
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Analysis of User Demand Patterns and Locality for Youtube traffic

Arvidsson, Åke; Du, Manxing; Aurelius, Andreas; Kihl, Maria

Published in:
[Host publication title missing]

2013

Link to publication

Citation for published version (APA):
Arvidsson, Å., Du, M., Aurelius, A., & Kihl, M. (2013). Analysis of User Demand Patterns and Locality for
Youtube traffic. In [Host publication title missing] IEEE - Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8dead651-d0ad-4e75-83db-ecb18ab1a3be


Analysis of User Demand Patterns and Locality for

YouTube Traffic
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Abstract—Video content, of which YouTube is a major part,
constitutes a large share of residential Internet traffic. In this
paper, we analyse the user demand patterns for YouTube in two
metropolitan access networks with more than 1 million requests
over three consecutive weeks in the first network and more
than 600,000 requests over four consecutive weeks in the second
network.

In particular we examine the existence of “local interest
communities”, i.e. the extent to which users living closer to each
other tend to request the same content to a higher degree, and
it is found that this applies to (i) the two networks themselves;
(ii) regions within these networks (iii) households with regions
and (iv) terminals within households. We also find that different
types of access devices (PCs and handhelds) tend to form similar
interest communities.

It is also found that repeats are (i) “self-generating” in the
sense that the more times a clip has been played, the higher the
probability of playing it again, (ii) “long-lasting” in the sense
that repeats can occur even after several days and (iii) “semi-
regular” in the sense that replays have a noticeable tendency to
occur with relatively constant intervals.

The implications of these findings are that the benefits from
large groups of users in terms of caching gain may be exagger-
ated, since users are different depending on where they live and

what equipment they use, and that high gains can be achieved
in relatively small groups or even for individual users thanks to
their relatively predictable behaviour.

I. INTRODUCTION

The volume of data traffic in cellular networks has been

increasing exponentially for the past few years and this trend

is predicted to continue over the coming few years, cf. the

Ericsson strategic forecast [1] which for the period 2007–

2017 gives CAGR of 50% and 65% for mobile PCs and smart

phones respectively such that the traffic per month will exceed

one EB (1018 B) in 2013 and 2015 respectively. Moreover,

a large part of the traffic relates to video and this fraction is

growing, cf., e.g., the Cisco global visual network index 2011–

2016 [2] which reports that mobile video traffic exceeded 50%

for the first time in 2011 and predicts that mobile video will

increase 25-fold between 2011 and 2016 and account for over

70% of the total mobile data traffic by 2016.

These figures suggest that the largest potential gains from

optimised networks relate to video content such as YouTube.

Optimisation in this context typically means reducing and

moving demand in space and time by on-demand and/or

predictive caching in networks and clients. Various forms of

caching are being widely studied and deployed to reduce

transit traffic and enhance service performance. Web caching

was widely used when the world-wide web emerged, but it

gradually lost its glory when more advanced HTTP features

were exploited [3]. However, more recent works on cachability

in the P2P/BitTorrent network community [4], [5] and for user

generated content (UGC)/YouTube, [6], [7] suggest that it is

time to return to caching. Furthermore, caching has proved to

be a vital technique to cope with the bandwidth constraints of

the backhaul links to/from the base stations of mobile networks

[8], [9], [10], [11].

The gains from caching are highly dependent on user

demand patterns. In [12], YouTube user behaviour for PC and

mobile users was investigated. In [13] a three month trace

of YouTube traffic was collected in a campus network and

found a large potential for caching. The work in [14] used

the video meta data provided by YouTube to study the global

video popularity distribution over a number of years. They

also studied how to make the UGC distribution system more

efficient by using caching and P2P techniques. In [15], the

authors pointed out a small world phenomena and suggested

that once a user plays a video clip, the cache should pre-fetch

the directly related video clips as they are very likely to be

watched (in the near term).

From these papers, we note that some aspects (like network

wide caches) have been dealt with in several studies whereas

other aspects (such as regional or local caches) are less well

known. Therefore, the aim of this study is to investigate the

latter aspects when applied to YouTube traffic. The work in

this paper is based on detailed traffic measurements in two

metropolitan access networks in Sweden. We investigate user

characteristics and locality aspects. Further, we analyse the

potential gains of caches covering smaller geographic areas.

