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Distributed Control Using
Positive Quadratic Programming

Anders Rantzer

Automatic Control LTH
LCCC — Lund Center for Control of Complex Engineering Systems
Lund University

Building theoretical found ations for distributed control

Process

Controlle

We need methodology for
» Decentralized specifications
» Decentralized design
» Verification of global behavior

Example 1: A vehicle formation

X1 X2 x3 X4

Each vehicle obeys the independent dynamics

xl(t) *= 0 0 0 xl(t) Blul(t) + wl(t)
xz(t) 0 = 0 0 xz(t) i Boug (t) + ws (t)
x3(¢) 0 0 =« 0| [x3(8) Bsug(t) + ws(t)
x4(2) 0 0 0 =| [x4(2) Bauy(t) + wa(t)

The objective is to make E|Cx; 1 — Cx;|? small fori = 1,...,4.
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Example 1: A vehicle formation

Example 2: A supply chain for fresh products

X1 X2 X3 X4
O -0 -0 -0
Fresh products degrade with time:
X1 (t) *= 0 0 0 xl(t) —ul(t) + wl(t)
X2 (t) 0 %= 0 0] [x2 (t) i ul(t) — Uy (t)
a3(t)| T 0 0« 0 |as(t)]| 7| walt) —us0)
%4(2) 0 0 0 x| [x4(2) us(t) + wa(t)

Example 3: A Wind Farm
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X1 X9 X3 X4
x1(¢) x o« 0 0] [x1(2) ui(t) +wi(t)
xz(t) _|x o o® 0 xg(t) " ug(t) + wz(t)
X3(t) 0 % = x x3(t) u3(t) + wg(t)
564(t) 0 0 = = X4(t) u4(t) + w4(t)

Note: Off-diagonal elements are typically positive!

Positive sys tems have nonn egative impulse respon se

If the matrices A, B and C have nonnegative coefficients
except possibly for the diagonal of A, then the system

%:Ax+Bu
y=Cx

has non-negative impulse response Ce'B.

Examples:

» Ecological system with x;, the population of species .

» Chemical reaction with x;, the concentration of reactant k.
» Economic system with x;, the quantity of commodity %.

» Probabilistic model with x;, the probability of state k.

Example 3: A Wind Farm
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Positive Systems and Nonne gative Matrices

Classics:

» Perron (1907) and Frobenius (1912)
» Leontief (1936)
» Hirsch (1985)

Books:

» Gantmacher (1959)
» Berman and Plemmons (1979)
» Luenberger (1979)

Recent control related work:

» Angeli and Sontag (2003)
» Moreau (2004)

Stability of Positive sys tems

Suppose the matrix A has nonnegative off-diagonal elements.
Then the following conditions are equivalent:

(z) The system % = Ax is exponentially stable.

(i) There exits a vector x > 0 such that Ax < 0.
(The vector inequalities are elementwise.)

(zit) There is a diagonal matrix P > 0 such that
PAT £+ AP <0

Stability can be Tested in a Distributed Way

X1 X2 x3 X4

O=-——»O=+——>OD="—>)

Stability of & = Ax follows from existence of x; > 0 such that

ai; aig 0 0 X1 0
asy ags azz 0 | |xg < 0
0 a3 azs ase| |x3 0
0 0 a43 Q44 X4 0

A

The first node verifies the inequality of the first row.
The second node verifies the inequality of the second row.

andsoon...




Performance of Positive systems

Suppose the matrices A, B and C have nonnegative

coefficients except for the diagonal of A. Suppose A is Hurwitz.

Then the following conditions are equivalent:
(i) maxe|C(iwl —A)™1B| <y
(i) |CA™B| <y
(zi1) There exits x > 0 such that Cx <y, Ax + B = 0.

(iv) There is a diagonal matrix P > 0 such that

PAT + AP+ PCTCP+y2BBT <0

Note: The linear inequalities (iii) can be tested row by row.

Synthesizing Positive Systems

a1+ 41 aie 0 0

ag1—¥€1 ap+4l az O
0 azs— 42 asy ass
0 0 Qa43 Q44

A+BL=

is stable and nonnegative if and only if p, > 0 and

(@11 +41)p1 aizpe 0 0

(A+BL)P= (@21 —21) (@ +4L2)p2 axzps O
0 (@32 —£2)p2  azsps  aseps
0 0 @43P3  Q44P4

make (A + BL)P + P(A + BL)" negative definite with nonnegative
off-diagonal elements.
Solve using convex optimization in the pair (P, PL)!

