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Abstract—In this paper we show a closed caption formula for
the efficiency of the optimal sampling technique in the random S-
box model. This formula is derived by analyzing the given model
and sampling technique using statistical techniques. We further
generalize the original random S-box model in two ways; allowing
multiple-bit entries, xor of several random S-box outputs. For
all cases we show the corresponding closed caption efficiency
formula.

Using these new formulas, it is now possible to instantaneously
give accurate analytical estimates of the output quality of random
S-boxes. This can be of great practical importance in, for
example, analysis and design of cryptographic primitives based
on such building blocks.

I. INTRODUCTION

In essence, the point of the random S-box model is to isolate
a stream cipher building block for analysis. A random S-box
can be thought of as a table with (pseudo-)random entries, or a
boolean function chosen at random in some way. The random
S-box model itself can be thought of as a very simple stream
cipher (described in Section II-A).

This model is not only of theoretical interest. An optimal
sampling technique for the random S-box model was shown
in [4], and this sampling technique was used to produce
the best known distinguisher for the eSTREAM [2] portfolio
stream cipher HC-128 [6], see [3], [5].

In [4], it is specified how to efficiently perform optimal
sampling in this model. However, neither explicit nor implicit
formulas or expressions for the efficiency of the sampling
technique are given. In this paper we remedy that situation by
delivering explicit closed caption formulas, not only for the
efficiency of optimal sampling in the original random S-box
setting, but also for generalized versions of it.

We will use statistical machinery to derive these closed
caption formulas, which are deceivingly simple in all gener-
alizations of the random S-box model. The uniformity of the
various formulas and their simplicity are clear indications that
something fundamental is at work here.

The new formulas that we present are also of practical
interest. They can be used for cryptanalysis of cryptographic
primitives that utilize random S-boxes as building blocks,
or by algorithm designers for assessing the security of such
primitives in a better way than what was possible before.

The final publication is available at IEEE.

II. PRELIMINARIES

The random S-box model and its generalizations are de-
scribed in Section II-A. Hypothesis testing and the optimal
sampling technique in the original random S-box model are
reviewed in Sections II-B and II-C, respectively.

A. The Random S-box Model

Consider an S-box (or table) of size n with single-bit entries,
and let its entries be initialized with random bits. That is,
each single-bit entry is chosen uniformly at random from B =
{0, 1}. After initialization, output is produced from the S-box
in the following way.

At each time instance, one of the n table entries are selected
by drawing a table index uniformly at random from the index
interval [0, n− 1]. The single-bit entry in the given table slot
is then used as an output bit. Output bits are continually
produced in this way, but after every `th output bit, the S-box
is reinitialized with new random entries. Each instantiation of
the S-box is thus used for a duration of ` time instances, and
the `-bit output block produced during this process is called a
chunk.

The random S-box model described above is the original
model from [4]. One generalization of the original random S-
box model is to take k different S-boxes and combine their
outputs using bitwise addition modulo 2. The resulting chunk
will still be ` bits long in this case, but each bit is the modulo 2
sum of k single S-box output bits. All S-boxes are individually
reinitialized after each chunk has been produced.

Another generalization is to allow m-bit entries in the table,
so that each table entry is drawn uniformly at random from
Bm. In this model, m bits are output at every time instance,
for a total of `m bits in each chunk.

And of course, both generalization may be combined for an
m-bit addition model, in which the addition is taken modulo
2m over the corresponding m-bit S-box outputs.

To differentiate between the four different random S-box
models presented here, we will use the following notation. Let
model S, model SA, model M and model MA be shorthand
notations for the original single-bit (S), single-bit with addition
(SA), m-bit (M) and the conglomerate m-bit with addition
(MA) versions of the model, respectively, as described above.

The random S-box has been used as a building block in
stream ciphers for generation of pseudorandom keystream. In



this context it is clearly reasonable to measure the quality of
the output in terms of the efficiency of the optimal distin-
guisher for the given output. This concept is central, and the
necessary distinguishing tools will now be detailed in Sections
II-B and II-C.

B. Hypothesis Testing

A hypothesis test is used at the core of a distinguisher in
order to tell which of two probability distributions that is the
most likely output sequence source.

Let the empirical probability distribution as defined by the
sampling be denoted P ∗. Let the corresponding (theoretical)
probability distribution of the S-box be denoted P1, and let
P2 denote its uniform probability distribution. The Neyman-
Pearson lemma, see e.g., [1], provides the optimal hypothesis
test.