We show that people living in the same town download more

similar content than people living in different towns and that

the same phenomenon applies to different districts within

towns. Further, we show that high gains can be achieved with

terminal caches, since users tend to download the same video

clip several times.

II. MEASUREMENTS AND DATA

The study is based on measurements made by network

operators, that are partners of Acreo Swedish ICT AB as a



Fig. 1. Network architecture.

part of the IPNQSIS Celtic project. The data originates from

two Swedish metropolitan access networks, and the networks

and measurements are described below. For privacy reasons,

the networks are referred to simply as the north network and

the south network respectively in this paper.

A. Networks and Measurements

The data was collected from roughly 5000 households in the

north network and 2000 households in the south network. The

customers in each network are local residents who can freely

choose between different ISPs for access to the Internet. The

access speeds range from 1 megabit per second (Mbps) to 100

Mbps depending on the subscription the customer chose. As

shown in Fig. 1, the placement of traffic measurement probe

in both of the networks is at the edge of the ISP’s connection

to the Internet.

The measurements were performed with the commercial

PacketLogic probe from Procera Networks which performs

deep packet and deep flow inspection. The measurements were

made in two steps, first, packets passing certain filter rules in

the probe were stored in a pcap file and, second, the content

of the pcap files was processed to produce request logs. All

MAC and IP addresses were anonymised before processing

and no data can be traced back to specific users.

B. Data

The data collection was performed during three consecutive

weeks, from 00:00 on Monday, January 30, 2012, to 24:00 on

Sunday, February 19, 2012, in the north network and during

four consecutive weeks, from 00:00 on Monday, January 30,

2012, to 24:00 on Sunday, February 26, 2012, in the south

network.

Requests for YouTube clips were identified by “GET video-

playback” messages used to request media files, as in [12]

which contain unique content identifiers with 16 hexadecimal

digits. Some clips were delivered as one large media file

(trigged by one request) whereas other clips were delivered

as several small media files (trigged by different requests, one

for each segment). Users may also alternate the resolution

during playback, and each such change will generate a new

request with the same identifier. To remove duplicates due to

segmentation etc., we prevented further counts of content with

the same methods as in [12]. Note that such requests are sent

also for all previously watched clips except immediate replays

TABLE I
REQUEST STATISTICS PER NETWORK.

Network Content Overall Access point Terminal client

North
Total 1,159,676 203 48.2
Unique 536,616 94 22.3

South
Total 615,166 294 63.0
Unique 336,257 161 34.4

through the replay button. We remark that the requests for

YouTube clips also may be identified “GET watch” messages

which are used to download the pages from which the clips are

viewed. The different but unique identifiers in these messages

enable access to meta data such as content classification, but

a severe problem is that YouTube clips may be played in

many ways and not all of them include this message. We also

remark that YouTube is subject of repeated redesigns hence

any attempt to analyse YouTube measurements must include

not only data collection but also detailed observations of

the current signalling procedures (by, e.g., Firebug or similar

tools).

The final result contains, for the north network, 1,159,676

requests for 536,616 different clips from 12 geographical

districts (identified by operator defined VLAN tags), 5,713

access points (identified by MAC addresses) and 24,059

terminal clients (identified by combinations MAC addresses

and web handling agents) and, for the south network, 615,166

requests for 336,257 different clips from 13 geographical

districts (identified by manually grouped curbs to which pri-

marily MAC addresses and secondarily DHCP administered IP

addresses could be mapped), 2,092 access points (identified

by IP addresses) and 9,762 terminal clients (identified by

combinations of IP addresses and web handling agents). From

the web handling agents we could also differentiate between

26 different browsers (Internet Explorer, Firefox, Chrome,

iPhone, iPad, iPod, Android, etc.) and deduce 4 different types

of hardware (PC, mobile, TV/Playstation and others).

It is noted that the notion of “user” is missing above and

the reason is that it is not perfectly clear how to define and

detect a user. In this work we will therefore use two different

definitions, viz. a “terminal client” (distinct combination of

MAC or IP address and handling agent) and an “access point”

(distinct MAC or IP address).

