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ABSTRACT
The most widespread approach for glycemic control in dia-

betic patients is the so-called basal-bolus insulin regimen, com-

prising insulin injections at meal times, correction doses in hy-

perglycemia and compensatory carbohydrate in case of insulin-

induced hypoglycemia. The present contribution represents an

attempt at implementing such a strategy on a population of 4
virtual, i.e., in-silico, T1DM patients. Low-order physiologi-

cally sound transfer function models were estimated for each

of the in-silico subjects from simulated data and exploited in

an optimization-based control algorithm, the objective being

sustainment of glycemia in the near-normal range (70 − 180
[mg/dL]).

1 INTRODUCTION
Diabetes Mellitus is a chronic disease of disordered glucose

metabolism due to defects in either insulin secretion by the pan-
creatic β-cells or insulin action [1]. In particular, Type 1 Dia-
betes Mellitus (T1DM), being caused by no production of insulin
whatsoever, is characterized by abnormally high blood glucose
levels (hyperglycemia, blood glucose > 180 [mg/dL]) leading to
serious health damages. In order to prevent the long term com-
plications associated to the sustained hyperglycemia it becomes
critical, then, for diabetic patients to regulate their blood glu-
cose tightly, maintaining its level within the near-normal range
(70− 180 [mg/dL]) [2]. Because insulin deficiency defines the
disease, exogenous insulin replacement administered with either
multiple daily injections (MDI) or with an external insulin infu-
sion pump (CSII) is the hallmark of the treatments. The idea
behind conventional therapy insulin regimens is to mimic the
physiological insulin secretion pattern of the non-diabetic sub-

∗Address all correspondence to this author.

jects using delayed-acting (basal) doses to provide a background
insulin concentration throughout the day and short-acting (bo-
lus) doses to simulate the normal prandial insulin levels, this
strategy being called basal-bolus regimen. Until today sustained
improvement of diabetes control by using insulin has in many
cases been associated with a reduced safety, i.e., increase in hy-
poglycemic events and reduced quality of life [3], [4]. Despite
advances in diabetes care over the past decades, insulin therapy
still remains one of the most difficult to manage, as it depends
on patient’s daily decisions about insulin delivery adaptations in
relation to various factors, the most important being food intake,
physical exercise and stress. As a matter of fact, the problem of
maintaining glucose levels within a predefined range is a con-
trol problem which has been and still is focus of extensive stud-
ies, the control schemes proposed reaching from classical control
strategies such as PID control [5] [6] [7] and cascade control [8],
to adaptive [9], run-to-run [10] [11] model predictive control
(MPC) [12] [13] and H∞ control [14]. Most of this research tar-
gets continuous insulin administration via a subcutaneous pump,
resulting in suitable therapy only for a minority and without tak-
ing into account the risks connected with insulin-induced hypo-
glycemia [15]. Against this background, the availability of an
‘advisory system’ recommending the user to take appropriate in-
sulin injections and eventually compensatory snacks, to maintain
glucose levels within the predefined target range, would be de-
sirable for aiding patients. Within this scenario the controller
is expected to determine impulse-like control inputs, namely in-
sulin injections and amount of additional carbohydrates, which
are not automatically applied but rather suggested to the patient,
thereby assuring safety. When an advice is suggested by the al-
gorithm, the patient can accept or reject it, remaining firmly in
the loop. This is the focus of the major European project DIAd-
visor TM [16].
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Table 1. IN-SILICO PATIENTS CHARACTERISTICS

Patient ID Gb [mg/dL] Ib [IU]

1 138.0469 113.8919

2 138.6503 132.0216

3 129.1278 90.0357

4 180 40.95

The present contribution aims at proposing one such a
scheme. The controller is optimization-based, similar to MPC-
type controllers [17] [18] and the control variables are doses of
insulin to be injected and number of grams of carbohydrate to
be administered, while the measured output is the blood glucose
concentration. The algorithm solves an optimization problem ei-
ther when a meal is taken, to determine the insulin dose needed to
cover the meal, or when the blood glucose concentration leaves
the euglycemic range, to bring it back to near-normal by tak-
ing recovery carbohydrates in case of hypoglycemia, or an extra
insulin dose in case of hyperglycemia. To fit the controller low-
order, physiologically sound, individualized models were esti-
mated for each of the subjects from in-silico patients data ob-
tained with a state-of-the-art simulation model [19].

