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Distributed Cont rol Using
Positive Quadratic Progr amming

Anders Rantzer

Automatic Control LTH
LCCC — Lund Center for Control of Complex Engineering Systems

Lund University

Out line

• Why Distributed Control?

○ Distributed Control of Positive Systems

○ Example: Optimizing Electrical Power Flow

○ Solution using Positive Quadratic Programming

○ Finding Optimum by Distributed Control

Building theoretical found ations for distributed control

We need methodology for
◮ Decentralized specifications
◮ Decentralized design
◮ Verification of global behavior
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Example 1: A vehicle formation

Example 1: A vehicle formation

x1 x2 x3 x4

Each vehicle obeys the independent dynamics






ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)







The objective is to make EpCxi+1 − Cxip2 small for i = 1, . . . , 4.

Example 2: A suppl y chain for fresh produc ts

x1 x2 x3 x4

Fresh products degrade with time:






ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







−u1(t) +w1(t)
u1(t) − u2(t)
u2(t) − u3(t)
u3(t) +w4(t)







Example 3: A Wind Farm Example 3: A Wind Farm







ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)






=







∗ 0 0 0

∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1 +w1
B2u2 +w2
B3u3 +w3
B4u4 +w4






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Example 3: A Wind Farm

Example 4: Irr igation Channels

x1 x2 x3 x4

w1 w2 w3 w4
u1 u2 u3 u4







ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)






=







∗ ∗ 0 0

∗ ∗ ∗ 0

0 ∗ ∗ ∗
0 0 ∗ ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







u1(t) +w1(t)
u2(t) +w2(t)
u3(t) +w3(t)
u4(t) +w4(t)







Note: Off-diagonal elements are typically positive!

Out line

○ Why Distributed Control?

• Distributed Control of Posit ive Systems

○ Example: Optimizing Electrical Power Flow

○ Solution using Positive Quadratic Programming

○ Finding Optimum by Distributed Control

Positive sys tems have nonn egative impulse respon se

If the matrices A, B and C have nonnegative coefficients
except possibly for the diagonal of A, then the system

dx

dt
= Ax + Bu

y= Cx

has non-negative impulse response CeAtB.

Examples:

◮ Ecological system with xk the population of species k.
◮ Chemical reaction with xk the concentration of reactant k.
◮ Economic system with xk the quantity of commodity k.
◮ Probabilistic model with xk the probability of state k.

Positive Systems and Nonne gative Matrices

Class ics:

◮ Perron (1907) and Frobenius (1912)
◮ Leontief (1936)
◮ Hirsch (1985)

Books:

◮ Gantmacher (1959)
◮ Berman and Plemmons (1979)
◮ Luenberger (1979)

Recent control related work:

◮ Angeli and Sontag (2003)
◮ Moreau (2004)

Stabi li ty of Positive sys tems

Suppose the matrix A has nonnegative off-diagonal elements.
Then the following conditions are equivalent:

(i) The system dx
dt
= Ax is exponentially stable.

(ii) There exits a vector x > 0 such that Ax < 0.
(The vector inequalities are elementwise.)

(iii) There is a diagonal matrix P ≻ 0 such that
PAT + AP ≺ 0

Stabi li ty can be Tested in a Distributed Way

x1 x2 x3 x4

Stability of ẋ = Ax follows from existence of xk > 0 such that






a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a32
0 0 a43 a44







︸ ︷︷ ︸

A







x1
x2
x3
x4






<







0

0

0

0







The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

and so on . . .
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Performance of Positive sys tems

Suppose the matrices A, B and C have nonnegative
coefficients except for the diagonal of A. Suppose A is Hurwitz.
Then the following conditions are equivalent:

(i) maxω pC(iω I − A)
−1Bp < γ

(ii) pCA−1Bp < γ

(iii) There exits x > 0 such that Cx < γ , Ax + B = 0.

(iv) There is a diagonal matrix P ≻ 0 such that

PAT + AP+ PCTCP+ γ −2BBT ≺ 0

Note: The linear inequalities (iii) can be tested row by row.