In the following sections, we will show the results of our

analyses. In some sections, only the results for the north

network will be shown due the limited space. In these cases,

very similar results were obtained for the south network.

III. USER DEMAND CHARACTERISTICS

Distributing the requests over the users, we get the numbers

in Table I which suggest that the average terminal client (that

requests at least one clip during the measurement period)

consumes about two clips per day, one of which is unique.

The numbers in the table do, however, hide a large spread as

can be seen in Fig. 2 which is computed by sorting all users

in order of their demand and then plotting the accumulated

fraction of the demand vs. the fraction of users.
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Fig. 3. Average diurnal traffic patterns in the north network.

As can be seen in the figure, 80% of the requests originate

from a mere 25% of the access points (20% of the terminal

clients), i.e. we have a typical heavy tail scenario with a

few large consumers and many small consumers. We remark

that this spread essentially is the same as the spread between

different content items although the latter typically is depicted

by plotting demand vs. rank in log-log diagrams to obtain

Zipf-like charts.

Fig. 3 shows the total number of requests, number of unique

videos and number of active users during each hour of a day in

the north network averaged over the entire data set. It is seen

that the requests steadily increase between 6:00 and 17:00 with

a peak between 17:00 and 22:00 after which the number of

requests drops rapidly.

IV. REGIONAL REQUEST CHARACTERISTICS

It is well known that the hit rate of a proxy cache will drop

with the number of requests (or, similarly, number of users)

the cache is serving. On the other hand, it is also known that

there are similarities between requests that originate from users

who live close to each other (e.g., in the same country [16])

and/or with common interests (e.g., at a university campus [7]),

which means that the efficiency of local caches is a matter not

only of how many requests (users) they serve but also of how

common or diverse the preferences of these users are.

In this section we examine the extent to which such common

interests also occur as a result of geographical proximity. To

this end we compare the interests in the two networks and the

interests in the different districts of each network.

TABLE II
HIT RATES FOR SEPARATED AND MIXED REQUESTS.

Client Nominal case Scaled case
network Hit rate Scaling factor Hit rate

South 0.4370 0.75 0.4056
North 0.4371 0.75 0.4054
Mixed 0.4088 1.50 0.4351

A. Network Request Characteristics

To compare networks we examine the degree of network

specific interests by estimating the performance of caches

which under comparable circumstances serve users from (i)

the north network, (ii) the south and (iii) both networks.

Performance is characterised by the probability that an arbi-

trary clip requested for the first time by an arbitrary terminal

client has been requested at least once before by some other

terminal client. To make the three cases comparable, we adjust

the number of terminal clients in the larger samples (the

north network and mixed), first, to the level of the smallest

sample (the south network) and, second, scale these values to

compensate for different degrees of activity. In formal terms

we use two data sets

• N , the set of terminal clients in the north network with

cardinality N = |N | requesting in total CN unique clips,

and

• S, the set of terminal clients in the south network with

cardinality S = |S| requesting in total CS unique clips,

and define request rates ηN = CN/N and ηS = CS/S per

terminal client, after which we form three sets

• S0, the entire set S,
• Nr, a randomly selected subset of N with cardinality

(ηS/ηN)S,
• Xr, the union of two randomly selected subsets, the first

one from S with cardinality S/2 and the second one from
N with cardinality (ηS/ηN) S/2.

Finally we calculate the user hit rate h′
U
(Φ) for the different

sets Φ,

h′
U(Φ) = 1−

U(Φ)∑

∀u:u∈Φ

U(u,Φ)

where U(Φ) is the number of unique requests in the set Φ
U(u,Φ) is the number of unique requests by user u in the set

Φ.
We remark that in this case we use a reduced data set for

the south network, where the fourth week has been eliminated,

such that the data sets for the two networks overlap completely

in time.

The results after 1,000 realisations of the random sets, Table

II, show that the comparison appears to be fair (about the

same results are obtained for both networks in isolation, cf.

the two first rows) and that result of the “mixed network” is

not only different but also worse (a lower result is obtained in

the comparable, nominal case).

