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Abstract 

An AC-voltage source feeding an electric network 
results in a periodic excitation of the network. In 
steady state, all currents and voltages will be periodic 
with cycle time corresponding to the frequency of the 
voltage source. If the network is linear, all signals are 
sinusoidal and the network is solved using traditional 
methods. If the network contains components with 
nonlinear or switching dynamics, iterative methods 
based on harmonic balance are often required to 
obtain the periodic steady state solution. 

By linearization of the system around the periodic 
solution, a linear time periodic model is obtained. 
This can be used as a local description of the system 
in the neighborhood of the periodic solution. If only 
periodic signals are considered, a linearized model 
can be represented by a matrix, called the Harmonic 
Transfer Matrix (HTM) . 
The method is applied to the motor side of a modern 
inverter train. Via the HTM, the steady state response 
to constant or periodic disturbances or changes in 
reference values can be obtained. 

1. Introduction 

One example where traditional transfer function 
analysis has proven to be insufficient is in railway 
networks with modern inverter locomotives. These lo- 
comotives are equipped with voltage converters with 
high switching frequencies. The advantage compared 
to older locomotives include improved efficiency and 
less maintenance. There have been problems when 
these modern locomotives have been used with old 
power networks and signaling equipment. One histor- 
ical example comes from Switzerland. During 1995 a 
power network resonance occurred which led to auto- 
matic shutdown of several inverter locomotives. Later 
studies showed that these locomotives were actually 
the cause of the incident. In some frequency bands the 
locomotives turned out to work more or less as nega- 

tive resistors. One of these bands happened to overlap 
a network resonance fiequency. At the time of the in- 
cident many older locomotives which normally damp 
the resonance were not in operation. Together these 
circumstances resulted in high amplitude current os- 
cillations. This particular event is further described 
in [8]. 

A better understanding of the effects is thus wanted. 
There is an international research project named ES- 
CARV (Electrical System Compatibility for Advanced 
Rail Vehicles), which has as goal to develop meth- 
ods to test compatibility of rail networks, locomotives 
and signaling equipment. All the large train manu- 
facturers in Europe, the Swiss and Italian railway 
companies and some universities are members in this 
project. The project should be finished in the end of 
year 2000. More information can be found in [8] and 
on www.enotrac.com/escarv. 

To analyze these systems, time simulations or itera- 
tive methods like Harmonic Balance, see [12], often 
are used. Similar types of studies have been made 
under various names, Harmonic Power Flow Study 
in [3], Unified Solution of Newton Type in [l], and 
Harmonic Domain Algorithm in [2]. Unfortunately it- 
erative methods are not guaranteed to converge and 
it is difficult to do stability and robustness analysis in 
time simulators. A method that avoids some of these 
problems was described in [5]. If a steady-state peri- 
odic solution is known it is possible to approximate 
the system as a linear time periodic system locally. 
A matrix called the Harmonic Transfer Matrix(HTM) 
describes how periodic signals interact in the neigh- 
borhood of the known solution. 

In this paper a HTM of the motor side of an inverter 
locomotive is calculated and some typical results are 
shown. A similar model of a diode converter locomo- 
tives is made in [7]. With this matrix it is possible 
to do detect dangerous cross-coupling of frequencies 
and to do stability and robustness analysis. This is 
not done here, see [13, 7, 61 for more details. - 
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2. Method 

In this report all considerations will be made under 
steady state. This means all transients have died out 
and all quantities are constant or periodic. Periodic 
functions can be expanded into Fourier series with 
harmonic functions as basis. In the general case you 
need an infinite number of frequencies to expand a 
function, but in computer implementations you have 
to truncate after a finite number of terms. In practice 
this is sufficient, as the functions under consideration 
may often be approximated with just a few harmonics. 

Let the periodic function have a fundamental fre- 
quency of 00 and the corresponding period T. The 
harmonics might be represented in complex form duot 
or in real form sin oot and cos oot where woT = 2a. 
Both representations have their advantages. In this 
article the complex form will be used. The Fourier se- 
ries is then written as v ( t )  = C?=-.,,ukdkoot where 
vk = 

We are going to store the coefficients in a doubly- 
infinite vector 

t+T ( z) e-jktuo?&. 

If the series is truncated after N frequencies this 
leads to (2N + 1)-dimensional vectors. If the function 
u ( t )  is real then U-k = U; where * denotes complex 
conjugate. Vector and matrix functions will later also 
be expanded and the same notation is used for them. 

"he relationship between input and output frequency 
vectors to a dynamical system under steady-state is 

-9 = F(V); J ,  V E 

where F in general is a nonlinear vector function. 
F is normally cumbersome to derive and to use. 
The method of equating harmonics in an iterative 
way goes under the name Harmonic Balance and is 
reviewed in for example [12]. 

