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Abstract

This paper present the work on implementing microinstruction fold-
ing on the BlueJEP. The BlueJep is a Java Embedded Processor written
entirely in Bluespec SystemVerilog. The folding model is introduced and
how it is implemented. The implementation was tested on a Xilinx fpga
and measurements were taken through simulation.

1 Introduction

In this paper we give a overview on implementing microinstruction folding on
the BlueJep, a Java embedded processor [GW07]. Where bytecode folding has
already been included in the original Picojava [MO98], we can fold instructions
in the BlueJep on an other level, namely the microinstruction level. Using
bytecode folding on BlueJep it would only be possible to fold on simple bytecodes
which consist of only one microinstruction. Where microinstruction folding
would also reduce the number of instructions of more complex bytecodes which
take more than one microinstruction to execute.

This paper starts with a small introduction on the BlueJep processor in
section 2. Then followed by a more elaborate explanation of folding in section 3.
We continue in section 4 by examining the theoretical gain of different folding
depths. Section 5 will be dedicated to the actual hardware implementation.
How we synthesized our design van be found in section 6. The results of the
implementation will be shown in section 7, and these are discussed in section 8.
At last we draw some conclusion in section 9.

2 BlueJep Architecture

In this section we briefly introduce the BlueJep processor. The processor was
inspired on the Java Optimized Processor or JOP in short. The processor
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is written in a relatively new hardware description language called BlueSpec
System Verilog, which is as the name suggest an extension to Verilog. In stead
of Register-Transfer-Level descriptions the language is based around rules which
describe functionality. Using this language in stead of VHDL or Verilog allowed
us to explore more architecural designs [GW07].

2.1 BlueJep Pipeline

At the moment the BlueJep pipeline consist of six stages as can be seen in
Figure 1. A detailed description of these stages can be found in [GW07] and a
summerised description is included below.

Fetch Bytecode The Fetch Bytecode stage fetches bytecodes from the Byte-
code cache. It translates these bytecodes to microinstruction addresses.
Both the bytecodes and micro-addresses are forwarded to the next stage.

Fetch micro Instruction This stage fetches microinstructions from the micro-
program. Using the micro-program counter (PC) stored in the register file
it will fetch microinstructions from the micro-ROM and forwards them to
the next stage. Foreach bytecode there is a corresponding micro-program,
after the micro-program has been executed the following bytecode will be
dequeued from the bcfifo.

Decode and Fetch Register After a microinstruction is dequeued is has to
decoded into data moving instructions or an operation. Register values
needed for the instruction are fetched in this stage. The instruction or
operation is forwarded to the next stage.

Fetch Stack When a data moving instruction or operation does need one or
two values from the stack they will be fetched in this stage. At this
moment a data moving instruction will be forwarded to the write-back
stage, while an operation will be forwarded to the Execute stage.

Execute In this stage the actual operation will be executed and the result
forwarded to the last stage.

Write-back In the write-back stage the result of a data moving instruction or
operation will be stored in either the register file or pushed on the stack.

3 Folding

The Java virtual machine has a stacknative instruction set, hence most instruc-
tions use the stack for data manipulation and intermediate storage for data
movement. BlueJep is also a stack-based architecture, in order to execute most
bytecodes as easy as possible. One of the main disadvantages of a stackbased
architecture is that there are many extra data movements. For example, when
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Figure 1: BlueJep Architecture

Bytecode Length
monitorenter 9
return 9
iinc 10
ifeq 10
invokestatic 58
invokevirtual 81

Table 1: Bytecode and their microprogram size

adding two integers, the processor needs to push two integers on the stack,
perform the addition on these integers and pop the top of the stack back into
memory. However these four instruction can be folded into one single instruc-
tion, thus saving valuable clockcycles and memory accesses.

3.1 Bytecode folding versus microcode folding

Since the BlueJep processor runs all bytecodes on a smaller subset of stack-based
operations, we have the choice to fold on either bytecode level or microinstruc-
tion level.

A simple bytecode folding algorithm is implemented in the PicoJava proces-
sor from Sun Microsystems [MO98]. From this moment on additional models for
folding have been proposed, for example the POC-model in [TCaFK98], which
later has been refined in [TCC00].

However folding on bytecode level would have one big disadvantage on the
BlueJep processor; some of the bytecodes are so complex that they need small
microprograms to emulate them. See table 1 for a few examples of how many
microinstructions some bytecodes would take.

If the processor would only fold bytecodes, we can only fold on the basic
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bytecodes which take one microinstruction to execute, which is only a small
subset of all the bytecodes. However if we fold on the microinstruction level
we would also be able to fold some of the microinstructions of the complex
bytecodes. Therefore we have chosen to implement the folding mechanism on
microinstruction level.