Lemma 1 (Neyman-Pearson): Let X1, X2, . . . , Xt be inde-
pendent and identically distributed random variables according
to P ∗. Consider the decision problem corresponding to the
hypotheses P ∗ = P1 vs. P ∗ = P2. For Q ≥ 0 define a region

At(Q) =

{
P1(x1, x2, . . . , xt)

P2(x1, x2, . . . , xt)
> Q

}
.

Let αt = P t1(Act(Q)) and βt = P t2(At(Q)) be the error
probabilities corresponding to the decision region At. Let Bt
be any other decision region with associated error probabilities
α∗ and β∗. If α∗ ≤ α, then β∗ ≥ β.

If we want to minimize the (unweighted) sum of the error
probabilities, we set Q = 1. In other words, we decide P ∗ =
P1 if

P1(x1, . . . , xt)

P2(x1, . . . , xt)
> 1 ⇔

indep.

t∑
i=1

log
P1(xi)

P2(xi)
> 0, (1)

and P ∗ = P2 otherwise. The equivalence in (1) is valid when
the samples x1, . . . , xt are independent.

Let us now assess the efficiency of the hypothesis test. We
need to introduce relative entropy, which can be thought of as
a distance measure between probability distributions.

Definition 1 (Relative entropy): The relative entropy be-
tween two probability distributions P1 and P2 over the same
domain X is defined as

D (P1‖P2) =
∑
x∈X

P1(x) log
P1(x)

P2(x)
. (2)

There are a few aliases for relative entropy in the literature;
information divergence, Kullback-Leibler divergence, informa-
tion gain and redundancy.

The Neyman-Pearson hypothesis test models independent
and identically distributed samples drawn from a probability
distribution P ∗. There are two possible hypotheses, the null
hypothesis H0 and the alternate hypothesis H1;

H0 : P ∗ = P1,

H1 : P ∗ = P2.

Two types of errors are possible in this hypothesis test.

Type I error: Reject H0 when it is true (prob. α).
Type II error: Accept H0 when H1 is true (prob. β).

No universal expressions for α and β exist, so the performance
of the test in the general case is not known. However, asymp-
totic expressions for these error probabilities do exist. The
interplay between the asymptotic error probabilities and the
relative entropy is described by Stein’s lemma, which roughly
states that β decreases so that

lim
t→∞

log β

t
= −D(P1‖P2),

if the error probability α is fixed. Note that the magnitude of
α does not affect the exponential rate at which β decreases.
Asymptotically we can therefore write

β ≈ 2−tD(P1‖P2),

so that the error probabilities of the hypothesis test start to de-
crease exponentially when the number of samples approaches

t =
1

D(P1‖P2)
. (3)

In a practical scenario, one would be required to use a
small multiple of the number t as the number of samples
needed by the distinguisher, but the number t as defined in
Equation (3) can be seen as a baseline requirement for the
number of samples that a distinguisher needs.

Note that sample requirement is fully determined by the
divergence (relative entropy) between the two probability
distributions P1 and P2.

If P1 and P2 are N (µ1, σ1) and N (µ2, σ2), respectively,
then

D(P1‖P2) = log
σ2

σ1
+
σ2

1 − σ2
2 + (µ1 − µ2)

2

2σ2
2

≥ 0. (4)

We will also be using the corresponding result for the
multivariate normal distribution. In this case we let

µ = [E (X1) ,E (X2) , · · · ,E (Xm)]

denote an m-dimensional mean vector, and let

C = [Cov(Xi, Xj)] , i, j = 1, 2, · · · ,m

denote a non-singular m×m-dimensional covariance matrix.
If P1 and P2 are Nm (µ1,C1) and Nm (µ2,C2), respectively,
then

D(P1‖P2) =
1

2

(
tr
(
C−1

2 C1

)
+ µT∆C−1

2 µ∆ (5)

−m− log det
(
C−1

2 C1

))
,

where µ∆ = µ2 − µ1.

C. Optimal Sampling for Model S

An optimal sampling technique for distinguishing the output
sequence in the single-bit model S from a truly random
sequence was described in [4].