[Tanaka and Langbort, ACC 2010]
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Distributed Control Synthesis

Suppose the matrix

a1 + 41 aio 0 0

ag1—41 agp+4fy azy O
0 ags —Lls azz asy
0 0 a43 Q44

is nonnegative for all 41,42 € [0,1]. For stabilizing gains ¢1,4s,
find 0 < uy, < x5, such that

aip; aig 0 0 X1 1 0 0
ag1 Qg2 Qg3 0 X9 + -1 1 |:ul:| < 0
0 aszz2 asz3 as2 X3 0 -1 us 0
0 0 a43 Q44 X4 0 0 0

and set 41 = uy/x; and ¢y = ug/x9. Every row gives a local test.

Note: Positivity assumed a priori. What if 41,49 € R?

Positivity versus Passivity

v

Passivity can be described naturally in frequency domain.

» Positivity can be described naturally in time-domain.

v

Negative feedback loops preserve passivity.

v

Positive feedback loops preserve positivity.

v

Parallel connections preserve both passivity and positivity.

» Series connections preserves positivity, but not passivity.

Example A: Electrical Power Transmission

Two generators with generation cost 1 and 9 respectively.
One load willing to buy ps = 2 at the price 10:

pla b21 kpz
P31 D32
o)
¢ p3

Maximize profit: 10p3 — 9p2 — p1
subject to capacity constraints:  |pjz| < 1, p1 >0, ps >0, p3 >2
and conservation laws: P1=p21+Pp31

P32 = P21+ P2

P3 = p31+ P32

Optimal Allocation for Example A

Both transmission lines serving the load need to be used at full
capacity to meet the demand p3 = 2.

pr1=2 1 p2=0

— -

¢ p3=2
Optimal profit: 10pg — p; = 18
In real power networks, electrons flow according to Kirchhoff’s laws.

The allocation above is not feasible when all three lines are identical.
Why?

Example B: Optimal Potential Flow

Power flow is driven by potential differences:

b1

4» <7172

()
¢173

Maximize profit: 10p3 — 9p2 — p1

subject to capacity constraints:  |u; —ug| <1, pj >0, p3 >2

and conservation laws: p1 = (u1 —ug) + (w1 —u3)
p2 = (uz —u1) + (uz —us)
p3 = (w1 —u3) + (uz —us)




Optimal Allocation for Example B

Both transmission lines serving the load need to be used at full
capacity to meet the demand p3 = 2. Hence u; = ugy and there
is no flow between node 1 and node 2!

The optimal profit is much smaller: 10p3 — p; — 9p2 = 10

When transmission lines operate near capacity limits, losses are big.
Can we take losses into account in the optimization?

Example C: Optimal Power Flow with Los ses

p1 D2

Maximize profit: 10p3 — 9p2 — p1

subject to capacity constraints: 0 <v; < 2

and conservation laws: p1 =v1(v1 —v2) +v1(v1 —vs)
D2 = Ug(vg — 1) + vg(vg —U3)
p3 = v3(v1 —v3) +v3(ve —v3)

Profit Versus Power Demand
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Power Losses in a DC Transmission Line

injected power current delivered power
%@%

For a DC transmission line with admittance y, input voltage vy
and output voltage vg, we have:

Line current: i =y(v1 —vg)
Injected power:  p; = yv1(v1 — vg)
Delivered power: pg = yvg(v1 — vg)
Power loss: p1— p2 = y(v1 —v2)

If the voltages are bounded from above by v, there is an upper
bound on how much power the transmission line can deliver:

2

P2 = yu2(v1 — va) < yva(0 —vg) < y0%/4

At the capacity limit, the power loss equals the delivered power.

Optimal Allocation for Example C

Both transmission lines serving the load need to be used at full
capacity to meet the demand ps = 2. Hence v; = vy = and
there is no current between node 1 and node 2!

There is no room for profit: 10p3 — p;1 —9pe =0

Notice that half of the generated power is lost in transmission!

Analogies to Electric Power Flow

Water distribution systems: Electrical voltage corresponds to
water pressure. Differences in pressure creates flow.

Gas diffusion: Electrical voltage corresponds to partial
pressure. Gradients in partial pressure creates diffusion.

Exchange economy: Voltages correspond to inverse prices.
Price differences drive commodity flows. Delivered electric
power corresponds to delivered commodity volume.

Two kinds of flow of simultaneous interest.
In power transmission networks, electric current is conserved,
but electric power is dissipated due to transmission losses.