In [5] a way to go around the complicated procedure 
is presented. The idea is to make a linearization of F. 
If a steady state solution, JO and VO, is known it can 
be used as a linearization point. Around this point the 

IS kV. 16 !H1 

Figure 1 System overview of an inverter locomotive. 
The locomotive consists of two subsystems: the line 
and the motor side. They are connected with the DC- 
link. The method described in this article is applied 
to the motor side. Thus the effects on the motor and 
on the link from changing voltages in the DC-link 
and changing set points in the motor controller can 
be analyzed. 

relationship between j' and v approximately can be 
written as 

Here { j k }  are the elements of 3 and { V k }  are the 
elements of v .  will in the following be called a 
Harmonic Transfer Matrix( HTM) . The problems here 
are to find the linearization point and to evaluate the 
Jacobian (2). These things might be convenient to 
do through simulations or experiments, see [5]. The 
steady-state behavior of a Linear Time Periodic(LTP) 
system can be exactly described by a HTM, see [6]. 
A Linear Time Invariant(LT1) system results in a 
diagonal HTM. The LTI-approximation of the modeled 
system is thus obtained by taking the diagonal of the 
HTM. 

3. System 

A simple model of an AC-locomotive is shown in 
Figure 1. The locomotive is of general type pro- 
pulsed by an Asynchronous Electrical Motor(ASM) 
fed through voltage converters. The converters are 
constructed with GTO(Gate Turn 0ff)thyristors or 
IGBTs, high voltage semiconductor switches. The 
technology is quite modern. It was not until the 80's 
this technology had its breakthrough and became 
economically efficient. 
The line voltage is first transformed down to a lower 
voltage and then fed to the converter. The goals of the 
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line controller is to keep a constant DC-link voltage 
and to draw a sinusoidal current from the line in 
phase with the voltage. "he instantaneous power 
from the line pulsates with the double net frequency, 
33i Hz. The motor side on the other hand needs 
more or less constant instantaneous power. Therefore 
a capacitor and a filter is placed in the DC-link to 
compensate for the 33i Hz oscillation. 

A motor converter is connected in the other end of 
the DC-link. This converter makes AC of variable 
frequency. The frequency must be variable in order to 
drive the engine at different speeds and torques. The 
motor converter and the engine are together called 
the motor side. The motor side is modeled in the 
following. 

A good reference for learning more about trains in 
general is [lo) and to learn more about the network 
interaction issue of converter locomotives [9] and [SI. 

3.1 Motor Converter 
The converter is implemented with three switches, 
each one of them connected to one of the engine 
phases, see Figure 2. The converter switches the 
engine phases between &UDC to induce a sinusoidal 
motor flux of desired frequency. The converter is 

I 

Figure 2 A simplified circuit describing the motor 
side of a converter locomotive. The currents and volt- 
ages are defined for the DC-link and the Asynchronous 
Electrical Motor(ASM) phases. "he three switches in 
the converter are displayed. "he task of the controller 
is to switch these so the magnetic flux in the motor 
moves on a circle and the correct torque is delivered. 

modeled with a power balance where the power loss 
is neglected 

We now need to construct a HTM of the converter. The 
power balance is a sum of terms which consist of mul- 
tiplication of two time-periodic variables, voltage and 
current. Let us study the HTM of one of these terms 
and call the factors u ( t )  and i ( t ) .  Assume now each of 
them are perturbed by A u ( t )  and A i ( t ) .  Their product 

is then well approximated (small perturbations) by: 

(4) A p ( t )  M io( t )Au(t)  + uo( t )Ai ( t )  

where uo(t) and io(t) are the a priori known periodic 
solutions. The error is here of second order. Note that 
if the a priori solution is constant this reduces to a 
classical linearization, otherwise we have multiplica- 
tion with time periodic coefficients. A HTM of this 
relation, or a more general vector relation, is given in 
Lemma 1. 

Lemma 2 Let the time periodic matrix-vector 
relation be y ( t )  = A(t)x( t ) .  Then the HTM between 
x and y is given by 'y = AX where A is a block 
Toeplitz matrix with the Fourier coefficients of A(t )  
as elements. 
Proof: By multiplication of the two complex Fourier 
series of A(t) and x ( t )  and equating the harmonics 
with y ( t )  the relation is obtained. 
U 

By using (4) and Lemma 1 repeatedly in (3) we get 
a matrix relation between all the deviations of the 
voltages and currents from the a priori solution. 

