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Abstract—Product codes, due to their relativley large minimum
distance, are often seen as a natural solution for applications
requiring low error floors. In this paper, we show by means
of an ensemble weight enumerator analysis that the minimum
distance multiplicities of product codes are much higher than
those obtainable by other generalized LDPC (GLDPC) construc-
tions employing the same component codes. We then propose a
simple construction of quasi-cyclic GLDPC codes which leads
to significantly lower error floors while leaving the decoder
architecture of product codes almost untouched.

Index Terms—Iterative decoding, product codes, turbo codes,
low-density parity-check codes.

I. INTRODUCTION

Product codes were introduced by Elias in 1954 [1] as a

practical coding scheme capable (in an asymptotic setting) to

achieve an arbitrarily small error probability on the binary

symmetric channel at a code rate bounded away from zero.

Product codes are currently part of the IEEE 802.16 Stan-

dard, which foresees 2-dimensional product codes based on

various combinations of extended Hamming and single parity-

check (SPC) codes1. A proposal for the adoption of product

codes in the Consultative Committee for Space Data Systems

(CCSDS) standard for deep-space mission was presented in

[2]. Product codes have been included also in standards for

power line communications [3].

Although product codes are usually seen as the “block”

counterpart of the original turbo codes [4], they can be seen

also from a different perspective. More specifically, product

codes can be regarded as generalization of Gallager’s low-

density parity-check (LDPC) codes [5], where the SPC check

nodes are replaced by more powerful constraint (check) nodes

(CNs) [6]. Actually, product codes can be regarded as a

structured type of generalized LDPC (GLDPC) codes [6]–[8].

The aim of this paper is to present GLDPC codes as an

alternative construction of product-like codes and to demon-

strate that performance improvements can be already achieved

with simple modifications to the product code structure.

1Shortened product codes are foreseen by the IEEE 802.16 Standard,
meaning that part of the information array U is 0-padded. The extended
Hamming codes allowed as component codes have parameters (16, 11),
(32, 26) and (64, 57). The SPC codes allowed as component codes have
parameters (8, 7) and (16, 15).

II. PRODUCT CODES

A. Code Structure

The structure of a C = C1 × C2 product code can be con-

veniently summarized by the encoding procedure. The k
information bits are organized in a k2 × k1 array U (with

k1k2 = k). Each row of U is then encoded via an (n1, k1)
binary linear block code C1. The resulting k2×n1 array is then

encoded column-wise through an (n2, k2) binary linear block

code C2, leading to an n2 × n1 array C with the structure

C =

[

Uk2×k1
P

(1)
k2×n1−k1

P
(2)
n2−k2×k1

P
(12)
n2−k2×n1−k1

]

. (1)

The length and dimension of the product code are n = n1n2

and k = k1k2, respectively, while its code rate r is the product

of the code rates of C1 and C2, i.e., r = (k1/n1)(k2/n2) =
r1r2. The two codes C1 and C2 are usually referred to as

component codes. It is readily shown that each row of C is

a codeword of C1. Similarly, each column is a codeword of

C2. Typical component codes are short algebraic codes such as

SPC, Hamming, Bose-Chaudhuri-Hochquenghem (BCH) (and

their shortened/extended versions) codes [9]–[11]. The above

description refers to the case of a 2-dimensional product code.

Product codes may be built on arrays of higher dimensions.

However, we will stick to the 2-dimensional case in the

following.

Product codes may be decoded iteratively by means of soft-

input soft-output (SISO) decoding of their component codes

[1], [6], [11], [12], in which case they are often referred to as

block turbo codes (BTCs) or turbo product codes (TPCs).