The remainder of the paper is organized as follows. Section
2 deals with the simulation set-up, the explanation of the model-
ing work and the presentation of the control algorithm. Section
3 shows modeling results as well as the control performances in
closed-loop achieved exploiting the in-silico patients. The dis-
cussion on the achievements is left to Sec. 4. Finally, Sec. 5
concludes the paper with final remarks and considerations for
future work.

2 MATERIAL AND METHODS
2.1 Experimental Conditions

This in-silico study considers the fine-grain nonlinear meal
simulation model first proposed in [19]. Model parameters were
obtained from the authors in order to reproduce as faithfully as
possible the glucose metabolism of 4 virtual T1DM patients. The
virtual subjects underwent a 3-days in-silico visit, starting from
steady-state fasting conditions corresponding to a basal plasma
glucose concentration Gb and a basal plasma insulin concentra-
tion Ib reported in Table 1 at 4:00 of day 1. Meals and cor-
responding insulin doses calculated according to an insulin-to-
carbohydrate ratio (ICR) 1 : 10 were administered complying
with the scheme in Table 2. In particular, a big lunch on day
2, the amount of carbohydrate served being 100 [g], and a time-
split between carbohydrate ingestion and insulin intake at break-
fast on day 3, the time interval between the two being 2 [h], were
realized to excite the system properly. Last, plasma glucose con-
centration was assumed to be readily available. We mention in

Table 2. IN-SILICO PROTOCOL

Day Meal time CHO [g] Injection time Insulin [IU]

1 8:00 40 8:00 4

13:00 70 13:00 7

19:00 70 19:00 7

2 8:00 40 8:00 4

13:00 100 13:00 10

19:00 70 19:00 7

3 8:00 40 8:00 4

13:00 70 13:00 7

19:00 70 19:00 7

passing that the same experiments were carried out on real di-
abetic patients within the project DIAdvisor TM [16], highlight-
ing the clinical feasibility of the proposed virtual trial. Figure 1
shows the simulated data.

2.2 Control-relevant Modeling

The first step in our methodology consisted in analyzing the
simulated data for breakfast in day 3. From steady-state con-
ditions and almost constant blood glucose levels, at 8.00 am an
input was applied, namely 40 [g] of carbohydrate intake, which
causes the controlled variable to rise with a double integrator like
behavior (Fig. 2). In absence of any action taken, plasma glu-
cose concentration doesn’t fall (time interval 8.00 am to 10.00
am). Then, an insulin dose of 4 [IU] was administered, mak-
ing glucose concentration to fall piece-wise linearly. Assuming
noise-free conditions, as plasma glucose is supposed to be avail-
able to measurement without delay, we can formulate the glucose
balance equation (1), where t is the time index, tg is the time of
carbohydrate ingestion, ti is the time when insulin is injected,
yBG(t) ∈ R+ is the output blood glucose , ug,ui ∈ Z+ are the
inputs carbohydrate amount and insulin doses, respectively, 1lt is
the Heaviside step function centered in the origin, δt is the Dirac
function centered in the origin, Kg,Ki ∈R are static gains while
Tg,Ti ∈R time constants governing rise and fall of yBG(t) related
to glucose and insulin intakes, respectively.

0 =−TgTiÿBG − (Tg +Ti)ẏBG − y(t)+Kgug1l(t− tg)

+KgugTiδ(t − tg)+Kiui1l(t− ti)+KiuiTgδ(t− ti)
(1)

In the Laplace domain, the impact of carbohydrate and insulin,
respectively, on blood glucose, is given by the following transfer
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Figure 1. Simulated patient data using the physiological model in [19].

Top panels Blood glucose concentration [mg/dL]; Bottom panels In-

puts: Top Carbohydrate intake [g]; Bottom Insulin bolus [IU]. All the

measurements vs. time [h]

functions:

Yg(s) =
Kg

s(1+ sTg)
Ug(s)

Yi(s) =
Ki

s(1+ sTi)
Ui(s)

(2)

so that the total effect on blood glucose is expressed by the fol-
lowing:

YBG(s) = Yg(s)+Yi(s) (3)
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Figure 2. Simulated patient data using the physiological model in [19].