If the three phase engine is a symmetric load it is 
enough to make the calculations with two variables. 
The three phases have a phase difference of 120" 
to one another. Therefore introduce the coordinate 
transformation (a, b, c) I-+ (a, p). The new coordinates 
are stored as complex numbers: 

The equations in the following are expressed in these 
(a, /?)-coordinates. The power for example becomes: 

3 
Pmotor = s (Uaia  + upip)  

The power balance in HTM-form thus looks like: 

where (U0 and I o  are Toeplitz matrices of the voltages 
and currents in the a priori solution. The a,P- 
variables are later going to be substituted. 

3.2 Asynchronous Electrical Motor and 

On the right hand side of (6)  we want to insert the 
ASM equations with the controller. In the following 
all the variables are given as complex numbers on 

Controller 
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the form x' = xa + j x p ,  according to (5 ) .  In normalized 
quantities the ASM equations can be written as: 

and m,, = z ( W p p v r a  - vpaV/tP),ns = nr + n,? = 

flux, ii the stator voltages, n the mechanical motor 
frequency, mi, the delivered torque, 3 the stator 
currents, n, the electrical frequency and nr the slip. 
All of them have dimension [l] and may be time 
dependent. no is the so called frequency ratio, p the 
time constant ratio and 0 the stray ratio, they are 
all motor parameters and are defined in [4]. There 
are other and more accurate models of ASM:s. An 
introduction to ASMs is found in for example [ll]. 
The fluxes are both rotating with the electrical fre- 
quency in the engine. This frequency normally differs 
from the mechanical frequency. The difference of the 
two is called the slip and is related to the delivered 
torque and to the angle between the fluxes. A positive 
slip results in a positive torque. When there is a neg- 
ative slip the motor works as a brake and generates 
power which can be fed out to the line. 
The engine is controlled by so called Indirect Self 
Control. In this implementation it is modeled by a 
multiplication of the stator currents and the fluxes 
with a time periodic variable giving the stator volt- 
ages. A HTM of this is obtained with Lemma 1. In 
the implementation the continuous control signal is 
converted to switching signals by Pulse Width Modu- 
lation(PWM). This is modeled by a time lag of 1 ms 
corresponding to the switching frequency 250 Hz. See 
[4] for details. 
There is a known sinusoidal solution to the engine 
equations. This is used as operating point. Now the 
engine-controller loop can be linearized and written 
on the form: 

- I l o p p  - pr where pp is the total flux, pr the rotor 

X(t) = A(t)x(t)  + B(t )u( t )  (9) 
Y ( t )  = C(t)x(t)  + D(t)u( t )  (10) 

where A ( t + T )  = A(t)  and analogouslyfor B ( t ) ,  C(t ) ,  
D(t) ,  T being the electrical period. In this case the 
vectors are 

This is obtained in Lemma 2. In the thesis of Wereley, 
[6], Linear Time Periodic systems of this kind are 
studied and the results here are taken from there. 

Lemma 2 The HTM of a finite dimensional Linear 
Time Periodic(LTP) system as given in (9)-(10) is 
givenbyy = GZrwith G = C[%-A]-%+ D where 
!7( = blkdiag{jnwoI}, n E Z and A,B,C,D being 
Toeplitz matrices as in lemma 1. 
0 

To get relations to the DC-link these HTM:s may be 
substituted into (6). 

4. Analysis of the System 

Now we have HTM:s of the engine-controller loop and 
the converter connection. It is then possible to plot 
different relations between inputs and outputs. If the 
main diagonal is plotted the Bode plot is obtained. 
If sub diagonals are present we can also study how 
frequencies interact. This enables a more powerful 
analysis. 

As one input frequency can result in many output 
frequencies it is important that none of them excite a 
resonance state in the system, in this case the DC-link 
is critical. Such studies are easily made with HTMs. 

It turns out in these examples that the sub diago- 
nals often disappear when the operating point of the 
engine is one pure sinusoidal. This is because the en- 
gine is a balanced three-phase load. When the engine 
is driven at higher speeds the frequency interaction 
is considerably higher due to other switching tech- 
niques. 

4.1 Link Current as Function of the Set Point 

Here the HTM to study the influence of msp on IDC 
is constructed. In Figure 3 the linear time invariant 
part (main diagonal) of the HTM is plotted. In fact 
the sub diagonals are zero in this case. The reason 
for this can be understood by studying the power 
of the engine. Under steady state the engine needs 
constant instantaneous power as the flux moves on 
a circle(perfect symmetric load). When a periodic 
perturbation is introduced the power will change with 
the same frequency. The DC-link voltage is assumed 
to be constant and as input power equals output 
power the first order approximation will be linear 
time invariant. If the DC-link voltage is assumed to 
be periodic, sub diagonals will arise due to the power 
balance. 

of the Torque 

where Amsp is the set point of the torque given to 
the controller. We want a HTM between u(t)  and y ( t ) .  