Let si denote a single-bit observation from the given S-box
at time i. Taking entire `-bit chunk vectors (s1, s2, . . . , s`)
as samples is obviously optimal in an information theoretical



Algorithm I – Weight Distribution (wd)

Input: S-box size n, vector length `, current depth d, current
probability p, probability distribution container dist of length
` + 1, weight w, number of opened table entries with zeros
a0, number of opened table entries with ones a1.
Output: probability distribution dist.
Initial recursion parameters: dist zeroized,
(d, p, w, a0, a1) = (0, 1, 0, 0, 0).
if (d == `) { dist[w] += p; return; }
if (a0 > 0) wd(dist, n, `, d+ 1, p · a0

n , w, a0, a1); /* old 0 */

if (a1 > 0) wd(dist, n, `, d+ 1, p · a1
n , w + 1, a0, a1); /* old 1 */

if (a0 + a1 < n) { /* table not exhausted */

wd(dist, n, `, d+ 1, p · n−(a0+a1)
2n , w, a0 + 1, a1); /* new 0 */

wd(dist, n, `, d+ 1, p · n−(a0+a1)
2n , w + 1, a0, a1 + 1); /* new 1 */

}

sense. However, the weight sampling technique (WS), in
which we take chunk weights ‖(s1, s2, . . . , s`)‖1 =

∑`
i=1 si

as samples, is information theoretically equivalent and compu-
tationally more efficient (see [4]). The corresponding weight
distributions P1 and P2 have domains of size `+ 1.

For the uniform probability distribution P2, every vector is
equally likely. The resulting chunk weight probability distri-
bution is therefore combinatorially determined by

P2(w) =

(
`

w

)
2−` (6)

for all possible chunk weights 0 ≤ w ≤ `.
P1 can be calculated according to Algorithm I, which is

stated recursively for simplicity, but can also be implemented
in a dynamic programming fashion.

While the above describes an optimal sampling technique
for model S, no general formula for its efficiency is known to
date. Judging by the complexity of the explicit construction of
the probability distribution P1 in Algorithm I, it may surprise
the reader to find that such a closed caption formula not only
exists, but that it is also simple.

III. STATISTICAL ANALYSIS OF MODEL S

In model S, an S-box B of size n is initialized by drawing
each of the n single-bit entries uniformly at random from
{0, 1}. Let Z denote the number of one bits in B. Then
Z ∈ Bin

(
n, 1

2

)
, for which we have

E [Z (n− Z)] = (n− 1)Var [Z] . (7)

Let Y denote the number of ones in a model S `-bit
chunk, and conditioned on Z = z, we have Y ∈ Bin

(
`, zn

)
.

Using the laws of total expectation and variance together with
Equation (7) we get

E [Y ] = E
[
E [Y |Z]

]
= E

[
`Z

n

]
=
`

2

and

Var [Y ] = E
[
Var [Y |Z]

]
+Var

[
E [Y |Z]

]
= E

[
`Z (n− Z)

n2

]
+Var

[
`Z

n

]
=
`

4

(
1 +

`− 1

n

)
︸ ︷︷ ︸

=γ

=
γ`

4
.

One can see that E [Y ] has the same value as in the uniform
case in which every chunk bit is chosen uniformly at random
from {0, 1}. However, one can also see that Var [Y ] is enlarged
by a factor of γ = 1 + `−1

n . If we assume that the two
probability distributions are approximately normal, then we
can apply Equation (4) using µ1 = µ2 = `

2 , σ2
1 = γ`

4 and
σ2

2 = `
4 to calculate their divergence according to

D (P1‖P2) =
1

2
(γ − 1− log γ) (8)

≈ 1

4

(
γ − 1− (γ − 1) +

(γ − 1)
2

2

)
(9)

=

(
`− 1

2n

)2

nats, which should be divided by ln 2 for bits.
In Section VII, simulations will show that Equation (9) and

its subsequent generalizations are indeed accurate for practical
applications.

IV. STATISTICAL ANALYSIS OF MODEL SA

A chunk in model SA is formed by addition (xor) of k
independent model S chunks. Consider first the case k = 2,
which adds two independently generated model S chunks.