B. Distance Spectrum

Denoting by d1 and d2 the minimum distances of C1 and

C2, respectively, the minimum distance of the product code is

given by dmin = d1d2. In fact, we have dmin ≥ d1d2 since

any non-zero codeword C contains at least one row of weight

wr ≥ d1 , and each ‘1’ in this row implies in turn a column

of weight wc ≥ d2. Moreover, a weight-d1d2 codeword can

be obtained as follows:

• select a weight-d1 codeword c
(1) ∈ C1 and a weight-d2

codeword c
(2) ∈ C2;

• build a n2 × n1 array C̃ = (c(2))T
c
(1).
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TABLE I
MINIMUM DISTANCES AND MULTIPLICITIES OF SOME SELECTED PRODUCT

CODES (EH = EXTENDED HAMMING CODE, SPC = SINGLE PARITY CHECK

CODE).

(n, k) C1 C2 dmin Admin

(256, 121) eH (16, 11) eH (16, 11) 16 19600
(256, 165) eH (16, 11) SPC (16, 15) 8 16800
(256, 225) SPC (16, 15) SPC (16, 15) 4 14400

(1024, 676) eH (32, 26) eH (32, 26) 16 1537600
(1024, 806) eH (32, 26) SPC (32, 31) 8 615040
(1024, 961) SPC (32, 31) SPC (32, 31) 4 246016

(4096, 3249) eH (64, 57) eH (64, 57) 16 108493056
(4096, 3591) eH (64, 57) SPC (64, 63) 8 20998656
(4096, 3969) SPC (64, 63)) SPC (64, 63) 4 4064256

It can be verified that C̃ satisfies the constraints of all rows

and columns. While the minimum distance of a product code

is known (provided d1 and d2 are), the characterization of its

complete distance spectrum still represents an open problem.

Let us denote by A(1)(s) = 1 +
∑n1

i=d1
A

(1)
i si and A(2)(s) =

1+
∑n2

i=d2
A

(2)
i si the weight enumerator functions (WEFs) of

C1 and C2, respectively, and by A(s) = 1 +
∑n

i=dmin
Ais

i the

WEF of the corresponding product code. Expressing A(s) as

function of A(1)(s) and A(2)(s) represents a very appealing

result. Approaches to solve this problem, which comes out to

be extremely complex, have been proposed in [13]–[15], where

an exact expression of the WEF for the low-weight codewords

and an approximate expression of the WEF for the higher-

weight codewords are developed. It was shown in [14] that the

multiplicity of codewords with minimum (non-zero) Hamming

weight of a product code is equal to the product of the

minimum distance multiplicities of its component codes, i.e.,

Admin
= A

(1)
d1

A
(2)
d2

. We shall see later that the knowledge of

Admin
provides much of the information needed to characterize

the code performance in the low error rate regimes.

In some cases, the multiplicities of the coefficients of

A(1)(s) and A(2)(s) can be conveniently obtained through the

MacWilliams identity [16]. The minimum distance multiplicity

(i.e., the multiplicity of codeword with Hamming weight

equal to code minimum distance) of a Hamming code can be

easily calculated as A3 =
(

n
2

)

/3. A thorough analysis of the

parameters for product codes based on extended and shortened

Hamming codes is provided in [10], [17].

In Table I, some product codes based on SPC and extended

Hamming codes are listed, together with their main parame-

ters.2 Extended Hamming codes are commonly used in place

of Hamming codes to construct product codes, due to their

larger minimum distance (obtained at the price of a slight rate

loss).

C. Error Floor Analysis

The performance over the additive white Gaussian noise

(AWGN) channel of a (1024, 676) product code where both

C1 and C2 are (32, 26) extended Hamming codes, under

soft iterative decoding with Bahl-Cocke-Jelinek-Raviv (BCJR)

decoding at the component codes [18], is depicted in Fig. 4.

2Note that for all product codes in Table I, C1 and C2 coincide. This is
however not necessary in general.

The performance is in terms of codeword error rate (CER) vs.