To the last point, note that in the nominal case (with hit rates

of 44% for the two separate sets and 41% for the mixed set)



shows that users in the two networks have more in common

with users in their own network than with users in the other

network. In the scaled case (with hit rates of 41% for the two

separate sets and 44% for the mixed set) refers to similar sets

except that the cardinalities have been scaled by a factor ϕ. We

thus note that scaling the homogeneous sets by a factor ϕ =
0.75 gives hit rates which correspond to the nominal mixed

case, and that scaling the mixed set by a factor ϕ = 1.50 gives
a hit rate which corresponds to the nominal homogeneous case.

Noting that the nominal cases correspond to ϕ = 1.00 we may
say that, in terms the ability to contribute to the hit rate of a

cache, a user in the same network brings about 2–3 times as

much value as a user in the other network.

(To see these factors, consider the case of one network in

isolation with ϕ = 0.50 to which we can add either (a) a new
set of users from the same network with ϕ = 0.25 or (b) a new
set of users from the other network with ϕ = 0.50. Then note
that (a) corresponds to the scaled, homogeneous case, that

(b) corresponds to the nominal, mixed case, that two cases

perform about the same, and, finally, that the cardinalities of

the two added sets differ by a factor of two. Similarly, consider

the scaled, nominal cases with ϕ = 0.75 to which we can add
either (a) a new set of users from the same network with

ϕ = 0.25 or (b) a new set of users from the other network

with ϕ = 0.75. Then note that (a) corresponds to the nominal,
homogeneous case, that (b) corresponds to the scaled mixed

case, that the two cases perform about the same and, finally,

that the cardinalities of the two added sets differ by a factor

of three.)

B. District Request Characteristics

To compare districts within networks we extract district

information for each YouTube request (as outlined in Section

II), and compare the request hit rates of unlimited caches

serving particular districts to those of unlimited caches serving

the same number of users but randomly selected from all

districts. The request hit rate hR(d) in district d is defined

as

hR(d) = 1−
U(d)

T (d)

where U(d) and T (d) are the number of unique requests and
total requests respectively in district d.
The results for the north network are shown in Fig. 4, and

it is seen that the differences between groups of users based

on district (solid line) and groups of randomly selected users

(dotted line) are small and, in particular, that there is no clear

indication of higher hit rates when terminal clients belong to

the same district.

To obtain a stronger focus on users (as opposed to requests)

we repeat the above analysis but count hit rate in terms of users

rather than requests. That is, request cache hits can be caused

by (i) many users requesting the same clip once, (ii) one user

requesting the same clip many times or (iii) (more likely) a

combination of both of these where a few users request the

same clip a few times. User cache hits, on the other hand, can
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Fig. 4. Request hit rates vs. terminal clients (left) and access points (right)
in the north network grouped by district and at random respectively.
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Fig. 5. User hit rates vs. terminal clients (left) and access points (right) in
the north network grouped by district and at random respectively.

only be caused by many users requesting the clip (at least)

once hence this provides a cleaner assessment of possible

common interests between users. The user hit rate hU(d) in
district d is thus defined as

hU(d) = 1−
U(d)∑

∀u:u∈d

U(u, d)

where U(u, d) is the number of unique requests by user u in

district d.
The results for the north network are shown in Fig. 5,

and again it is seen that the differences between users in a

district (solid line) and random users (dotted line) are small.

To see this, note that the curves for district and random tend to

overlap both with respect to access points and terminal clients.

Also note that the (subtle) difference between the two cases

is explained by the fact that terminal clients sharing the same

access point have common interests. The difference between

the two diagrams is basically that households are split in the

left diagram while they are kept intact in the right diagram.

The corresponding results for the south network are shown

in Fig. 6, and at a first glance the two sets of results look

pretty similar. An important difference, however, is that the

differences between users in a district (solid line) and random

users (dotted line) in this case are noticeable. To see this, note

that the district curves consistently are above the random ones.

This means that terminal clients in the same neighbourhood

have common interests. We believe that the reason for why

such commonalities are present in the south network, but not

in the north network, is that “regions” are defined differently.



