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Sensitivity of Colding Tool Life Equation on the Dimensions 
of Experimental Dataset1

D. Johanssona, *, S. Hägglundb, V. Bushlyaa, and J.�E. Ståhla
aDivision of Production and Materials Enigneering, Lund University, 221 00 Lund, Sweden

bSeco Tools AB, Fagersta, Sweden 

*e�mail: daniel.johansson@iprod.lth.se

Abstract—In this work, 22 sets of cutting data and tool life for longitudinal turning of steel are analyzed 
using the Colding equation. When modeling tool life with a limited number of tool performance data 
points, the model error may be low for these points. Evaluating the model for test points not used when 
computing the model coefficients may give larger errors for these points. This work proves that the Colding 
model also provides sufficient precision when modelling data points not being used to create the model, 
and is therefore a well�functioning instrument for tool life modelling. The results also prove that for the 
selected data, the precision of the model can be greatly improved when the dimension of the data set is 
increased from 5 to 10 data points. Above 13 data points the precision improvements are negligible.

Keywords: machining, tool life, turning, the Colding equation.

1. INTRODUCTION

It is well known that a prediction of tool life is of great importance in modern industrial production involv�
ing machining operations. The time it takes for one tool to be considered worn out and the number of parts it 
can produce in combination with the tool change time for one or more tools engaged in the process plays a big 
role in the production costs. The life of the tool is governed by the combination of machinability of a workpiece 
material, tool properties, and the applied cutting data: cutting speed, vc, feed, f, and depth of cut, ap. A tool 
life normally decreases with an increase of cutting data, and the goal for any production is to find optimum 
cutting data either in regard to the minimum cost or in regard to highest production efficiency. 

As an aid in finding optimal cutting data, many tool manufactures offer catalogue data or software appli�
cations to match the right tool to a specific workpiece material and operation in combination with cutting data 
suggestions. 

These recommendations are made through accumulation of the data on the tool performance for different 
combinations of the tool and work materials while applying different cutting data, and accounting for the tool 
geometry and chip cross�section window of operation. This is a costly and time consuming process and little 
is known of the amount of data needed to allow for high quality cutting data recommendations.

The pioneering work of tool life modeling was made by Taylor [1]. A tool life equation is based on two con�
stants and calculates the tool life for a chosen cutting speed or vice versa. Applying this equation the optimal 
economic life of a tool can be determined. The Taylor equation has proven to work very well in a limited range 
of cutting data, as shown in [2], because it does not include the data on chip cross�sectional parameters like 
feed, depth of cut, nose radius, etc. When creating cutting data recommendations for a larger range of cutting 
data normally used in machining practice, the chip thickness parameters need to be taken into consideration, 
and therefore there is a need for more complex tool life models.

The Colding equation, introduced by Bertil Colding [3, 4] and further developed by Lindström [5], has 
proven to adequately perform in predicting tool life in cases of such extended cutting data range, as previously 
shown, among others, by the authors of [6, 7]. The Colding model, as well as the Taylor model, is based on a 
curve fitting algorithm operating with five separate constants and has no direct link between the physical 
mechanisms of a tool wear in the cutting process and the chosen constants. To create a Colding model for one 
specific combination of a tool and workpiece material, a minimum of five tests is needed to be performed. 



 

Once the model and constants are established, the model error can then be calculated for these five or more 

data points.

2. OBJECTIVE AND PROBLEM DESCRIPTION

The Colding model represents a function in three dimensional spaces of tool life, cutting speed, and chip 
thickness. The function is established on a limited set of tool performance points from a selected range and 
interpolates tool life behavior within this range. The question of accuracy of interpolation remains open. The 
aim of this work is to investigate the number of tool performance tests needed to create a Colding model that 
will model the cutting data and tool life with an acceptably small model error for a wide range of cutting data 
and tool life. To limit the cost of testing and minimize the needs for updating cutting data it is of great impor�
tance that the correct amount of data is collected from the start. With a limited number of tests there may be 
a risk of creating a tool life model that provides poor quality cutting data recommendations as a result of the 
interpolation or even frequently used extrapolation. The acquisition of the tool performance information leads 
to such expenses as workpiece material, tools, and operator time, and this pushes the tool manufacturers to 
limit the number of the tests performed. In this work, a large amount of cutting data and tool life obtained in 
machining tests has been used to create a Colding model. The model stability, its sensitivity and statistical vari�
ations are evaluated and presented by excluding selected data from the overall dataset. 