Eb/N0 (where Eb is the energy per information bit and N0 the

one-sided noise power spectral density) and assumes antipodal

signaling. The maximum number of decoding iterations has

been set to 20. A prediction of the product code error floor is

also shown in Fig. 4. It is based on the union bound (UB) on

the block error probability

PB ≤
n
∑

i=dmin

Ai Q

(

√

2 i r
Eb

N0

)

(2)

where Q(x) =
(√

2π
)−1 ∫∞

x
e−t2/2 dt. For large signal-to-

noise ratios (SNRs) PB may be approximated by the dom-

inating term that is associated with i = dmin [19]. For the

(1024, 676) product code this truncated UB is depicted in

Fig. 4.3 The CER performance for the product code under

plain iterative decoding does not approach the truncated UB,

but tends to remain almost one order of magnitude larger.

As noted in [10], [11], a sensible performance improvement

can be obtained by scaling the extrinsic information at the

output of each component decoder. The performance curve

using this weighted extrinsic information (w.e.i.) approach

(with scaling factor set to 0.5) is depicted in Fig. 4. In this

case, at high SNR the CER tightly approaches the error floor

prediction. Indeed, the floor appears at a rather high error

rate, i.e. at CER ≃ 10−4. In fact, while for higher error rates

the performance is within 0.6 dB from the random coding

bound (RCB) [5], a lower error rates we observe a remarkable

coding gain loss. According to the error floor prediction, at

CER = 10−7 the loss w.r.t. the RCB is nearly 1.5 dB. The

high error floor is due to the huge value of Admin
as from

Table I, playing a fundamental role in the truncated UB [17].

We observe that this issue affects product codes in general.

On one side, they exhibit relatively large minimum distances

thanks to the dmin = d1d2 relationship. On the other hand,

the minimum distance multiplicities are usually very high.

Despite of this problem, product codes have been often

regarded as a natural solution for applications requiring low

error floors [20], [21]. Product codes have been frequently con-

sidered for many applications also thanks to the possibility of

implementing efficient decoder architectures see for instance

[22].

III. PRODUCT CODES AS INSTANCES OF GLDPC CODES

A. Tanner Graph Representation of GLDPC Codes

An LDPC code is conveniently represented in a graphical

fashion by means of a bipartite graph (or Tanner graph [6])

with two disjoint sets of nodes, namely, the variable nodes

(VNs) and the CNs, such that each edge is only allowed to

connect a VN with a CN. In the Tanner graph of an LDPC

code, the VNs have a one-to-one correspondence with the

encoded bits and the CNs with the parity-check equations.

3We remark that the truncated UB does not represent an upper bound to the
block error probability but only an approximation in the high SNR regimes.
Moreover, the bound of (2) holds under maximum likelihood (ML) decoding,
while numerical results are provided for iterative decoding only.



Fig. 1. Tanner graph of a length-9 product code where both component
codes C1 and C2 have length 3. Each VN is checked by a C1 code and by
a C2 code. Note that the dimension of the length-9 product code depends on
the dimensions of C1 and C2.

Therefore, the parity-check matrix of an LDPC code coincides

with the adjacency matrix Γ of its Tanner graph. A Tanner

graph is called sparse if the density of its adjacency matrix,

defined as the fraction of non-zero elements in Γ, is smaller

than one half. As a consequence, the Tanner graph of an LDPC

code is sparse. In the Tanner graph, the degree of a node is

defined as the number of edges incident on it, and the girth

g of the graph is defined as the length of its shortest cycle.

Note that a degree-ñ CN of an LDPC code may be interpreted

as a length-ñ SPC code, as it checks the parity of the ñ VNs

connected to it.

Even prior to the discovery of turbo codes, GLDPC codes

were introduced by Tanner in 1981 [6]. Analogously to an

LDPC code, also a GLDPC code is represented by a sparse

Tanner graph with a relatively small number of edges. A

GLDPC code generalizes the concept of an LDPC code in

that a degree-ñ CN may in principle be any (ñ, k̃) linear block

code, where ñ is the code length and k̃ the code dimension.

Such an (ñ, k̃) code is usually referred to as component

code and the corresponding CN as an (ñ, k̃) CN. An (ñ, k̃)
CN has ñ connections towards the VNs and accounts for

ñ − k̃ ≥ 1 linearly independent parity-check equations. A

binary sequence is a codeword for the GLDPC code if and

only if each CN recognizes one of its local codewords. In [6]

regular GLDPC codes (also known as Tanner codes) were

investigated, these being GLDPC codes where the VNs have

all the same degree and the CNs are all linear block codes of

the same type.