In economic systems the commodity value is conserved, but the
commodity volume is dissipated due to transportation losses.
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A General Power Transmission Network
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An Optimal Flow Problem for AC Power

I L
1 @ 4
I,eC
VieC
I3 12
Minimize Re ), I;V,
subjectto I =YV and P, < Re (I;V;) < Py
Q, <Im (I;V}) < @
v, < |Vi| <Up fork=1,...,4
(Convex relaxation by Lavaei/Low inspired this talk.)
Optimizing DC Power Flow
i1 iq
01 =—
ireR
v, €R
is_, G)= ~02)= ig
Minimize > iR
subjecttoi = Yvand izvr <
(i —vj)? < iy
v, <vp <V for all &, j

Notice: p; negative at loads, positive at generators.

Positive Quadratic Programming

Given Ay, ...,Ax € R™" with nonnegative off-diagonal entries
and by,...,bx € R, the following equality holds:

max xT Agx = max trace(AoX)
subjectto x € R} subjectto X >0

xTAkx > by trace(ArX) > by,
k=1,....K k=1,....K
Proof
|1 [? #
IfX = maximizes the right hand side,
2
* || x1
thenx = | : | maximizes the left.
Xn
Note: The problem is convex in [v1|?,.. ., [vg|?!

Future DC Power Transmission Network in Europe?

Voltage [pu] gaE

From Cigré Conference 2010, "Continental Overlay HVDC-Grid" by ABB

Positive Quadratic Programming

Given Ay, ...,Ag € R"*" with nonnegative off-diagonal entries
and b3,...,bg € R, the following equality holds:

max xT Agx = max
subjectto x € R}

trace(AoX)
subjectto X >0

xTApx > by, trace(ArX) > by,
k=1,...,.K k=1,....K
Proof
EAR %
IfX = maximizes the right hand side,
2
* EM x1
then x = | : | maximizes the left.
Xn

[Goemans/Williamson (1994), Zhang (1999), Kim/Kojima (2003)]

Optimizing DC Power Flow

i1

iy
04) =—

ir€R
vy €R
iBM ig
Minimize Sk ikVE
subjecttoi = Yvand i v, <
(e —v))* <cij
v, v <7 for all &, j

Notice: All mixed terms have the right sign!

Dual Positive Quadratic Programming

Given Ay, ...,Ax € R™" with nonnegative off-diagonal entries
and by,...,bx € R, the following equality holds:
max xT Agx = min -3, Arby,
subjectto A4,...,Ax >0
0> Ao+, ArAr

subjectto x € R}
xTAkx > bk
k=1,....,K

Interpretation:
In the power flow example, 1 is the price of power at node k.
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Primal Decomposition

4—»#

O R TS

The convex problem
miny, [Vi(x1, %2, %4) + Vo (%1, %2, %3, %4) + Va(x2,%3) + Va(x1, %2, %4)]
can be solved by the following distributed iteration:

xf =arg minxl[Vl(xl,xg,x4) =+ Vz(xl,xg,xg,x4) + V4(9C1,.X'2,9C4)]

x; =arg mian[Vl(xl,xg,m) + Va(x1, %2, x3,x4) + Va(xg2,23) + Va(x1,x2,%4)]
x3 = arg min, [Va(x1, x2,%3,%4) + V3 (x2,%3)]

xf = arg min, [Vy(x1, %2, %4) + Va(x1, %2, x3,%4) + Va(x1, 22, %4)]

The Distributed Control Law

The dynamics

U}: = arg minvksvkz [lkykjvk(vk—vj) — ljykjvj(vk—vj) ]
J

value into link j2  value out from link j%
has the form
vt = min{v, Av}

where A has nonnegative coefficients.

Yes, it can!
_ 0 =9
p1= 2 — <—p2
1 1 Profit= 0
=4 1 1 pp=1
b1 — O—
O~
1 / Profit= 7
¢ p3 =2

Finding Optimum by Distributed Control

i1 171
-

i3, G3)= »02)= ig
Given power prices 4; at each node, find the optimal allocation:
Minimize Zj,k Aryrjvr (v — vj) subject to vy, < Ty,
Primal decomposition gives convergence to optimum:

U; = arg minvkgk Z [lkykjvk(vk — Uj) —

J

Ajyriv; (Ve — vj) ]
value out from link j&

value into link j&

Can it pay off to disconnect a line?

iy
/@ -—
ig

-
isl@. »02)=

i1

Given power prices 4; at each node, find the optimal allocation:

Minimize 3°; , Aryr;vr(ve —v;) Subject to vy, < O, yk; € [0, 5]

Summary

v
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To read:

Slides on www.control.lth.se/Staff/anders_rantzer.html
Extended abstract in Proceedings of CCC 2011
Upcoming paper in CDC 2011
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