3.2 POC model used for folding

In [TCaFK98] the POC model was used to fold the bytecodes. While there
are proposed enhancements to the POC model we will only use the basic POC
model to fold the microinstructions in order to reduce complexity.

The POC model defines the following instructions:

Producer Produces a piece of data and pushes this onto the stack. For exam-
ple: iconst0 which pushes the constant zero onto the stack.

Operation Pops the two top entries of the stack, performs an operations on
it and pushes the result back onto the stack. For example: iadd which
pops the two top entries of the stack and pushes the addition of these two
integers onto the stack.

Consumer Consumer consumes the top of the stack and can optionally store
the data into the memory. For example: istore_0 which pops the top
entry of the stack and stores this in local variable 0.

Special While not an original instruction of the POC model we added the
special instruction for all other instructions, for example branches and
nop.

3.3 Folding patterns

In theory it is possible to construct folding patterns that are practically unlim-
ited in length, but since we only have one ALU on the BlueJep processor we
limit ourselves to the maximal length of a folding pattern with one operation.
The maximal length of such a pattern is four, which is the following pattern:
producer, producer, operation, consumer. See table 2 for the different folding
patterns possible on the BlueJep processor.

Note that the behavior of the folded patterns themselves now looks really
similar to the behavior of instructions in a RISC architecture. For example the
ppoc pattern is similar to a normal RISC-operation which takes two operands
as input and one operand as output.

4 Theoretical gain

The amount of foldable microinstructions depends mainly on the executed java
program. While there is a small benchmark [Sch07] available for small em-
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Folding Pattern Length
ppoc 4
poc 3
ppc 3
pc 2
oc 2
po 2

Table 2: Folding Patterns on BlueJep

Patterns Gain
ppoc poc ppo po pc oc Theoretical Total

1.00 1.00
• 1.17 1.09

• 1.25 1.13
• • 1.34 1.18

• • 1.43 1.23
• • • 1.49 1.26

• • • 1.54 1.29
• • • • 1.61 1.33
• • • • • 1.61 1.33
• • • • • 1.64 1.34
• • • • • • 1.64 1.34

Table 3: Folding Estimation

beddded java processors, we choose a small program which invokes a software
garbage collector for simplicity.

A trace of the execution of the test program gave us the some insight in the
possible gain by using folding. There are two important factors which influence
the theoretical gain of folding. The first one is how many microinstructions we
can eliminate and the second is how many clock cycles the processor needs on
average to execute all microinstructions. It is fairly simple to make a estimation
for both.

To make a simple estimation for the first factor we make the assumption
that we do not need to worry about data dependencies. This means that for the
theoretical gain we can fold all the patterns in table 2. Also we assume that we
can always dequeue the next four microinstructions, something that might not
always be the case.

For the second factor we have to estimate how many microinstructions the
processor executes on average each clock cycle. This factor can be easily ex-
tracted from a simulation trace of the unmodified processor. Our test program
takes 214.339 clock cycles to execute and in that time it has executed 115.829
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microinstructions, thus executing 0.54 microinstructions per clock cycle. The
main reason for the low microinstruction per clock cycle is that the pipeline is
stalled on every memory access. Furthermore every function call and return
triggers a cache load which also stalls the pipeline.

Using both factors we can make a rough estimation of what would be the
total gain of different folding pattern combinations, these can be found in table
4 and this table gives us some insight in the theoretical gain of some of different
combinations of folding patterns. Clearly the most promising combination is to
implement all of them. However implementing all the combinations in hardware
does cost valuable area and results in a lower clock frequency. Therefore we did
also look at smaller combinations of folding patterns. In the table we only list
some of the more promising combinations.

5 Implementation

5.1 Overview

As noted before the BlueJep processor is written is BlueSpec System verilog,
allowing us to faster explore multiple designs of the folding mechanism on the
processor.

However using this language also has its disadvantages. The flexibility will
most likely result in bigger and slower hardware [GW07].

5.2 Modifications

While the actual folding would only need change the decode stage there are more
changes needed in order to feed the folding mechanism. For the folding the be
useful, we will need a small buffer of microinstructions from which the decode
stage can dequeue multiple microinstructions. Currently the fetch instruction
stage delivers at most one microinstructions to the decode stage, so in most
cases there will be only one microinstruction available for folding.