Meal test on breakfast in day 3. Top panels Blood glucose concentration

[mg/dL]; Bottom panels Inputs: Top Carbohydrate intake [g]; Bottom

Insulin bolus [IU]. All the measurements vs. time [h]

Our objective is to estimate the unknown parameter vector

θ =
[

Kg Ki Tg Ti

]

(4)

so that the estimation error between the given virtual patient
blood glucose data yBG(t) and the estimated data ŷθ(t) is min-
imized in a least-squares sense:

θ̂ = argmin
θ

∫ T

0
(yBG(t)− ŷθ(t))

2dt (5)

where T = 5 [h], subject to some constraints on θ, namely
Kg > 0, Ki < 0 to guarantee qualitatively correct responses to
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inputs (blood glucose increases after a meal intake and decreases
after an insulin injection) and Tg,Ti > 0 to guarantee stability.
[19]. The problem is difficult, as it is non-convex. We therefore
start off by empirically fitting the data to the model with initial
guesses for the parameters dictated by intuition.

2.3 The Control Algorithm

As mentioned in Sec. 1, the control algorithm determines
the doses of insulin and glucose to be administered to the sub-
ject by solving an optimization problem, the time of the intakes
being known in advance. The assumption is realistic, since ac-
cording to standard clinical practice the patients bolus at meal
time and take correction insulin injections when the blood glu-
cose rises above yU = 180 [mg/dL]; conversely, compensatory
carbohydrate are administered when the blood glucose concen-
tration falls below yL = 70 [mg/dL].

That said, the optimization problem that needs to be solved
is the following:

minimize
ug,ui

Hp

∑
t=1

[

ln

(

yBG(t)

G

)]2

subject to ug < 80

ui < 20

yL ≤ y(t)≤ yU

(6)

where yBG(t) = ȳ(t,ug,ui) + yP(t), yP(t) being the predicted
blood glucose assuming no insulin or glucose intakes in the fu-
ture horizon and ȳ(t,ug,ui) the deviation of the blood glucose
concentration after an intake of insulin or glucose, using the pa-
tient model estimated in Sec. 2.2. Furthermore, yL and yU are
the lower and upper bounds, respectively, for the target range,
ug and ui are the amount of glucose and insulin, respectively,
to be given to the patient and Hp stands for the prediction hori-
zon. The asymmetric cost function shown in fig. 3 was used
to correct hypoglycemia more immediately compared to hyper-
glycemia, based on the more serious short-term consequences of
the former. The minimization in the optimization problem (6) is
done using the Matlab R© Optimization Toolbox [20].

This optimization is included in an algorithm, which solves
problem (6) when the blood glucose concentration leaves a cer-
tain range, see Fig. 4. When the blood glucose concentra-
tion falls under 90 [mg/dL] and at least 120 [min] have passed
since the last intake, or it falls under 80 [mg/dL] and at least 15
[min] have past since the last intake, the optimization problem is
solved to determine time and dose for an insulin or glucose in-
take. Similarly, when the blood glucose concentration rises over
130 [mg/dL] and at least 120 [min] have passed since the last in-
take, the optimization problem is solved to determine the needed
insulin doses.
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Figure 3. The risk-related cost function in Eq. (6) used in the optimiza-

tion problem.
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3 RESULTS

3.1 Modeling

The estimated transfer function models are the following:

YBGpat1(s) =
0.1

s(s+ 0.0099)
Ug(s) −

0.1

s(s+ 0.2)
Ui(s)

YBGpat2(s) =
0.5

s(s+ 0.00009)
Ug(s) −

0.1

s(s+ 0.5)
Ui(s)

YBGpat3(s) =
0.1

s(s+ 0.00009)
Ug(s) −

1

s(s+ 0.5)
Ui(s)

YBGpat4(s) =
0.5

s(s+ 0.0099)
Ug(s) −

0.1

s(s+ 4)
Ui(s)