An observation may be made here. Model SA chunks may
be viewed as the output of a larger S-box of size n2, formed
by modular addition of the entries of the two corresponding
model S S-boxes of size n. Note that the single-bit entries
obtained in this way are pairwise independent. The number of
ones Z in the large model SA S-box of size n2 is the integer
sum of all n2 entries. That is, Z is a sum of n2 uncorrelated
and balanced bits. From this it follows that

E [Z] =
n2

2
,

Var [Z] =
n2

4
and

E
[
Z
(
n2 − Z

)]
=
(
n2 − 1

)
Var [Z] .

Letting Y denote the number of ones in a model SA chunk,
we now get

E [Y ] =
`

2
and

Var [Y ] =
`

4

(
1 +

`− 1

n2

)
when k = 2.



The above observation also applies in the more general
setting of an arbitrary but fixed number k of S-boxes. Applying
Equation (4) once more in the same way as in Section III, we
get

D (P1‖P2) =

(
`− 1

2nk

)2

(10)

for the model SA case. This is, again, expressed in nats, so
division by ln 2 is appropriate for bits.

At this point it is possible to verify the sanity of the
derived formulas. By direct comparison to the values in Table
3 in [5], it is clear that the expression in Equation (10) is very
reasonable.

V. STATISTICAL ANALYSIS OF MODEL M

Now assume that each S-box slot is initialized by selecting
a value in [0,M − 1] uniformly at random, and that ` slots are
then selected uniformly at random (with repetition) for chunk
output. The value M can be thought of as an m-bit number;
M = 2m.

Let Zu denote the number of table slots that contain the
value u ∈ [0,M − 1], so that Zu ∈ Bin

(
n, 1

M

)
. Also, let Yu

denote the number of times that the value u appears in the
chunk. Conditioned on Zu = z, we have Yu ∈ Bin

(
`, zM

)
.

Similarly to the calculations in Section III, we get

E [Yu] = E
[
E [Yu|Zu]

]
= E

[
`Zu
n

]
=

`

M

and

Var [Yu] = E
[
Var [Yu|Zu]

]
+Var

[
E [Yu|Zu]

]
= E

[
`Zu (n− Zu)

n2

]
+Var

[
`Zu
n

]
= `

M − 1

M2

(
1 +

`− 1

n

)
︸ ︷︷ ︸

=γ

.

Compared to the uniform case, variable Yu has the same
expected value, but its variance is enlarged by a factor of γ.

Now consider the covariance matrix

C1 = [Cov (Yu, Yv)] , u, v = 0, · · · ,M − 1.

By symmetry, all covariances outside the diagonal must be
equal and

∑
Yu = ` is constant, so all values in the covariance

matrix must sum to zero. The covariance matrix C1 must then
be the same as for the multivariate normal case, but multiplied
by a factor of γ, so that C1 = γC2.

The divergence between two multidimensional normal dis-
tributions with the same mean is given by applying µ∆ = 0
to Equation (5). However, when approximating a multinomial
distribution with a normal one, the covariance matrix becomes
singular since the sum of the variables is constant. Normal
approximation is still possible by a reducing the dimensions
of C1 and C2 by one by removing one row and one column1.

1For the case M = 2, this corresponds to counting only ones.

Let C
′

1 and C
′

2 denote the covariance matrices with reduced
dimensions.

Now applying C
′

1 = γC
′

2 and µ∆ = 0 to Equation (5), we
have

D(P1‖P2) =
1

2

(
tr
(
γI
′
)
− (M − 1)− log det

(
γI
′
))

=
M − 1

2

(
γ − 1− log γ

)
(11)

≈ M − 1

2

(
γ − 1− (γ − 1) +

(γ − 1)
2

2

)
(12)

=

(
`− 1

2n

)2

(M − 1) , (13)

which gives us the general efficiency formula for model M.

VI. STATISTICAL ANALYSIS OF MODEL MA

It is also possible to combine several model M chunks into
one model MA chunk. The calculations here are analogous
to those in Section IV, extending the addition operator from
single-bit addition modulo 2 (single-bit xor) to any m-bit ad-
dition operator that has a corresponding subtraction operator,
such as addition modulo M or bitwise m-bit xor.

Combining k model M chunks, the divergence becomes

D(P1‖P2) =

(
`− 1

2nk

)2

(M − 1) . (14)

To be divided by ln 2 for conversion from nats to bits.
Note that Equation (14) reduces to Equation (10) for the

binary case M = 2.

VII. SIMULATION RESULTS

Simulations have been performed to verify the validity of
the analytically derived formulas. Following the notation in
Section II-B, simulations were performed as follows.