4. BACKGROUND

The Colding equation with five constants published by Colding in 1981 [4] is, as the pioneering work by 
Taylor, essentially based on empirical curve fitting made between a tool life and cutting data: 

. (1)

The equations can be regarded as an extension of the Taylor equation which can be clearly observed in 
studies of Lindström’s reformulation of the Colding equation [5]. 

The Colding equation is based on five constants K, H, M, N0, and L where cutting speed vc is a function of 
the tool life, T, and equivalent chip thickness, he. Equivalent chip thicknesses, he, as defined by Woxén [8], is 
a function of feed, f, depth of cut, ap, major cutting angle, κ, and the nose radius of the tool, rm:

(2)

To create a set of Colding constants, the tool performance needs to be evaluated in at least five cutting data 
points. By varying cutting speed, vc, feed, f, and depth of cut, ap a window of cutting data can be created and 
tool life accordingly modelled. Extrapolation of the modelling results outside the cutting data test window is 
algorithmically incorrect, but is frequently practiced in the industry and therefore, extra care needs to be 
taken. A wear criterion, such as flank wear VBmax = 0.3 mm or maximum crater wear KTmax = 0.5 mm, is 
selected. The model does not take into account how this wear is developed, it only states the total engagement 
time before a specific wear criterion is met for the selected cutting data. It is possible to combine the Archad 
wear model [9] with the Colding model to allow for different wear criterion, as suggested by Ståhl et al. [10], 
although this is not discussed further in this work. Figure 1 shows how the Colding equation connects cutting 
data with the tool life.

Colding [11] and Hallert [12] used an ASEA automatic computer (Mod. FACIT EDB) to identify the 
number of tool life measurements needed to create a reliable tool life model. Eight different polynomial tool 
life models were tested with a range of two to nine model�constants. The Colding model with five constants 
(Eq. (1)) was yet not developed when this work was performed. It was concluded that for the polynomial rela�
tionship with 9 constants:

, (3)

where x = ln he, y = ln vc, and z = ln T.

The number of tests should be at least about 25.
The ratio between the largest and smallest equivalent chip thickness should be about 10.
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The test should be run using at least three equivalent chip thickness data while varying the cutting speed for 
the full cutting range where the tool life is linear for a specific equivalent chip thickness in the log T–log vc
plane.

It was also noted that the cost of conducting this testing would be significant and that a wear model with 
fewer constants is needed in order to limit the number and costs of testing.

4. EXPERIMENTAL SETUP

In this work, a total of 22 tool performance data points were evaluated when machining C45 E (SS 1672) 
in longitudinal turning according to ISO 3685:1993 using industry standard coated cemented carbide inserts. 
The Colding constants were calculated using the least squares method through the built�in feature Solver in 
the MS Excel® software with curve fitting and the minimization of deviation concerning the obtained mea�
surement points for five or more tool performance data points. Also, the Matlab environment was used for cal�
culations for which 1000 combinations of tool performance data points were randomly selected and Colding 
constants calculated using the least squares method through a built�in software feature based on an algorithm 
for data fitting developed by Levenberg�Marquardt [13, 14]. The full data set used to evaluate the Colding 
model is presented in Table 1.

The equivalent chip thicknesses (Eq. 2) in Table 1 range from 0.119 mm to 0.416 mm giving a ratio of 
approximately 3.5 between the smallest and the largest equivalent chip thickness. The cutting speed ranges 
from 150 m/min to 490 m/min, Fig. 2. All tests were performed with the major cutting angle κ = 95° and nose 
radius rm = 0.8 mm with no coolant applied.