Product codes introduced in Section II admit a very simple

representation in terms of Tanner graph. According to this

representation, product codes may be regarded a special sub-

class of GLDPC codes. The Tanner graph of a product code

comprises 2n1n2 edges, a set of n = n1n2 VNs and a set

C = C1 ∪ C2 of n2 + n1 CNs such that |C1| = n2 and

|C2| = n1. Each of the n2 CNs belonging to C1 has degree n1

and imposes the n1−k1 constraints of the component code C1

to its neighboring VNs, whereas each of the n1 CNs belonging

to C2 has degree n2 and imposes the n2 − k2 constraints of

the component code C2 to its neighboring VNs. Each VN is

connected to a constraint node in C1 and to one in C2 (in

fact, each bit in the array C of (1) has to fulfill both a row

and a column constraint), and therefore all VNs in the graph

have degree 2. Note that all the n1 VNs corresponding to the

bits in a generic row of C are connected to a unique CN in

C1 and that each of these VNs is connected to a specific CN

in C2. Similarly, all the n2 VNs corresponding to the bits in

a generic column of C are connected to a unique CN in C2

and each of these VNs is connected to a specific CN in C1.

As a result, it is readily shown that the Tanner graph of any

product code possesses a girth g = 8. For example, in Fig. 1

the Tanner graph of a simple product code of length n = 9,

where both C1 and C2 are length-3 SPC codes, is depicted. The

graph has nine VNs and six CNs. For ease of representation,

the three CNs belonging to C1 and the three CNs belonging

to C2 are drawn above and below the VNs, respectively. The

adjacency matrix of the product code in Fig. 1 is equal to

Γ =

















1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

















. (3)

It is easy to check that the graph has girth g = 8.

We point out that there exist other classes of codes that

may be seen as simple special instances of GLDPC codes.

Among them, we mention expander codes constructed on

sparse bipartite graphs investigated, for instance, in [23], [24].

Here, each node in the bipartite graph is associated with a

binary linear code, and each edge with an encoded bit, such

that a binary word is a valid codeword for the expander code

if and only if each node in the graph recognizes a valid local

codeword. Using a procedure identical to that described in [25,

Sec. IV-A], such an expander code may be always represented

as a GLDPC code where all VNs have a degree 2.

It is worthwhile observing that the concept of GLDPC

code may be generalized even further by allowing the VNs

as well as the CNs to be of any generic linear block code

types. The obtained code structure is known to be a doubly-

generalized LDPC (D-GLDPC) code, and allows a higher

design flexibility, especially in terms of code rate [26]–[28]. A

degree-ñ VN may in principle be any (ñ, k̃) linear block code,

where ñ is the code length and k̃ the code dimension. Such a

VN is associated with k̃ encoded bits of the D-GLDPC code. It

interprets these bits as its local information bits and interfaces

to the CN set through its ñ local code bits. Local encoding

at the VNs may be either systematic or non-systematic. Note

that a D-GLDPC code whose VNs perform a local systematic

encoding may be interpreted as a punctured expander code

(or as a punctured GLDPC code), where the punctured bits

are those associated with the local parity bits of each VN.

This interpretation is however limited to the case where all

VNs of the D-GLDPC code are in systematic form and does

not hold for the iterative decoders.

B. Structured and Unstructured Ensembles of GLDPC Codes

For product codes, it follows from the Tanner graph struc-

ture that the density of the adjacency matrix Γ is equal

to 2/(n1 + n2) and thus decreases with the lengths of the



component codes, which define the degrees of the CNs. More

generally, longer GLDPC codes of lower density can be

obtained not only by increasing the length of the component

codes but by increasing the number of VNs and CNs while

keeping the component codes and variable node degrees fixed.