The theoretical probability distribution P1 of the chunks was
derived using Algorithm II, which updates Algorithm I to take
multiple-bit table entries into account. For notation, here, we
let ei = (0, . . . , 0, 1, 0, . . . , 0) denote the ith unit vector in the
natural way. Algorithm II is, again, presented recursively for
simplicity, but it is possible to employ a dynamic programming
approach for efficiency. This is what we have done to produce
our simulation results.

The corresponding uniform distribution P2 can be com-
binatorially determined by generalizing the chunk weight
expression in Equation (6) to

P2 (w) =

(
`

w0, . . . , wM−1

)
M−`.

The divergence D (P1‖P2) for various chunk lengths ` is
plotted in Figures 1 and 2. The theoretical model is represented
by the solid curve, and the approximation curve defined by
Equation (13) is overlaid (dotted curve).

A few typical values of M and n were selected. Figures
1 and 2 depict M = 2 and 256 (1- and 8-bit table values),
respectively. When comparing Figures 1 and 2, note that the
chunk length axes differ.



Algorithm II – M-Weight Distribution (mwd)

Input: S-box size n, maximum entry size M , vector length
`, current depth d, current probability p, probability distri-
bution container dist of length ` + 1, weight vector w =
(w0, . . . , wM−1) where wi denotes the number of times that
value i appears in the chunk, vector a = (a0, . . . , aM−1)
where ai denotes the number of opened table entries with
value i.
Output: probability distribution dist.
Initial recursion parameters: dist zeroized,
(d, p,w,a) = (0, 1, (0, . . . , 0) , (0, . . . , 0)).
if (d == `) { dist[w] += p; return; }
for (i = 0; i < M ; i++) {

if (ai > 0) { /* old value i */

mwd(dist, n,M, `, d+ 1, p · ai
n ,w + ei, a);

}
}
if (‖a‖1 < n) { /* table not exhausted */

for (i = 0; i < M ; i++) { /* new value i */

mwd(dist, n,M, `, d+ 1, p · n−‖a‖1
Mn ,w + ei, a + ei);

}
}

One may further note that the approximation given by
Equation (11) only has one source of error, namely the (multi-
variate) normal approximation. The dotted curve representing
Equation (13) has one additional error source, that of the
Taylor expansion in Equation (12), which converges only when
` ≤ n.

The data show that the accuracy of the approximation
formula increases as the table size n grows. This can also be
seen analytically as the error term in the Taylor approximation
in Equation (12) diminishes as n→∞.

A more detailed analysis of the data, not visible in the graph,
shows that the Taylor approximation dominates the resulting
error for small values of M , while the normal approximation
dominates it for larger M .

The approximation suffers from inaccuracies when it comes
to very short chunk lengths. At a chunk length of two—the
worst case, the estimated divergence halves the actual diver-
gence. This initial approximation behavior can be explained
with refined analyses involving Walsh- and Fourier transforms,
ultimately providing even better approximation formulas, but
such analysis is out of scope for this paper.
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Fig. 1. Actual divergence for M = 2 with table size n = 256 (left)
and n = 1024 (right) according to theoretical model (solid), approximation
according to Equation (13) (dotted).
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Fig. 2. Actual divergence for M = 256 with table size n = 256 (left)
and n = 1024 (right) according to theoretical model (solid), approximation
according to Equation (13) (dotted).

Furthermore, for larger chunk lengths, the approximation
formula tends to show an upper limit for the actual divergence.
This is particularly useful in practical scenarios where a
designer of cryptographic algorithms wants to prove a limit
to the usefulness of statistical analysis against a random S-
box building block.

VIII. CONCLUDING REMARKS

A closed caption formula for the efficiency of optimal
sampling in the random S-box model was shown. Also, the
random S-box model was generalized to include both multiple-
bit S-box entries and the summation of several chunks. For
these random S-box model variants, separately and together,
we showed the corresponding efficiency formulas.

Note that the optimal sampling technique was analyzed
here. The consequence of this is that we can now, for the
first time, quantify to which degree a given random S-box is
susceptible to statistical cryptanalysis. This, in turn, enables
designers of cryptographic algorithms to provide proofs of
non-susceptibility. That is, an algorithm designer can use our
results to tune the parameters of one or several concurrent
random S-boxes to resist statistical analysis (distinguishers).
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