Table 1. Measured tool performance data points when machining C45 E with cemented carbide inserts 
used to evaluate the Colding model

Test No. Depth of cut, 
mm

Feed, 
mm/rev

Cutting speed, 
m/min

Chip thickness, 
mm

Tool life, 
min

1 3.5 0.50 260 0.416 7.65

2 3.5 0.50 245 0.416 9.51

3 3.5 0.50 230 0.416 13.17

4 3.5 0.50 215 0.416 17.55

5 3.5 0.50 200 0.416 20.34

6 3.5 0.50 185 0.416 30.24

7 3.5 0.50 170 0.416 33.85

Fig. 1. The schematic of the Colding model design and its connection to cutting data, tool life and wear criterion.
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The created models based on different measured tool performance data points were then evaluated based 
on the mean error εerr in % between experimentally attained vc, exp and modelled cutting speed vc, mod for each 
model:

. (4)

All models were created with the same set of starting values, as shown in Table 2.
The Colding singularity has been discussed by the authors in previous publications [6, 7] and in this work 

there have been no limitations set to the Colding constants when modeling, allowing for the singularity to 
enter the he area for applicable cutting data.

8 3.5 0.50 150 0.416 71.03

9 2.0 0.35 355 0.266 10.05

10 2.0 0.15 490 0.119 12.24

11 2.0 0.25 410 0.194 14.34

12 1.5 0.20 455 0.146 14.17

13 3.0 0.20 430 0.169 18.70

14 2.0 0.25 420 0.194 9.06

15 2.0 0.35 365 0.266 7.00

16 1.5 0.30 405 0.214 11.20

17 2.5 0.40 330 0.317 4.64

18 2.0 0.25 420 0.194 9.66

19 2.0 0.35 365 0.266 10.65

20 1.5 0.30 405 0.214 13.45

21 2.5 0.35 330 0.279 13.29

22 2.5 0.40 330 0.317 10.74

Table 1. (Contd.)
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Fig. 2. The cutting data points plotted in the vc–he plane.
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5. RESULTS AND DISCUSSION

The Colding model created with the curve fitting and no limitations to the Colding constants and the sin�
gularity for all 22 measured tool performance data points is presented in the vc–he plane (Fig. 3) and in the 
T–vc plane in Fig. 4. The rather high singularity can be noted in Fig. 3 at he ≈ 0.190 mm.

Table 2. Starting values applied when modelling the Colding constants

Index Value

K 6.0

H –3.0

M 2.0

N0 0.3

L –0.05

Fig. 3. The Colding model based on all 22 tool performance data points plotted in vc–he plane with no limitations on the con�
stants: tool life—5 (1), 15 (2), 40 (3) min. 
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Fig. 4. The Colding model based on all 22 tool performance data points plotted in T–vc plane with no limitations on the con�
stants: chip thickness—0.2 (1), 0.3 (2), 0.4 (3) mm.



Initially five measured tool performance data points, representing applicable cutting data, were selected 
according to a normal tool wear testing procedure. Additional tool performance data points were then selected 
and added to expand the cutting data window and verify data points within the cutting data window. The result 
is presented in Fig. 5, where all data are normalized to the results obtained with the largest dataset of all 22 tool 
performance data points, which is further on considered as best possible solution. It should be noted that this 
is a very practical approach and that the data in Fig. 5 are dependent on the order in which the chosen data 
points are added. The order of added data is presented in Table 3, where points 1, 6, 9, 11, and 22 make up the 
five initial tool performance data points used for creation of the initial Colding model. Thereafter one more 
point is added, in this case data point 2, and a new model is computed based on all previous data points (initial 
dataset) including the added point 2 and the error is then calculated. Sequentially, all 22 tool performance data 
points are included in the model, following the order presented in Table 3. This test shows the importance of 
which tool performance data points are measured and included in the model. Each model is then tested on all 
data including tool performance data points not used to create the model. The mean error and the maximum 
error that can be found in the 22 tool performance data points are presented and normalized to the best pos�
sible model.

