o
o
g
le

.c
a

g
o
o
g
le

.c
n

g
o
o
g
le

.c
o
.id

g
o
o
g
le

.c
o
.in

g
o
o
g
le

.c
o
.jp

g
o
o
g
le

.c
o
.u

k
g
o
o
g
le

.c
o
m

g
o
o
g
le

.c
o
m

.au
g
o
o
g
le

.c
o
m

.br
g
o
o
g
le

.c
o
m

.m
x

g
o
o
g
le

.c
o
m

.tr
g
o
o
g
le

.d
e

g
o
o
g
le

.e
s

g
o
o
g
le

.fr
g
o
o
g
le

.it
g
o
o
g
le

.p
l

g
o
o
g
le

.ru
h
i5

.c
o
m

h
o
tfile

.c
o
m

im
a
g
e
s
h
a
c
k
.u

s
im

d
b
.c

o
m

k
a
ix

in
0
0
1
.c

o
m

lin
k
e
d
in

.c
o
m

liv
e
.c

o
m

liv
e
d
o
o
r.c

o
m

liv
e
ja

s
m

in
.c

o
m

liv
e
jo

u
rn

a
l.c

o
m

m
a
il.ru

m
e
d
ia

fire
.c

o
m

m
e
g
a
u
p
lo

a
d
.c

o
m

m
e
g
a
v
id

e
o
.c

o
m

m
ic

ro
s
o
ft.c

o
m

m
ix

i.jp
m

o
z
illa

.c
o
m

m
s
n
.c

o
m

m
y
s
p
a
c
e
.c

o
m

n
y
tim

e
s
.c

o
m

o
d
n
o
k
la

s
s
n
ik

i.ru
o
rk

u
t.c

o
.in

o
rk

u
t.c

o
m

o
rk

u
t.c

o
m

.b
r

p
h
o
to

b
u
c
k
e
t.c

o
m

p
o
rn

h
u
b
.c

o
m

q
q
.c

o
m

ra
k
u
te

n
.c

o
.jp

ra
p
id

s
h
a
re

.c
o
m

re
d
tu

b
e
.c

o
m

re
n
re

n
.c

o
m

s
in

a
.c

o
m

.c
n

s
o
h
u
.c

o
m

s
o
s
o
.c

o
m

ta
o
b
a
o
.c

o
m

tia
n
y
a
.c

n
tu

b
e
8
.c

o
m

tu
d
o
u
.c

o
m

tw
itte

r.c
o
m

u
o
l.c

o
m

.br
v
k
o
n
ta

k
te

.ru
w

ik
ip

e
d
ia

.o
rg

w
o
rd

p
re

s
s
.c

o
m

x
h
a
m

s
te

r.c
o
m

x
v
id

e
o
s
.c

o
m

y
a
h
o
o
.c

o
.jp

y
a
h
o
o
.c

o
m

y
a
n
d
e
x
.ru

y
o
u
k
u
.c

o
m

y
o
u
p
o
rn

.c
o
m

y
o
u
tu

b
e
.c

o
m

e
v
a

l-
fu

n
c
ti
o

n
 c

a
lls

 r
e

la
ti
v
e

 t
o

 t
o

ta
l
n

u
m

b
e

r
o

f
fu

n
c
ti
o

n
 c

a
lls

Website

Relative number of eval function calls

top 100 websites

Figure 16. Number ofeval calls relative to the number of total
function calls for the first100 entries in the Alexa list.

in the top100 Alexa websites, we found that74 out of 100 sites
use anonymous function calls. The relative number of anonymous
function calls in the benchmarks and the Alexa top 100 sites are
shown in Figure 17.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
a
n
o
n
y
m

o
u
s
 f
u
n
c
ti
o
n
 c

a
lls

 r
e
la

ti
v
e
 t
o
 t
o
ta

l
n
u
m

b
e
r

o
f
fu

n
c
ti
o
n
 c

a
lls

Benchmark/website

Alexa top 100 sites
Dromaeo, sunspider and V8 benchmarks

Figure 17. Use of anonymous function calls.

We see that certain of the benchmarks use anonymous function
calls more extensively. Some of these are tailored to specifically test
the use of anonymous function calls, much like certain benchmark
were tailored to test eval in Section 5.3.

6. Conclusions
In this paper we have evaluated the execution behavior of javaScript
for four different application classes, i.e., four JavaScript bench-
mark suites, popular web sites, use cases from social networking
applications, and the emerging HTML5 standard. The measure-
ments have been performed in the WebKit browser and JavaScript
execution environment.

We have found that the behavior of benchmarks and real-world
web applications differ in several significant ways:

• Just-in-time compilation is beneficial for most of the bench-
marks, but actuallyincreasesthe execution time for more than
half of the web applications.

• Arithmetic byte code instructions are significantly more com-
mon in benchmarks, while prototype related instructions and
branches are more common in real-world applications.

• Theeval function is much more commonly used in web appli-
cations than in benchmark applications.

• We found that approximately half of the benchmarks used
anonymous functions, while approximately 75% of the web
applications used anonymous functions.

Based on the findings above, in combinations with findings
in previous studies [30, 31], one can conclude that the existing
benchmark suites do not reflect the execution behavior of real-
world web applications.

Acknowledgments
This work was partly funded by the Industrial Excellence Center
EASE - Embedded Applications Software Engineering, (http:
//ease.cs.lth.se).

References
[1] 10KApart. Inspire the web with just 10k, 2010.http://10k.

aneventapart.com/.

[2] Ole Agesen. GC points in a threaded environment. Technical report,
Sun Microsystems, Inc., Mountain View, CA, USA, 1998.