(7)
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Table 3. Performance metrics on identification data

patient VAF [%] FIT [%] RMSE [(mg/dL)2]

1 95.4547 78.6802 9.1050

2 90.8866 69.8116 13.2923

3 93.7460 74.9919 9.3152

4 97.2989 83.5650 6.0322

where the subscript indices denote the patient number. Figure 5
presents validation results showing the performances achieved in
simulation using identification data. As for model evaluation, the
metrics considered were the following:

Percentage Variance Accounted For (VAF):

VAF =
E[(y(t)− ŷ(t))(y(t)− ŷ(t))T ]

E[y(t)yT (t)]
× 100%

Percentage FIT:

FIT =
(

1−
‖y(t)− ŷ(t)‖

‖y(t)− ȳ(t)‖

)

× 100%

Root Mean Square Error (RMSE) [(mg/dL)2]:

RMSE =

√

(y(t)− ŷ(t))(y(t)− ŷ(t))T

n

where E[·] denotes mathematical expectation, ‖ ·‖ is the Eu-
clidean norm, n denotes the number of samples, y(t) are the
given measurements, ŷ(t) are the model estimations, ȳ is the
mean value of y(t).

Table 3 presents the results obtained.

3.2 Controller
In order to simulate the controller in a closed-loop for test-

ing and evaluation, the same virtual patients considered in the
modeling phase were used.

The simulation setup is shown in Fig. 6. Inputs to the vir-
tual patient were glucose and insulin, whereas the output yBG(t)
was blood glucose concentration. A parallel prediction algorithm
based on a linear model of the virtual patient and a Kalman filter,
was used to calculate the future plasma gluocose concentration
values yP(t). Estimated and measured blood glucose from the
simulator were used by the controller to determine the doses of
insulin and glucose to be given to the virtual patient.

Figures 7, ??, 8 and ?? presents the simulation results for
the four virtual patients. We assume the simulation starting at
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Figure 5. Identification results. Blood glucose concentration obtained

with the estimated models (solid); in-silico patient blood glucose concen-

tration (dashed) [mg/dL] vs. time [h]
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Figure 6. The simulation set-up.

midnight, with the virtual patients in steady-state condition and
meals of carbohydrate content 30 [g], 70 [g] and 40 [g], respec-
tively, administered at 8 : 00, 13 : 00 and 19 : 00 for all patients.

4 DISCUSSION

We have proposed a model-based controller for glycemia
regulation that uses continuous-time transfer function models of
second order identified from in-silico simulated T1DM patient
data. The set-up is that of a basal-bolus therapy, involving impul-
sive control variables, namely insulin injections and meal carbo-
hydrates, administered several times over the course of the day at
irregularly spaced time instants. We remind the reader in passing
that this framework differs from most of the proposed strategies
to manage diabetes in an automated fashion [9], [12], [13], [21],
[22], [23] in which glycemia is regulated only with a continu-
ous insulin infusion pump, neverthless, it is the most widespread
approach among the diabetics to control their disease. Previous
attempts at producing impulsive control signals include approx-
imation of the continuous insulin signal from a model predic-
tive controller [24], [25]. Opposed to this, the controller we are
concerned with explicitly considers the amounts for insulin and
glucose administration as optimization variables, rather than a
discrete approximation of their continuous signal counterparts.
A simple, low-order, physiologically sound model tailored to the
intended controller was estimated from simulated breakfast data
for each of the in-silico subjects. The parameters in the mod-
els are linked to clinical variables. In particular, K1, T1 can be
related to glucose tolerance, i.e., how the body metabolizes glu-
cose, whereas K2, T2 are connected to insulin sensitivity or re-
sistance, i.e., how effective is insulin in lowering blood glucose.
Actually, prior information could be incorporated in the tuning
procedure, taking into account the patient personal history of the
disease and the experience gained in its regulation. The approach
is personalized, like standard clinical practice, and particularly
appealing as it amounts to estimating only 4 parameters in the
plausible range. A nominal model instead of an individualized
one, could have been used in this study, as the simulated data
don’t reproduce the high inter-subject variability experienced in
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Figure 7. Simulation results of the closed-loop controller evaluation for