Table 3. The order of added data points. The error presented is the mean average error when the model is tested 
on all 22 tool performance data points

Test No. Equivalent chip thickness, mm Cutting speed, m/min Measured tool life, min Error, %

1 0.416 260 7.65

6 0.416 185 30.24

9 0.266 355 10.05

11 0.194 410 14.34

22 0.317 330 10.74 3.68

2 0.416 245 9.51 3.72

7 0.416 170 33.85 4.01

16 0.214 405 11.20 4.07

12 0.146 455 14.17 3.60

17 0.317 330 4.64 3.13

21 0.279 330 13.29 2.92

3 0.416 230 13.17 2.83

8 0.416 150 71.03 2.75

18 0.194 420 9.66 2.66

Fig. 5. The Colding constants and errors when sequentially increasing the number of measured tool performance data points 
included in the tool life model: Knorm (1), Hnorm (2), Mnorm (3), N0norm (4), Lnorm (5), mean error (6), max error (7).
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Table 4 presents the final set of the Colding constants when all data are included. It also presents the mean 
error and the maximum error found in the set of data when modeling. The model mean error when using 7 
tool performance data points to create the Colding model was calculated to 4.0% showing the risk of not 
including enough data. The largest error found for an individual tool performance data point for this model 
was 18.2%. The identical error, but for the model created with all 22 tool performance data points was 2.5 
times smaller. The best possible model including all 22 tool performance data points has a mean error of 2.11% 
and the maximum error found in the set of data points is 7.0%.

When the number of tool performance data points is limited one could probably reduce the risk of creating 
a poor model by limiting the constants, controlling the singularity and in some cases extrapolate data to the 
left of the maximum point of the Colding curve, also known as the h�line.

In order to further evaluate the amount of data needed to create a well�functioning tool life model 1000 
randomly created datasets with tool performance data points was subjected to Colding modelling. No limita�
tions were set on the selection criteria thus covering both larger and smaller windows of cutting data and inves�
tigating the related accuracy for cases of interpolation and extrapolation. Tests were performed using 7, 9 and 
13 tool performance data points to create 1000 unique data sets for each test. Figure 6 presents the variation 
of the K constant dependent on the selected data. The K constant was chosen because it gives the value of vc = 

eK at the extreme point of the Colding plot corresponding to a tool life of 1 min. The corresponding mean error 
when testing each model on all 22 measured tool performance data points is presented in Fig. 7. The highest 
mean error for 7 tool performance data points found was 13.0%, 10 data sets 10.5% and 13 data sets 6.5%.

The evaluation of the number of tool performance data points needed to create accurate Colding constants 
was further investigated by creating 1000 random combinations of data sets with number of tool performance 
data points included from 5 to 17. The errors for these models are presented in Fig. 8. Line 1 represents the 
fraction, given in %, of the number of models for which the randomly selected dataset generates a model error 
of 5.11%, i.e. additional 3% to the best possible 2.11% created on all 22 tool performance data points (see 
Table 3). It can be noted that the accuracy increases drastically from 5 to 9 tool performance data points 
included and for a set of 11 tool performance data points only 5% of the Colding models will have a model 
error of 5.11% or larger. Line 2 represents the averaged maximum error found for all 1000 combinations and 
the line 3 represents the average model error for all 1000 combinations. All errors presented are errors when 
testing the models on all 22 available tool performance data points, also those excluded when creating each 
model.

13 0.169 430 18.70 2.49

20 0.214 405 13.45 2.53

4 0.416 215 17.55 2.46

5 0.416 200 20.34 2.46

10 0.119 490 12.24 2.13

14 0.194 420 9.06 2.13

15 0.266 365 7.00 2.14

19 0.266 365 10.65 2.11

Table 4. The Colding constants for all measured data and the mean error and maximum errors presented

Index Value

K 6.136

H –1.331

M 0.610

N0 0.499

L –0.289

Mean error, % 2.11

Max error, % 7.02

Table 3. (Contd.)



Figure 9 plots the absolute largest error found in one single tool performance data point among the given 
1000 combinations of data sets. This plot illustrates that more than 1000 combinations are needed as the error 
is not strictly decreasing for an increase of tool performance data points. The total number of combinations 
when operating with 5 data points out of 22 is 26334 and 705432 when operating with 11 out of 22.