Distributed Cont rol Synthesis

Suppose the matrix






a11 + {1 a12 0 0

a21 − {1 a22 + {2 a23 0

0 a32 − {2 a33 a32
0 0 a43 a44







is nonnegative for all {1, {2 ∈ [0, 1]. For stabilizing gains {1, {2,
find 0 ≤ uk ≤ xk such that







a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a32
0 0 a43 a44













x1
x2
x3
x4






+







1 0

−1 1

0 −1
0 0







[
u1
u2

]

<







0

0

0

0







and set {1 = u1/x1 and {2 = u2/x2. Every row gives a local test.

Note: Positivity assumed a priori. What if {1, {2 ∈ R?

Synthesizing Positive Systems

A+ BL =







a11 + {1 a12 0 0

a21 − {1 a22 + {2 a23 0

0 a32 − {2 a33 a32
0 0 a43 a44







is stable and nonnegative if and only if pk ≥ 0 and

(A+ BL)P =







(a11 + {1)p1 a12p2 0 0

(a21 − {1) (a22 + {2)p2 a23p3 0

0 (a32 − {2)p2 a33p3 a32p4
0 0 a43p3 a44p4







make (A+ BL)P+ P(A+ BL)T negative definite with nonnegative
off-diagonal elements.
Solve using convex optimization in the pair (P, PL)!

[Tanaka and Langbort, ACC 2010]

Positivity versus Pass ivity

◮ Passivity can be described naturally in frequency domain.

◮ Positivity can be described naturally in time-domain.

◮ Negative feedback loops preserve passivity.

◮ Positive feedback loops preserve positivity.

◮ Parallel connections preserve both passivity and positivity.

◮ Series connections preserves positivity, but not passivity.

Out line

○ Why Distributed Control?

○ Distributed Control of Positive Systems

• Example: Optimizing Electrical Power Flow

○ Solution using Positive Quadratic Programming

○ Finding Optimum by Distributed Control

Example A: Electrical Power Transmiss ion

Two generators with generation cost 1 and 9 respectively.
One load willing to buy p3 = 2 at the price 10:

1
p1 p21

p32p31

9
p2

10

p3

Maximize profit: 10p3 − 9p2 − p1
subject to capacity constraints: ppjkp ≤ 1, p1 ≥ 0, p2 ≥ 0, p3 ≥ 2
and conservation laws: p1 = p21 + p31

p32 = p21 + p2
p3 = p31 + p32

Opt imal Allocation for Example A

Both transmission lines serving the load need to be used at full
capacity to meet the demand p3 = 2.

p1 = 2 1

11

p2 = 0

p3 = 2

Optimal profit: 10p3 − p1 = 18

In real power networks, electrons flow according to Kirchhoff’s laws.
The allocation above is not feasible when all three lines are identical.
Why?

Example B: Opt imal Potent ial Flow

Power flow is driven by potential differences:

u1
p1

u2
p2

u3

p3

Maximize profit: 10p3 − 9p2 − p1
subject to capacity constraints: pu j − ukp ≤ 1, pj ≥ 0, p3 ≥ 2
and conservation laws: p1 = (u1 − u2) + (u1 − u3)

p2 = (u2 − u1) + (u2 − u3)
p3 = (u1 − u3) + (u2 − u3)
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Opt imal Allocation for Example B

Both transmission lines serving the load need to be used at full
capacity to meet the demand p3 = 2. Hence u1 = u2 and there
is no flow between node 1 and node 2!

u1
p1 = 1 0

11

u2
p2 = 1

u3

p3 = 2

The optimal profit is much smaller: 10p3 − p1 − 9p2 = 10

When transmission lines operate near capacity limits, losses are big.
Can we take losses into account in the optimization?

Power Los ses in a DC Transmiss ion Line

v1

injected power current
v2

delivered power

For a DC transmission line with admittance y, input voltage v1
and output voltage v2, we have:

Line current: i = y(v1 − v2)
Injected power: p1 = yv1(v1 − v2)
Delivered power: p2 = yv2(v1 − v2)
Power loss: p1 − p2 = y(v1 − v2)

2

If the voltages are bounded from above by v, there is an upper
bound on how much power the transmission line can deliver:

p2 = yv2(v1 − v2) ≤ yv2(v− v2) ≤ yv
2/4

At the capacity limit, the power loss equals the delivered power.