Therefore we made the following changes:

Multiple decode FIFOs The standard FIFOs in the BlueSpec library only
support at most one dequeue and enqueue per clock cycle. Thus we need
multiple FIFOs so that the decode stage will be able to dequeue more than
one microinstructions per clock cycle. The instantiated FIFOs will be used
as a circular buffer, allowing the fetchinstruction stage to keep enqueuing
microinstructions while the decode stage dequeues microinstruction con-
currently from this buffer.

One of the several advantages of BlueSpec is that normally it is fairly
easy to use FIFOs. BlueSpec automatically generates the implicit stall
functions needed for the correct behavior.

However our system did use multiple FIFOs in parallel. Normally a stage
would only fire if there is data available in all the input FIFOs and that
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all the output FIFOs are not full. The problem with this implementation
was that we did not this behavior.

The most significant problem lay between the fetch instruction stage and
the decode stage. The fetch instruction stage would stall if one or more
of the FIFOs between these two stages were full. This is a problem in the
situation were not all the the micro instructions in these FIFOs can be
folded and at least one microinstruction remains. It is possible that the
remaining microinstruction could be folded with following microinstruc-
tions, because these are not available the processor can only execute the
remaining microinstruction.

This problem could be circumvented by using simpler FIFOs, were we had
explicitly define our own stall functions.

Deeper fetch instruction stage The decode stage is now able to accept more
than one microinstruction in its circular buffer. However it was not that
trivial to fetch multiple microinstructions in one clock cycle. First of all
it is uncertain where the next four microinstructions should come from.
They could all come from consecutive microaddresses, consecutive byte-
codes or a mix of the former two options. When the decode FIFOs are
all empty and enough bytecodes are available in the bytecode FIFOs, our
current implementation is able to enqueue four microinstructions in one
clock cycle.

Multiple bytecode FIFOs The fetch instruction can only enqueue microin-
structions from several bytecodes when they are available, so we imple-
mented a circular buffer consisting of multiple FIFOs similar to the decode
FIFOs.

Deeper fetchbytecode stage The new fetch byte stage can fill the bytecode
buffer in one clock cycle.

All changes can be configured using macro definitions. This allowed us to
compare different configurations of the folded processor with each other rela-
tively easy.

The following options can be configured:

Fetch instruction depth Valid values are 1, 2 and 4. This options determines
how many microinstruction the fetchinstruction stage can enqueue in the
decode FIFOs. Also the number of FIFOs between the fetch byte code
stage and fetch instruction stage is influenced by this option. Note that
the number of decode FIFOs can never be lower than this option.

Decode depth Valid values are 1, 2 and 4. The option regulates the number
of decode FIFOs. Note that this option must be at least length of the
longest folding pattern.

Folding patterns This options can be any combination of the different folding
patterns in table 2.
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Figure 2: BlueJepFolded Architecture

See figure 5.2 for a folded configuration of the BlueJep processor with a fetch
instruction depth of two and decode depth of four.

5.3 Decode stage

The decode stage is the heart of the folding mechanism, in this stage the mi-
croinstructions in the decode FIFOs are matched with the folding combinations.
Using the BlueSpec language the pattern matching was achieved rather easily.
See code 1 for a small section of the case statements responsible for matching
the folding patterns.

5.4 Fetch instruction stage

The modifications in the fetch instruction stage were the most elaborate. As
mentioned before we had to use special FIFOs so that we could generate our
own stall conditions. This allowed the fetch instruction stage to also fetch new
instruction when either the bytecode buffer was not completely full or the decode
buffer was not completely empty.

First the fetch instruction stage determines where the next microinstruction
come from. This means that the stage first checks the current microinstruction
for the NXT bit. When this bit is set, the next microinstruction will come
from the next bytecode, if not the following microinstruction is the next from
the microcode. This step is performed as long as there is another bytecode
available and a free place present in the decode buffer.

6 Synthesis and Simulation

The BlueSpec System verilog code was converted to verilog using the BlueSpec
2006.11 compiler.
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case(combine) matches
tagged Combine { i_0: tagged Push { src: .srcb},

i_1: tagged Push { src: .srca},
i_2: tagged Oper { op: .op},
i_3: tagged Pop { dst: .dst}}:

action
infifos[decselect + 0].deq();

infifos[decselect + 1].deq();
infifos[decselect + 2].deq();
infifos[decselect + 3].deq();

Context crtctxt = Context { jpc: mi_2.jpc,
mpc: mi_2.mpc,
sp: sp};

fsfifo.enq(ToFetchStack {
ctxt: crtctxt,
dst: getDestination(dst),
src: tagged TwoAddr {
ra: getSource(srca, mi_1.jpc),
rb: getSource(srcb, mi_0.jpc),
op: op

}});

endaction

...

endcase

Code 1: Decode stage
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These files were synthesized using the Xilinx Ise 9.1 tools.
The target for synthesis is the Virtex 5 platform from Xilinx. Where appli-

cable synthesize options were optimized for speed.
All the simulation were carried out using the simulation option from the

BlueSpec compiler. Using chipscope a trace from all opb transfers for the origi-
nal processor was made to ensure that the simulation traces were cycle accurate.