The cutting speed for a machining operation can be evaluated by selecting, Fig. 1, targeted tool life and 
chip thickness (T = 15 min and he = 0.25 mm for the example given below) and respective calculation via 
Colding equation (Eq. 1). A histogram of the cutting speed for 1000 randomly selected combinations of cut�
ting data points creating the Colding constants when using 7, 10 and 13 tool performance points in the tool 
life model is presented in Fig. 10. Table 5 presents the mean value of the suggested cutting speed as well as the 
standard deviation. When operating with 7 tool performance data points, 95% of the models will estimate the 
cutting speed within 362 ± 27.9 m/min and when operating with 13 tool performance data points, the model 
provides the cutting speed of 358 ± 14.3 m/min for 95% of the models. The variation can be recalculated into 
relative possible error given in percent. For 7, 10, and 13 tool performance data points used in the model, the 
relative variation will be ±7.7, ±5.7, and ± 4.0% respectively. This can alternatively be equated to the case 
where 13 randomly selected tool performance data points will provide accuracy of no less than 4% with the 
probability of 95%. 
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Fig. 7. A histogram plot of the mean error for 1000 combinations of data sets randomly selected using 7 (1), 10 (2), and 13 (3) 
tool performance data points.
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Table 6 presents the ratio of models in % that have a mean model error larger than 4 % and alternatively 
larger than 10% when tested on the 22 measured data points.

Table 5. Statistical analysis of calculated cutting speed vc for a turning operation (he = 0.25 and T = 15 min) 
for 7, 10 and 13 tool performance data points

No. of data points 7 10 13

Mean value, m/min 362 360 358

Standard deviation, m/min 13.9 10.3 7.2

95% of the models, m/min ±27.9 ±20.5 ±14.3

95% of the models, % ±7.7 ±5.7 ±4.0

Fig. 8. Model errors for data set dimensions of 5 to 17 points; line 1 represents the ratio of models with an error over 5.11%, 
line 2 represents the averaged max error found in 1000 combinations and the line 3 represents the mean model error.

Fig. 9. A largest error found in an individual data point within 1000 combinations of datasets and Colding constants.
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6. CONCLUSIONS

For this extended data set of experimentally measured tool performance in longitudinal turning, modeled
with the Colding tool life equation, a number of conclusions can be made:

– for a randomly selected 1000 combinations of model constants the computed model error does not
exceed 10% if 10 tool performance data points or more are employed;

– when selecting 13 tool performance data points, only 2.3% out of 1000 randomized models have an error 
exceeding 4%. The largest error for an individual tool performance data point error is however approx. 35% 
with the mean max error below 10%.

The model is improving dramatically when enlarging the dimension of the dataset from 5 to 10 experimen�
tal tool performance data points. Above 13 data points the model improvement is only marginal.

When using 13 randomly picked tool performance data points we will be 95% sure to not add a model error 
of more than 4% as a result of poor selection of modelled tool performance data points. 

It should be noted that all 1000 data sets in each test have been randomly selected. With a more careful 
selection of tool performance data points, as suggested by Colding and Hägglund [11, 6], the authors of this 

Table 6. The fraction of models resulting in error exceeding 4% and alternatively 10%

No. of data points
The fraction of models, %, for the error

> 4% > 10%

5 72.9 8.4

6 59.3 3.4

7 42.1 2.1

8 30.9 0.8

9 19.0 0.4

10 15.5 0

11 8.8 0

12 5.4 0

13 2.3 0

14 1.4 0

15 0.6 0

16 0.1 0

17 0.1 0

Fig. 10. The distribution of the modelled cutting speed for a turning operation (he = 0.25 mm and T = 15 min) for 1000 sets of 
Colding constants when using 7 (1), 10 (2), and 13 (3) tool performance data points.
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work believe that the result can be greatly improved. Figure 5 shows how a real selection of data points could 
be made and one can note that already when selecting 10 data point the mean error and max error is decreased 
significantly.

This work has proven that the Colding equation is a well�functioning tool life model also when tested on 
data not being used to create the model.