Hundreds of access points
0 1 2 3 4 5 6

C
ac
h
e
h
it
ra
te

0
.1

.2
.3

.4
.5 District

Random

Thousands of terminal clients

0 1 2 3

C
ac
h
e
h
it
ra
te

0
.1

.2
.3

.4
.5 District

Random

Fig. 6. User hit rates vs. access points (left) and terminal clients (right) in
the south network grouped by district and at random respectively.

Popularity rank
1 10 100 1000

S
h
ar
e
o
f
tr
af
fi
c

1
0
−

5
1
0
−

4
1
0
−

3
1
0
−

2

Total all users

User ≥ 100 clips

Popularity rank
1 10 100 1000

S
h
ar
e
o
f
tr
af
fi
c

1
0
−

5
1
0
−

4
1
0
−

3
1
0
−

2

Total all users

User ≥ 100 clips

Fig. 7. Traffic share vs. popularity rank for the entire group (black
solid line) and for individual users with at least 100 distinct requests
(dashed line) in the north network. The diagrams refer to access points
(left) and terminal clients (right) in the north network.

In the south network, regions are smaller and attempt to cap-

ture (manually assessed) areas with common socio-economic

factors while, in the north network, regions are larger and

(supposedly) reflect network administrative concerns.

Finally it is noted that a significant part of the cache gain

is due to repeated requests from the same (set of) user(s). To

see this, note the difference between the hit rates in Fig. 4

and Fig. 5 (“intra user gain”) and between the right and left

diagrams in Fig. 5 and Fig. 6 (“intra household gain”).

V. USER REQUEST CHARACTERISTICS

It is well known that the popularity of different objects can

be described by Zipf-like distributions. What may be less well

known is that this does not only apply to groups of users, but

also to individual users as can be seen in Fig. 7.

The figure shows that the curves for individual users are

similar to those of the entire group although we note a flatter

slope for individual users than for the entire group.

The hit rates of unlimited user caches, which depend only

on the users themselves, are given in terms of averages in

Table III. The different hit rates for terminal clients and access

points respectively again shows that terminal clients that share

the same access point (e.g., persons in a household) tend to

have common interests.

A more detailed analysis shows that replay traffic is closely

correlated to total traffic both in time and space. This is

demonstrated in Table IV which shows the coefficient of

correlation between total requests and number of replays per

TABLE III
COMMON INTERESTS BETWEEN USERS.

User North South

Access point 24.4% 26.5%
Terminal client 21.6% 22.9%

TABLE IV
CORRELATION BETWEEN CACHE GAIN AND YOUTUBE DEMAND.

Per time Per user
User North South North South

Access point 0.987 0.950 0.987 0.945
Terminal client 0.985 0.942 0.965 0.954

time (measured in five minute periods) and user. The fact that

the coefficients are close to unit indicates that times and users

associated with many requests in total also are associated with

many replays and vice versa. Therefore, there may be high

gains of using local caching, for example in cellular networks.

To get an idea of the size of a user cache we now examine

the characteristics of replays in more detail. To begin we

examine how long time clips stay popular, i.e. the times after

which requests are repeated.

The results are shown in Fig. 8 which depicts the number

of observed replays by a terminal client vs. time passed since

the first observed request from that terminal client.

It is noted that a lot of replays occur soon after the first

request (the steep initial slope) and that during the first 24

hours after the initial requests we have small dips after 6

and 18 hours and small peaks after 12 and 24 hours. Over

the following days we note a gradually decreasing number of

replays, cf. Table V, but with remarkably pronounced peaks

every 24 hour after the initial request.

It is, however, important to note that the results are biased in

two ways because of the finite observation interval. First, the

interval ends at some time t = T which means that repeats

that occur after, say, one minute can be observed during the

entire interval but the first minute, whereas repeats that occur

after almost a measurement period only can be observed for

a very short time. Second, the interval begins at some time

t = 0 which means that some of the requests seen as the first

ones are, in fact, different order replays of initial requests that

occurred before the observation interval started.

The first effect can be modelled by an “underestimation

factor” which, for replays after a time t, amounts to (T −
t)/T . To see this, note that the numerator is the length of

the interval during which the (supposedly) first request must

occur while the denominator is the length of the entire interval.

The underestimation factor is shown as a dotted line in the

diagram, and it is noted that its shape is quite similar to the

dropping trend of the observed replays, hence we conclude

that the actual drop in popularity may be quite slow.