7 Results

The results of some our test can be found in table 7. We choose only to show
the results of the more promising tests for total of folding patterns and their
subsets.

8 Discussion

As seen in table 7 none of the configurations perform better than the unmodified
version of the BlueJep processor. The main reason is the enormous drop in clock
frequency due to the added hardware required for the folding mechanism.

For example, let us compare some configurations to each other. Let us begin
with the configuration with fetch instruction depth two, two decode fifo’s and
no folding patterns with the same configuration but now implementing all the
folding patterns. In this case the clock frequency drops by 31.8 percent.

In the same way we can compare the original BlueJep processor to the con-
figuration that has fetch instruction depth four and has four decode fifo’s and
no folding patterns. In this case the clock frequency drop by 40.7 percent.

Furthermore, it does get even worse when we implement all folding patterns,
a fetchinstruction depth of four and four decode fifo. In that case the clock
frequency drops by 47.0 percent in comparison to the original BlueJep processor.
While the clock cycle count has only dropped by 19.2 percent, resulting in a
total loss of 33.0 percent.

However both stages responsible for this loss were written pretty straight-
forward. We believe it should be possible to further pipeline these stages to
regain some or all of the clock frequency. For example, the fetch instruction
stage could be split in two by letting one stage fetch the microinstruction from
the microrom and let the second stage decide which of them should be enqueued
into the decode fifo’s.

In the same way the decode stage could be split in half by letting one stage
check for folding and let the other stage do the actual decode of the microin-
structions.

9 Conclusion

Since none of our test configurations showed any promise of actually being faster
than our original BlueJep processor we conclude that folding on microinstruction
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Table 4: Folding results
Patterns Gaina
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1 1 211843 225.3 11 1.00 1.00 1.00 1.00
2 2 214438 205.7 14 0.98 0.91 0.78 0.89
2 2 • • 198759 189.8 15 1.06 0.84 0.73 0.89
2 2 • • • 195559 181.6 15 1.08 0.80 0.73 0.86
2 4 214391 192.4 15 0.98 0.85 0.73 0.83
2 4 • • 189739 164.0 17 1.11 0.72 0.64 0.79
2 4 • • • 189253 160.2 17 1.11 0.71 0.64 0.78
2 4 • • • 182787 155.6 17 1.15 0.69 0.64 0.79
2 4 • • • • 182301 143.5 17 1.16 0.63 0.64 0.73
2 4 • 209305 176.3 17 1.01 0.78 0.64 0.78
2 4 • • • • • 180278 133.8 19 1.17 0.59 0.57 0.69
2 4 • 214299 157.6 18 0.98 0.69 0.61 0.67
2 4 • • • 190637 144.5 19 1.11 0.64 0.57 0.71
2 4 • • • • • • 180264 131.2 19 1.17 0.58 0.57 0.67
4 4 214475 133.5 21 0.98 0.59 0.52 0.57
4 4 • 198887 136.0 22 1.06 0.60 0.50 0.63
4 4 • • 192149 130.7 23 1.10 0.58 0.47 0.63
4 4 • • • 191480 130.2 23 1.10 0.57 0.47 0.62
4 4 • • 189946 135.0 24 1.11 0.59 0.45 0.65
4 4 • • • • 182441 122.8 24 1.16 0.54 0.45 0.62
4 4 • • • • 183288 129.0 24 1.15 0.57 0.45 0.65
4 4 • • • • 177020 125.0 25 1.19 0.55 0.44 0.65
4 4 • • • • • 176351 115.1 25 1.20 0.51 0.44 0.61
4 4 • 210701 133.8 23 1.00 0.59 0.47 0.59
4 4 • • • • • 171791 118.7 26 1.23 0.52 0.42 0.63
4 4 • • • • • • 171122 119.5 26 1.23 0.53 0.42 0.65

aRelative to unmodified version of the BlueJep processor, which is shown in the first
column.
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level is not a viable option to increase the speed of the processor.
Furthermore we suspect that even with further pipelining the processor

might only become marginally faster than the unmodified version. So even
in that case the small increase in speed would in most cases not outweigh the
additional hardware, because without further pipeline the processor is already
136 percent bigger than the unmodified version. For some applications using
two BlueJep processors in parallel might be a more viable option.
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