This work is solely based on analyzing one set of data with 22 measured cutting data points and tool lives. 
Further statistical analysis is needed with a more general perspective to create a greater understanding of the 
Colding tool life model and its use and limitations. 
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Initiative cooperation between Lund University and Chalmers. The authors wish to acknowledge the valuable 
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ware programming and PhD Oleksandr Gutnichenko for interesting discussions.

REFERENCES

1. Taylor, F.W., On the Art of Cutting Metals, New York, USA: The American Society of Mechanical Engineers, 1909.
2. Johansson, D., Hägglund, S., and Ståhl, J�E., Tool Life and Wear Modeling in Metal Cutting, Part 3, Assessment of

Different Tool Life Models: Proc. 7th Swedish Production Symposium SPS2016, Lund, Sweden: The Swedish Pro�
duction Academy, 2016.

3. Colding, B., A wear relationship for turning, milling and grinding, Doctoral Thesis, KTH, Stockholm, 1959.
4. Colding, B., The machining productivity mountain and its wall of optimum productivity, Proc. 9th NAMRAC, 1981,

pp. 37–42.
5. Lindström, B., Cutting data field analysis and predictions, Part 1: Straight Taylor slopes, Annals of the CIRP, 1989,

vol. 38, pp. 103–106.
6. Hägglund, S., Methods and models for cutting data optimization, Doctoral Thesis, Chalmers University of Technol�

ogy, Gothenburg, Sweden, 2013.
7. Johansson, D., Schultheiss, F., Bushlya, V., Zhou, J., and Ståhl, J.�E., Tool life and wear in metal cutting, Part 1.

Influence of varying flank wear criterion on Colding’s tool life equation, Proc. Swedish Production Symposium
SPS2014, Gothenburg, 2014.

8. Woxén, R., Theory and an equation for the life of lathe tools, Stockholm, Sweden: Ingenjörsvetenskapsakademin,
1932, Handling 119 (In Swedish).

9. Archard, J.F., Contact and rubbing of flat surfaces, J. Appl. Phys., 1953, vol. 24, pp. 981–988.
10. Ståhl, J.E., Johansson, D., Schultheiss, F., Zhou, J., and Bushlya, V., Tool life and wear modelling in metal cutting,

Part 2: Based on combining the Archard and the Colding equations, Proc. 7th Swedish Production Symposium
SPS2016, Lund, Sweden: The Swedish Production Academy, 2016.

11. Colding B.N., Machinability of metals and machining costs, Int. J. Machine Tool Design Res., 1961, vol. 1, no. 3,
pp. 220–248.

12. Hallert, B., Standardization of expressions for accuracy in photogrammetry, Report before the Congress for Photogram�
metry, London, 1960.

13. Levenberg, K., A method for the solution of certain nonlinear problems in least squares, Quarterly Appl. Math., 1944, 
vol. 2, pp. 164–168.

14. Marquardt, D.W., An algorithm for least squares estimation of non�linear parameters, J. Soc. Ind. Appl. Math., 1963, 
vol. 11, no. 2, pp. 431–441.


	Sensitivity of Colding Tool Life Equation on the Dimensions of Experimental Dataset
	D. Johanssona, *, S. Hägglundb, V. Bushlyaa, and J.-E. Ståhla
	aDivision of Production and Materials Enigneering, Lund University, 221 00 Lund, Sweden
	bSeco Tools AB, Fagersta, Sweden
	*e-mail: daniel.johansson@iprod.lth.se
	Received March 6, 2017
	Abstract-In this work, 22 sets of cutting data and tool life for longitudinal turning of steel are analyzed using the Colding eq...
	DOI: 10.3103/S1063457617040074
	Keywords: machining, tool life, turning, the Colding equation.
	1. INTRODUCTION
	2. OBJECTIVE AND PROBLEM DESCRIPTION
	4. BACKGROUND
	. (1)
	(2)
	, (3)

	4. EXPERIMENTAL SETUP
	. (4)

	5. RESULTS AND DISCUSSION
	6. CONCLUSIONS
	References






		2017-08-18T13:40:47+0300
	Preflight Ticket Signature