The second effect is illustrated in Fig. 9 which shows the

number of unique (left) and total (right) requests over time

for content separated by the day it was first seen (1, 2, 5 and

10 respectively). It is seen that that content seen “early” stays

more popular than content seen “later”. Noting that there is
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TABLE V
PERCENTILES OF TIMES UNTIL REPLAYS.

Fraction 90% 95% 99% 99.5% 99.9%

Time 2h 12h 3d 6d 15d

no reason to assume that the first day of our measurements is

different from the other days, we conclude that there exists a

“set” of clips with “long term popularity”. Further, we observe

many of the most popular clips during the first day, which stay

popular for at least the ten days shown in the plots and we

observe fewer such clips and/or relatively more less popular

clips in this set during the subsequent days. We remark that

the members of this set obviously changes over time, but we

note that this is hard to see in our measurements.

These conclusions are supported by the results in Fig. 10

where the left diagram depicts the probability that a terminal

client will replay a clip as a function of the number of times

it has been replayed by that terminal client.

It is noted that the probability that a clip will be replayed

one more time tends to grow with the number of times it

has been played, until it reaches a saturation value of about

90%. To see this, first note that the probability that a clip

viewed for the first time will be replayed is about 15% while

the probability that a clip viewed for the second time will be

replayed is about 35% etc., and then note that the probability

that a clip viewed more than ten times will be replayed is

about 85%. It is interesting to note that the “converged” replay

process thus appears to be memoryless, i.e. the probability

of further replays becomes independent of the accumulated

number of replays.

Next we turn to the pronounced, cyclic replay patterns with

peaks every 24 hours. The middle diagram in Fig. 10 depicts

for various delays the number of times this delay has been

observed between the first time a client requests a clip and the

time of the first, second and third time the same client repeats

that request. (We remark that, as before, the seemingly fewer

observations of replays after longer times can be the effect

of that they indeed are fewer, of limited observability due to

finite time windows, or both.)

The difference between the left and the middle diagrams in

Fig. 10 is thus that in the former we see the general replays
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Fig. 9. The number of unique (left) and total (right) requests for clips vs.
days since they were first requested separated by the day on which the first
request was observed in the north network.

TABLE VI
TIME LAG PERCENTILES BETWEEN INDIVIDUAL AND COMMON DEMAND

FOR THE NORTH NETWORK.

Time lag All users Heavy users

0:00 99.8% 88.5%
0:15 99.9% 98.8%
1:00 99.9% 99.8%

whereas in the latter we see specific replays, viz. the first,

second and third ones. It is immediately seen that the time

until repeats exhibit the same pattern as before, with peaks

every 24 hours, hence not only replays in general but also

each specific replay appears to occur in a relatively regular

(and thus potentially predictable) way.

This regularity may be a direct effect of regular requests or

an indirect effect of daily traffic variations and regular peak

periods. To examine this, we consider the right diagram in

Fig. 10 which depicts the total number of requests as a function

of time.

Comparing the shapes of the curves in the middle and right

diagrams of Fig. 10, it is seen that the former have much

sharper peaks than the latter which suggests that at least some

of the regularity must be explained by other phenomena than

regular peak periods. This observation is further supported by

the close match between the aggregated traffic variations and

those of individual terminal clients, cf. Table VI which gives

the fractions of terminal clients for which certain lags are

observed between the aggregated traffic variations and those

of the individual terminal clients.

The lags in Table VI are computed by, first, juxtaposing the

aggregated 24 hour traffic patterns with those of individual

terminal clients and, second, sliding the later in time such that

the sum of the absolute differences between the number of

observations per five minute period in the two traffic patterns is

minimised. It is seen that in most cases the two traffic patterns

agree, and that only about 0.1% of all terminal clients (1.0%

of heavy terminal clients) exhibit traffic patterns that deviate

15 minutes or more from the aggregate traffic pattern.

VI. TERMINAL CHARACTERISTICS

We now turn to the different kinds of equipment which, as

mentioned above, are grouped into four types: PCs, mobiles,
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Fig. 10. Left: The probability that a clip will be replayed by a terminal client as a function the number of times it has been played by that terminal client.
Middle: The number of replays of clips vs. time. Right: The number of clips requested vs. time.