We distinguish between ensembles of structured and unstruc-

tured codes. Consider the construction of a GLDPC code of

length n, where the CN set is composed of a mixture of two

component code types C1 and C2 of equal length n1 = n2 = ñ
and each symbol is protected by two component codes. The

regular Tanner graph of such a code has n VNs of degree two

and |C| = n/n1+n/n2 = 2n/ñ CNs of degree ñ. The density

of Γ is equal to ñ/n and decreases with the number of VNs.

The corresponding ensemble of unstructured GLDPC codes is

defined by the set of Tanner graphs that can be obtained by

all (2n)! possible permutations of edges. The design rate of

the ensemble is equal to r = r1 + r2 − 1.

Alternatively, a small Tanner graph called protograph [29]

can be used as a template for the construction of longer

GLDPC codes [30]. The adjacency matrix of a protograph

is called its base matrix B and the adjacency matrix Γ of

a GLDPC code can be derived from this base matrix by

replacing each 1 in B by a permutation matrix and each 0

by an all-zero matrix. For example, the base matrix

B =

[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]

(4)

represents a compact regular protograph for the case ñ = 15.

More generally, starting from a size 2× ñ all-one base matrix

B, an ensemble of length n regular protograph-based GLDPC

(PG-GLDPC) codes can be defined by the set of Tanner graphs

resulting from the 2ñ(n/ñ)! possible choices of permutation

matrices. By this construction each node in the protograph is

replicated n/ñ times and the edges are permuted among these

replica in such a way that the structure of the original graph is

preserved. The resulting PG-GLDPC codes form therefore an

ensemble of structured codes of design rate r = r1 + r2 − 1.

Also the structural properties of product codes can be

captured by means of protographs. Using the Tanner graph

of a product code as protograph, we can obtain ensembles of

PG-GLDPC codes with flexible blocklengths n. On the other

hand, after reordering of columns, the adjacency matrix Γ of

a product code can be considered as a particular instance in a

regular PG-GLDPC code ensemble as introduced above. For

example, the reader may verify that a reordered version of

the matrix Γ in (3) can be derived from a 2 × 3 all-one base

matrix B by replacing each one by a permutation matrix of

size three. Examples of quasi-cyclic regular PG-GLDPC codes

in comparison with product codes are presented in Section V.

The ensemble definitions can be extended to irregular graphs

in which the node degrees are not fixed. In the structured case

this is achieved by means of a base matrix B with columns

and rows of different weights. As a particular example, the

shortened product codes, achieved by a zero-padded informa-

tion array, can be described by such an irregular base matrix,

which results from a removal of the columns associated with

the padded symbols. In the case of unstructured irregular

ensembles, the degrees of VNs and CNs are then considered

as random variables and characterized by their degree distri-

butions, which define the fractions of edges incident to VNs

and CNs of a certain degree.

IV. PERFORMANCE OF GLDPC CODE ENSEMBLES

A. Weight Distribution of GLDPC Codes

As for product codes, the derivation of the WEF for a

specific GLDPC code represents a very hard task. The problem

may be somehow circumvented by computing the average

WEF for the finite-length GLDPC code ensemble. As an ex-

ample, let us consider the case of a regular GLDPC ensemble

with n degree-2 VNs and m CNs, all of the same type. Let us

denote the WEF of the generic CN by A(1)(s). Moreover, let

us assume that the CN set is divided into two disjoint subsets

with m/2 CNs each, such that every VN is checked by one

CN in the first subset and by one CN in the second subset.

Taking an approach similar to that described in [31] within the

context of LDPC codes, it is possible to show that the average

WEF of the GLDPC ensemble, denoted by Ā(s) =
∑

l Āls
l,

is such that

Āl =

(

coeff
(

(A(1)(s))m/2, sl
))2

(

n
l

) (5)

where coeff(g(x), xl) denotes the coefficient of xl in the

polynomial g(x), and where Āl = EAl denotes the expected

number of codewords of Hamming weight l for a code

randomly drawn from the ensemble with uniform probability.