Example C: Opt imal Power Flow with Los ses

v1
p1

v2
p2

v3

p3

Maximize profit: 10p3 − 9p2 − p1
subject to capacity constraints: 0 ≤ vj ≤ 2
and conservation laws: p1 = v1(v1 − v2) + v1(v1 − v3)

p2 = v2(v2 − v1) + v2(v2 − v3)
p3 = v3(v1 − v3) + v3(v2 − v3)

Opt imal Allocation for Example C

Both transmission lines serving the load need to be used at full
capacity to meet the demand p3 = 2. Hence v1 = v2 = v and
there is no current between node 1 and node 2!

u1
p1 = 2 0

11

u2
p2 = 2

u3

p3 = 2

There is no room for profit: 10p3 − p1 − 9p2 = 0

Notice that half of the generated power is lost in transmission!

Profit Versus Power Demand

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

2

4

6

8

10

12

14

16

18

20

Analogi es to Electric Power Flow

Water dis tribution sys tems: Electrical voltage corresponds to
water pressure. Differences in pressure creates flow.

Gas dif fusion: Electrical voltage corresponds to partial
pressure. Gradients in partial pressure creates diffusion.

Exchange econo my: Voltages correspond to inverse prices.
Price differences drive commodity flows. Delivered electric
power corresponds to delivered commodity volume.

Two kinds of flo w of simultaneous interest.
In power transmission networks, electric current is conserved,
but electric power is dissipated due to transmission losses.

In economic systems the commodity value is conserved, but the
commodity volume is dissipated due to transportation losses.

Out line

○ Why Distributed Control?

○ Distributed Control of Positive Systems

○ Example: Optimizing Electrical Power Flow

• Solution using Posit ive Quadratic Programming

○ Finding Optimum by Distributed Control

A General Power Transmiss ion Network

v4
i4

v1
i1

v2
i2v3

i3







i1
i2
i3
i4







︸ ︷︷ ︸

i

=







Y12 + Y14 −Y12 0 −Y14
−Y21 Y21 + Y23 + Y24 −Y23 −Y24
0 −Y32 Y32 0

−Y41 −Y42 0 Y41 + Y42







︸ ︷︷ ︸

Y







v1
v2
v3
v4







︸ ︷︷ ︸

v
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An Opt imal Flow Problem for AC Power

V4
I4

V1
I1

V2
I2V3

I3

Ik ∈ C

Vk ∈ C

Minimize Re
∑

k I
∗
kVk

subject to I = YV and Pk ≤ Re (I∗kVk) ≤ Pk
Q
k
≤ Im (I∗kVk) ≤ Qk

vk ≤ pVkp ≤ vk for k = 1, . . . , 4

(Convex relaxation by Lavaei/Low inspired this talk.)

Future DC Power Transmiss ion Network in Europe?

From Cigré Conference 2010, "Continental Overlay HVDC-Grid" by ABB

Opt imizing DC Power Flow

v4
i4

v1
i1

v2
i2v3

i3

ik ∈ R

vk ∈ R

Minimize
∑

k ikvk

subject to i = Yv and ikvk ≤ pk

(vk − vj)
2 ≤ ckj

vk ≤ vk ≤ vk for all k, j

Notice: pk negative at loads, positive at generators.

Positive Quadratic Progr amming

Given A0, . . . , AK ∈ Rn$n with nonnegative off-diagonal entries
and b1, . . . , bK ∈ R, the following equality holds:

max xTA0x = max trace(A0X )

subject to x ∈ Rn+ subject to X 4 0

xTAkx ≥ bk trace(AkX ) ≥ bk
k = 1, . . . , K k = 1, . . . , K

Proof

If X =






px1p
2 ∗

. . .
∗ pxnp

2




 maximizes the right hand side,

then x =






x1
...
xn




 maximizes the left.