TABLE VII
PREVALENCE OF DIFFERENT CLASSES OF EQUIPMENT.

Network PC Mobile TV/Playstation Other

North
18818 4728 229 284
78.2% 19.6% 0.95% 1.18%

South
6973 1141 138 1510

71.4% 11.7% 1.41% 15.5%

TABLE VIII
USAGE OF MOBILE EQUIPMENT IN YOUTUBE DEMAND.

Network Mobile No mobile Mobile only

North 46.3% 53.7% 3.4%
South 29.4% 70.6% 2.7%

TVs/Playstations and others. (Note that, since the measure-

ments refer to fixed networks, the mobiles we see are are those

connected via WiFi.) The prevalence of the different classes

is shown in Table VII.

In terms of observed clients, it is seen that the results

are about the same for PCs and TVs/Playstations. The most

significant type is PCs, with about 75% of the terminal clients,

and the least significant type is TV/Playstation, with about 1%

of the terminal clients. It is also seen that the results are quite

different for mobiles and other. As for mobile terminals, these

amount to about 20% in the north network and about 10%

in the south network. Finally the remainder amounts to about

1% in the north network and about 15% in the south network.

Judging by the numbers in the north network, we believe that

at least some of the unknowns in the south network should be

classified as mobiles.

A further analysis shows, Table VIII, that mobile terminals

seldom are the only means to access YouTube (we note this

for about 3% of all access points) while mobiles are relatively

common as a complement (we note this for 29–46% of the

population).

The amount of content consumed differs between the types

as shown in Table IX. It is seen that PCs and mobiles consume

more content than other types of devices and we remark

that TVs/Playstations are surprisingly unpopular means of

accessing to YouTube; not only are they few but the ones

TABLE IX
DAILY YOUTUBE DEMAND FOR DIFFERENT TYPES OF EQUIPMENT.

Hardware North South
class Total Unique Total Unique

PC 2.460 1.962 3.670 2.874
Mobile 1.744 1.252 2.742 1.781
TV/Playstation 1.256 0.936 0.380 0.320
Other 1.428 0.878 0.344 0.201

TABLE X
CACHE HIT RATES PER TYPE OF EQUIPMENT.

Cache North South
arrangement PC Mobile PC Mobile

Network cache only 0.517 0.448 0.434 0.415

Cache at access point 0.232 0.289 0.253 0.359
Network with above 0.372 0.224 0.242 0.086

Cache at terminal client 0.202 0.282 0.217 0.351
Network with above 0.395 0.231 0.278 0.099

that do exist are not used very much. Another interesting

observation is that the relationship between unique clips per

terminal client and the total clips per terminal client differ;

there are relatively more unique clips on PCs than on mobiles.

The last observation suggests that caches in terminal clients

would be even more useful in mobiles than in PCs. To examine

this, we separate the traffic into four classes, one class per

hardware type, and examine the cache hit rates within each

such class. The results are given in Table X.

It is seen that the total degree of “content recycling” is

slightly higher for PCs than for mobiles and that this applies

to both networks. We explain this by the simple facts that (a)

there are many more PCs than mobiles and (b) PCs consume

more content than mobiles. A more interesting observation

is, however, that the potential for recycling in the terminal

devices indeed is higher for mobiles than for PCs, and that

this is more pronounced in the south network than in the north

network. Our analysis shows that users to a higher degree

explore unknown content on PCs and repeat known content

on mobiles. Also, further analyses show that this does not

imply strong “content migration” since about 96–97% of the

items played at all on mobiles were also were played first on
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Fig. 11. Traffic reduction for different sizes of limited caches with LRU
eviction at terminal clients (upper left), access points (upper right), region head
ends (lower left) and network head ends (lower right). Cache sizes are given
in percent of unique video clips requested per day and unit (i.e. per terminal
client, access point, region head end or network head end respectively). Dotted
lines indicate reductions obtained from ideal caches.

such devices.

VII. CACHE CHARACTERISTICS

This paper deals with different aspects of YouTube traffic.