Notice that the small time lag introduced by the PWM 
results in quite large changes for higher frequencies. 
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, . . . . . .. . . . . . . , . 

-'-%a -150 -loo do 0 50 loo 1m 200 
F-nylHz 

1 0 0  

Figure 3 The main diagonal of the HTM between 
AI,, and Am,,, that is the "Bode plot". The solid 
line is from the H!l'M without PWM modeling and the 
dashed is with PWM modeling. The (0) are from time 
simulations with PWM and (0) without PWM. It is 
seen that the PWM influences the transfer function 
for high frequencies. 

4.2 Stator Current as Function of the Set Point 
of the Torque 

0.05 0.1 0.15 0.2 0.25 
01, I 

I 
0.05 0.1 0.15 0.2 015 

L - 0.71 I 

Figure 4 The time domain appearance of one fun- 
damental period, T, of the normalized stator current 
Aya.  At the top the input is displayed. I t  is followed by 
the result from the HTM, the simulated result and the 
difference of the two. I t  is seen that the modeling is ac- 
curate for low frequencies. The high frequency ripple 
lies outside the studied range. 

Here the relationship between the torque set point 
and the stator current in the motor will be shown. 
In Figure 4 time domain results are plotted for one 
fundamental period. The input is a pure cosine of 
frequency 4 Hz and in the output there are two 
frequencies, 8 and 32 Hz. When compared to time 
simulations it is seen that the low frequency parts are 
almost perfectly modeled. The high frequency ripple 

from the inverter is not captured with the HTM, it 
lies outside the studied frequency range. 

4.3 The Admittance Matrix of the Motor Side 

"1 
0.25 "1 1 

3 0.2 1 

Figure 5 The absolute values of the admit- 
tance(HTM) matrix for the motor side of an inverter 
locomotive. That is the relation between current and 
the voltage in the D C - W .  The locomotive is operating 
with a constant torque with small 33 Hz oscillations in 
U ~ C .  The main diagonal is dominating, which means 
the motor side is mainly linear time invariant at this 
operating point. The distance between the sub diago- 
nals is exactly 33 Hz. 

Here a so called admittance matrix will be plotted. We 
want to study the behavior of the entire motor side 
seen from the DC-link. That is to find the relationship 
between UOC and IDC. The admittance matrix can be 
used to connect the motor side with a similar line side 
model. 

The absolute values of the HTM is shown in Figure 
5. For very low frequencies there is a peak. This is a 
result of the approximations. The motor is linearized 
with a fundamental frequency, WO. All results are 
described in multiples of WO. When the constant 
part of the DC-link voltage (0 Hz) is increased the 
constant part of the torque set point is increased. 
This leads to a new and higher WO. The correct result 
therefore lies outside our chosen frequency basis. 
Thus the results here may not be used for constant 
changes of the DC-link. If a constant change is to be 
studied the motor side has to be re-linearized. 

The main diagonal is strongly dominating here. If 
there were no oscillations in the link at the operating 
point no sub diagonals would be present. An operating 
point with large oscillations would give large sub 
diagonals. This is a consequence of the symmetries 
in the model and the control technique. A plot of the 
main diagonal is given in Figure 6. Especially the 
phase plot is of interest: it is seen that the phase lag 
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Figure 6 Here the amplitude and phase of the main 
diagonal of the admittance matrix in Figure 5 are 
displayed in a wider frequency range. For frequencies 
above 50 Hz the phase plot indicates that the motor 
side works as an active load to the DC-link. This might 
inffict stability problems when the line side is included 
in the model. 

is greater than 90" for frequencies above 50 Hz. This 
means the motor returns energy to the link for these 
frequencies. "his might cause stability problems. 

5. Conclusions and Future Work 
In this article we have presented HTMs and have 
shown how to use them to model systems with 
switching components. The method was exemplified 
on an inverter locomotive. 

The HTM:s are useful to describe periodic systems. 
They give a compact description and are easy to in- 
terpret. With the HTM it is possible to answer a 
wider range of questions than is possible with tra- 
ditional analysis. Particularly frequency interaction 
is described, which is often seen in nonlinear systems 
with periodic trajectories. 

A slight generalization of the method described here 
is called the Harmonic Transfer Function(HTF), see 
[7, 6, 131. There exist a Nyquist criterion for the 
HTF which enables stability and robustness studies. 
There are many analogies between the HTF and the 
transfer function for LTI systems, future work would 
include transferring more results from LTI theory. 
Many implementation issues about the HTF also 
remains to be solved. 
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