[Goemans/Williamson (1994), Zhang (1999), Kim/Kojima (2003)]

Positive Quadratic Progr amming

Given A0, . . . , AK ∈ Rn$n with nonnegative off-diagonal entries
and b1, . . . , bK ∈ R, the following equality holds:

max xTA0x = max trace(A0X )

subject to x ∈ Rn+ subject to X 4 0

xTAkx ≥ bk trace(AkX ) ≥ bk
k = 1, . . . , K k = 1, . . . , K

Proof

If X =






px1p
2 ∗

. . .
∗ pxnp

2




 maximizes the right hand side,

then x =






x1
...
xn




 maximizes the left.

Note: The problem is convex in pv1p2, . . . , pv4p2!

Opt imizing DC Power Flow

v4
i4

v1
i1

v2
i2v3

i3

ik ∈ R

vk ∈ R

Minimize
∑

k ikvk

subject to i = Yv and ikvk ≤ pk

(vk − vj)
2 ≤ ckj

vk ≤ vk ≤ vk for all k, j

Notice: All mixed terms have the right sign!

Dual Positive Quadratic Progr amming

Given A0, . . . , AK ∈ Rn$n with nonnegative off-diagonal entries
and b1, . . . , bK ∈ R, the following equality holds:

max xTA0x = min −
∑

k λ kbk

subject to x ∈ Rn+ subject to λ1, . . . ,λK ≥ 0

xTAkx ≥ bk 0 4 A0 +
∑

k λ kAk

k = 1, . . . , K

Interpretation:
In the power flow example, λ k is the price of power at node k.

Out line

○ Why Distributed Control?

○ Distributed Control of Positive Systems

○ Example: Optimizing Electrical Power Flow

○ Solution using Positive Quadratic Programming

• Finding Optimum by Dis tributed Control
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Primal Decompos ition

x4x1

x2x3

The convex problem

minxk [V1(x1, x2, x4) + V2(x1, x2, x3, x4) + V3(x2, x3) + V4(x1, x2, x4)]

can be solved by the following distributed iteration:






x+
1
= arg minx1 [V1(x1, x2, x4) + V2(x1, x2, x3, x4) + V4(x1, x2, x4)]

x+
2
= arg minx2 [V1(x1, x2, x4) + V2(x1, x2, x3, x4) + V3(x2, x3) + V4(x1, x2, x4)]

x+
3
= arg minx2 [V2(x1, x2, x3, x4) + V3(x2, x3)]

x+
4
= arg minx2 [V1(x1, x2, x4) + V2(x1, x2, x3, x4) + V4(x1, x2, x4)]

Findi ng Opt imum by Distributed Cont rol

v4
i4

v1
i1

v2
i2v3

i3

Given power prices λ k at each node, find the optimal allocation:

Minimize
∑

j,k λ kykjvk(vk − vj) subject to vk ≤ vk

Primal decomposition gives convergence to optimum:

v+k = arg minvk≤ vk
∑

j

[

λ kykjvk(vk − vj)
︸ ︷︷ ︸

value into link jk

− λ j ykjvj(vk − vj)
︸ ︷︷ ︸

value out from link jk

]

The Distributed Cont rol Law

The dynamics

v+k = arg minvk≤ vk
∑

j

[

λ kykjvk(vk − vj)
︸ ︷︷ ︸

value into link jk

− λ j ykjvj(vk − vj)
︸ ︷︷ ︸

value out from link jk

]

has the form

v+ = min{v , Av}

where A has nonnegative coefficients.

Can it pay of f to disconne ct a line?

v4
i4

v1
i1

v2
i2v3

i3

Given power prices λ k at each node, find the optimal allocation:

Minimize
∑

j,k λ kykjvk(vk − vj) subject to vk ≤ vk, ykj ∈ [0, ykj ]

Yes, it can!

p1 = 2 0

1 Profit= 01

p2 = 2

p3 = 2

p1 = 4 1

1 Profit= 71

1 p2 = 1

2

p3 = 2

Summary

◮ Why Distributed Control?

◮ Optimizing Electrical Power Flow

◮ Positive Quadratic Programming

◮ Distributed Control of Positive Systems

◮ Finding Optimum by Distributed Control

To read:
Slides on www.control.lth.se/Staff/anders_rantzer.html
Extended abstract in Proceedings of CCC 2011
Upcoming paper in CDC 2011
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