[3] Therese J. Albert, Kai Qian, and Xiang Fu. Race conditionin ajax-
based web application. InACM-SE 46: Proceedings of the 46th
Annual Southeast Regional Conference on XX, pages 390–393, New
York, NY, USA, 2008. ACM.

[4] Alexa. Top 500 sites on the web, 2010. http://www.alexa.com/topsites.

[5] Anneliese A. Andrews, Jeff Offutt, Curtis Dyreson, Christopher J.
Mallery, Kshamta Jerath, and Roger Alexander. Scalabilityissues
with using fsmweb to test web applications.Inf. Softw. Technol.,
52(1):52–66, 2010.

[6] Blogger: Create your free blog, 2010.http://www.blogger.com/.

[7] Jason Brand and Jeff Balvanz. Automation is a breeze withautoit.
In SIGUCCS ’05: Proceedings of the 33rd annual ACM SIGUCCS
conference on User services, pages 12–15, New York, NY, USA,
2005. ACM.

[8] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner.
Staged information flow for javascript. InPLDI ’09: Proc. of the
2009 ACM SIGPLAN conference on Programming language design
and implementation, pages 50–62, New York, NY, USA, 2009. ACM.

[9] Dromaeo. Dromaeo: JavaScript performance testing, 2010.
http://dromaeo.com/.

[10] Eric Eldon. Facebook used by the most people within iceland, norway,
canada, other cold places, 2009. http://www.insidefacebook.com/2009/09/25/facebook-
used-by-the-most-people-within-iceland-norway-canada-other-cold-
places/.

[11] Facebook, 2010. http://www.facebook.com/press/info.php?statistics.

[12] FireBug. Firebug, javascript profiler, 2010. http://getfirebug.com.

[13] David Flanagan. JavaScript: The Definitive Guide, 5th edition.
O’Reilly Media, 2006.

[14] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith,
Rick Reitmaier, Michael Bebenita, Mason Chang, and MichaelFranz.
Trace-based just-in-time type specialization for dynamiclanguages.
In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, pages 465–478,
New York, NY, USA, 2009. ACM.

[15] Google. V8 Google JavaScript interpreter, 2008. http://code.google.com/intl/fr/apis/v8/

[16] Google. V8 benchmark suite - version 5, 2010. http://v8.googlecode.com/svn/data/benc

9 2010/11/20

[17] Google. V8 JavaScript Engine, 2010. http://code.google.com/p/v8/.

[18] Michael Grady. Functional programming using JavaScript and
the HTML5 canvas element.J. Comput. Small Coll., 26:97–105,
December 2010.

[19] W3C HTML Working Group, 2010.http://www.w3.org/html/
wg/.

[20] JavaScript, 2010. http://en.wikipedia.org/wiki/JavaScript.

[21] JS1k. This is the website for the 1k JavaScript demo contest #js1k,
2010.http://js1k.com/home.

[22] JSBenchmark, 2010. http://jsbenchmark.celtickane.com/.

[23] Balachander Krishnamurthy, Phillipa Gill, and MartinArlitt. A few
chirps about twitter. InWOSP ’08: Proceedings of the first workshop
on Online social networks, pages 19–24, New York, NY, USA, 2008.
ACM.

[24] Francis Molina, Brian Sweeney, Ted Willard, and AndréWinter.
Building cross-browser interfaces for digital libraries with scalable
vector graphics (svg). InProc. of the 7th ACM/IEEE-CS joint
conference on Digital libraries, JCDL ’07, pages 494–494, New
York, NY, USA, 2007. ACM.

[25] Mozilla. Dromaeo: JavaScript performance testing, 2010.
http://dromaeo.com/.

[26] Mozilla. What is SpiderMonkey?, 2010. http://www.mozilla.org/js/spidermonkey/.

[27] Atif Nazir, Saqib Raza, and Chen-Nee Chuah. Unveiling Facebook:
A measurement study of social network based applications. In IMC
’08: Proceedings of the 8th ACM SIGCOMM conference on Internet
measurement, pages 43–56, New York, NY, USA, 2008. ACM.

[28] Node.js. Evented I/O for V8 JavaScript, 2010.http://nodejs.
org/.

[29] Ulrike Pfeil, Raj Arjan, and Panayiotis Zaphiris. Age differences
in online social networking - a study of user profiles and the social
capital divide among teenagers and older users in myspace.Comput.
Hum. Behav., 25(3):643–654, 2009.

[30] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn.
JSMeter: Comparing the behavior of JavaScript benchmarks with real
web applications. InProceedings of the 2010 USENIX conference
on Web application development, WebApps’10, pages 3–3, Berkeley,
CA, USA, 2010. USENIX Association.

[31] Gregor Richards, Sylvain Lebresne, Brian Burg, and JanVitek.
An analysis of the dynamic behavior of javascript programs.In
Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages 1–12, New
York, NY, USA, 2010. ACM.

[32] Erick Schonfeld. Gmail grew 43 percent last year. aol mail and hot-
mail need to start worrying, 2009. http://techcrunch.com/2009/01/14/gmail-
grew-43-percent-last-year-aol-mail-and-hotmail-need-to-start-
worrying/.

[33] The 5K. An award for excellence in web design and production,
2002.http://www.the5k.org/.

[34] W3C. World Wide Web Consortium, 2010. http://www.w3c.org/.

[35] Alan Watt. 3d Computer Graphics. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1993.

[36] Web applications, 2010. http://en.wikipedia.org/wiki/Web application.

[37] WebKit. SunSpider JavaScript Benchmark, 2010. http://www2.webkit.org/perf/sunspider-
0.9/sunspider.html.

[38] WebKit. The WebKit open source project, 2010. http://www.webkit.org/.

[39] Wikipedia. List of social networking websites, 2010. http://en.wikipedia.org/wiki/Listof social networkingwebsites.

10 2010/11/20