The intention is to reveal any patterns that may be exploited to

satisfy user demand in smarter ways. One of the most obvious

aspects we have found is the possibility to exploit the fact that

many requests are “double repeats” (not only for the same

video clip but also from the same terminal agent), and we

have found that serving these requests from local caches in

the terminal clients can cut YouTube traffic by about 20%

over a few weeks (by about 30% for mobile devices). These

and other numbers are based on “ideal caches” which store all

video clips and on “limited intervals” the beginning and end

of which truncate the observations and lead to biased results.

In this section we will deal with these aspects.

To examine the impact of cache limitations, we replace the

ideal caches by (simplified) realistic ones which (i) can store

a limited number of clips, (ii) store all new clips and (iii)

when required eject the least recently used clip. To obtain

comparable results, we express cache sizes in percent of the

unique video clips requested per day and unit at which the

cache resides (i.e. per terminal client, access point, region or

network respectively). These can be rescaled to actual clips

through Table I.

Fig. 11 shows the total traffic reduction that would have

been obtained by deploying these simple caches during the

measurement periods at terminal clients (upper left), access

points (upper right), region head ends (lower left) and network
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Fig. 12. Traffic reduction for different sizes of limited caches with LRU
eviction at region head ends (top) and network head ends (bottom) when
combined with (ideal) caches at terminal clients (left) and access points (right).
Cache sizes are given in percent of unique video clips requested per day and
unit (i.e. per region head end or network head end respectively). Dotted lines
indicate reductions obtained from ideal caches.

head ends (lower right) for the two networks studied. It is seen

that cache sizes corresponding to the number of unique videos

consumed during ten days yield almost the same reduction as

ideal caches.

Fig. 12 shows the marginal traffic reduction that would

have been obtained by deploying “cascaded caching” if (ideal)

caches at terminal clients (left) and access points (right) were

supplemented with (limited) caches at region head ends (top)

and network head ends (bottom). Again it is seen that cache

sizes corresponding to the number of unique videos consumed

during ten days yield almost the same reduction as ideal

caches.

Next, to examine the impact of the finite interval, we

examine the traffic reduction as a function of time (for an

ideal cache).

Fig. 13 shows the total traffic reduction that would have

been obtained by deploying ideal caches during the measure-

ment periods at terminal clients (upper left), access points

(upper right), region head ends (lower left) and network head

ends (lower right) for the two networks studied. As expected,

traffic reduction increases over time while the rate at which

this happens tends to decrease over time. It is also noted that

the finite intervals are noticeable in that there are no signs of

final convergence in any of the diagrams.

VIII. CONCLUSIONS

In this paper, we have performed detailed statistical analyses

of YouTube user demand patterns and locality properties based

on data from two municipal networks in Sweden.
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Fig. 13. Traffic reduction vs. time by deploying ideal caches at terminal
clients (upper left), access points (upper right), region head ends (lower left)
and network head ends (lower right).

The paper has demonstrated that a large share (about 80%)

of requests for video clips are made for a small number of

distinct video clips (about 20%). This phenomenon suggests

there is a potential for gains by using caching.

In the continued analysis, we found that caching can be

efficient even if the demand is relatively low not only because

of (i) similar requests from users living in the same part of the

country and (ii) similar requests from users living in the same

district but also because of (iii) similar requests from terminal

clients sharing the same access point and (iv) similar requests

from individual users.

We also found that (i) the probability of further replays

grows with the number of previous replays and that (ii) replays

exhibit a remarkably regular pattern in time and (iii) can occur

after long times.

It was further noted that user caches can provide significant

gains and that, such caches can be expected to provide the

most hits when they are most useful (during peak times) and

where they are most useful (where the heavy users are).

Finally, PC users and mobile device users showed different

content demand patterns and it was seen that user caches may

be particularly attractive in mobile devices, since users on

mobile devices have a high probability of replays.

Through the IPNQSIS project we will get access to similar

measurements made at the same time not only in the two

networks above but also in one network in Finland. It would

be interesting to expand the locality concept above, which

now ranges from terminal client to network head end, to also

include different countries. Another interesting way forward is

to evaluate the locality measures in [16] and the social aspects

in [17] and to compare against their results.
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