Patient 1 (Top Panels) and Patient 2 (Bottom Panels). Top Vir-

tual patient blood glucose (blue) and near-normal glycemia range (red)

[mg/dL]; Top Center Insulin advices by the controller [IU]; Bottom

Center Glucose advices by the controller [g]; Bottom Meal intakes [g]
vs. Time [h]

real life. Neverthless, keeping in mind that glucose metabolism
is affected by individual factors such as insulin sensitivity, glu-
cose tolerance, body-mass index, age and disease duration just
to mention a few, that cannot be capture by a nominal model we
opted for a personalized approach. Time delays accounting for
food transportation along the gastro-intestinal tract and insulin
kinetics from the subcutaneous tissues to plasma has not been
considered but could be easily incorporated in the model struc-
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Figure 8. Simulation results of the closed-loop controller evaluation for

Patient 3 (Top Panels) and Patient 4 (Bottom Panels). Top Vir-

tual patient blood glucose (blue) and near-normal glycemia range (red)

[mg/dL]; Top Center Insulin advices by the controller [IU]; Bottom

Center Glucose advices by the controller [g]; Bottom Meal intakes [g]
vs. Time [h]

ture.

The control algorithm determines the advices of insulin and
glucose only from predictions and measurements of the blood
glucose concentrations, giving freedom to the diabetic patient in
the management of the disease. An asymmetric cost function,
which penalizes blood glucose concentrations falling under 70
[mg/dL] more than blood glucose concentration rising over 180
[mg/dL], is used by the control algorithm. In this way, the higher

risk connected to hypoglycemia compared to hyperglycemia is
accounted for.

The control system’s performances are illustrated using four
separate virtual patients. No hypoglycemic events occured dur-
ing the 24-hours long in-silico test (top panels in Figs. 7, ??, 8
and ??). The suggested snacks to avoid too low glycemia were
feasible both in the number of episodes and in the quantity of
carbohydrate suggested (bottom center panels in Figs. 7, ??,
8 and ??). However, little improvement was registered in the
hyperglycemia range compared to standard basal-bolus therapy.
This may be attributed to unaccounted for subcutaneous insulin
absorption dynamics which introduces delays in insulin action
that the controller is not able to cope with. Moreover, the cost
function used in the optimization may not be appropriate in pe-
nalizing enough hyperglycemic excursions. Physical activity or
other circumstances influencing blood glucose concentration like
stress and illness were not included in the virtual patient model.
Hence, the reaction of the control algorithm to such factors could
not be tested here. To determine the doses of insulin and glucose
advices, the controller uses blood glucose predictions calculated
by a predictor that is not part of the control algorithm. If this
predictor delivers unreliable BG predictions to the controller, for
example, due to bad quality of measured data, the controller will
not be able to produce a reliable advice.

In the actual setting the controller performances will be as-
sessed by subcutaneous continuous glucose monitoring sensor
(CGMS) or self-monitoring finger-stick glucose meter (SMBG)
measurements, introducing issues such as sensor noise, device
recalibration, time delays just to mention a few. This contrasts to
our assumption of noise-free set-up and would require additional
components to the control system, i.e., a sensor model.

5 CONCLUSIONS AND FUTURE WORK
Low order continuous-time transfer function models have

been identified from simulated T1DM patient data, exploiting
the meal simulation model in [19]. The estimated model parame-
ters have intuitive meaning that can be linked to clinical practice.
Moreover, the structure appears to be suitable for controller de-
sign mimicking a basal-bolus type of therapy for insulin treated
subjects.

An optimization-based controller using the estimated mod-
els was implemented, where the control variables are insulin
doses and amount of carbohydrate to be suggested to the sub-
ject. By using an asymmetric cost function penalizing the risk
connected to hypoglycemia more than that connected to hyper-
glycemia, the control algorithm manage to maintain blood glu-
cose concentration always above 70 [mg/dL].

Future work will be devoted to estimating control-oriented
models for meals or snacks other than breakfast and subsequently
apply them in the controller design step. Further, the case in
which the patient does not readily obey the advice of the con-
trol system and how the algorithm would eventually handle such
irregular behaviour will be considered in future work.
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