The average WEF can be then used together with the UB (2)

to obtain an upper bound on the expected block error prob-

ability over the ensemble. For instance, in Fig. 2 the UB for

such a GLDPC unexpurgated ensemble whose Tanner graph

has 1024 VNs and 64 CNs based on the (32, 26) extended

Hamming code is compared with the truncated UB for the

(1024, 676) product introduced in Section II. Note that this

product code belongs to the considered GLDPC ensemble. At

high SNRs, the average UB of the GLDPC code ensemble

is affected by low-weight codewords, for which the average

multiplicity Āl is small, but not yet zero. In other words, the

average performance of the GLDPC ensemble at high SNRs is

dominated by a subset of codes with bad distance properties.

Instead of considering the expected WEF over the whole

GLDPC code ensemble, we may restrict the analysis to an

expurgated ensemble using again a technique similar to that

described in [31]. Given the probability pl = Āl/
(

n
l

)

that a

weight-l binary sequence of length n is a codeword, an upper

bound to the cumulative probability function for the minimum

distance of a code randomly picked in the ensemble is given by

Pr{dmin ≤ D} ≤
D
∑

l=1

(

n

l

)

pl , F (D) .

Let us define δ as the maximum positive integer such that

F (δ) ≤ 1/2. Then, for a code randomly picked in the

ensemble we have α , Pr{dmin ≤ δ} ≤ 1/2, meaning
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Fig. 2. UBs and Divsalar bound [32] on the expected block error probability
of a GLDPC code with 1024 degree-2 VNs and 64 CNs based on the
(32, 26) extended Hamming code, randomly selected in the unexpurgated
and expurgated ensembles, vs. the truncated UB for the (1024, 676) product
code based on the same component codes.

that a fraction of at least 1 − α > 1/2 of the codes in the

ensemble has minimum distance larger than δ. Let us denote

by Ā′(z) the average WEF over the subset of bad codes in the

ensemble (i.e., the expected WEF for a code randomly picked

in the subset of codes for which dmin ≤ δ), and by Ā′′(z) the

WEF for the good codes (i.e., the expected WEF for a code

randomly drawn in the subset of codes for which dmin > δ).

The coefficient Āl may be expressed as

Āl = αĀ′

l + (1 − α)Ā′′

l

so that, for l > δ we can write

Ā′′

l =
Āl

1 − α
− αĀ′

l

1 − α

which is maximized by choosing Ā′

l = 0 and α = 1/2 (recall

that α ≤ 1/2). It follows that we can upper bound the expected

multiplicity of codewords of weight l > δ for a code randomly

chosen among the the good codes as Ā′′

l ≤ 2Āl. For our

example GLDPC ensemble, the first non-zero coefficient of

Ā′′(z) is the coefficient of z16, meaning that the minimum

distance of any GLDPC code among the expurgated ensemble

is lower bounded by 16.

The average UB for the expurgated ensemble is provided

in Fig. 2, together with an even tighter upper bound on the

block error probability derived in [32]. Interestingly, for the

good codes forming the expurgated ensemble, the multiplicity

of codewords of weight 16 is remarkably lower than that of the

product code. This is the reason for the huge gap in the error

floor performance between the average UB for expurgated

GLDPC ensemble and the truncated UB for the product code.

Note also that any such GLDPC code whose Tanner graph

has girth g ≥ 8 must belong to the expurgated ensemble,

as its minimum distance is necessarily lower bounded by

16. In fact, according to the simple tree bound presented in

[6, Theorem 2], the minimum distance dmin of any GLDPC

code C with VN degree 2 and g ≥ 8 is lower bounded as

dmin ≥ d + d(d − 1) = d2, where d is the minimum distance

of each component code. We will show later how to build

explicitly a Tanner graph fulfilling this condition.

The design of finite-length GLDPC codes (LDPC codes as a

special case) has often benefited from asymptotics. Asymptotic

tools allow to predict, on a statistical basis, the performance

offered by an LDPC code randomly drawn from an ensemble

with given characteristics, in the limit where the codeword

length tends to infinity. Examples of asymptotic tools of

common use are the decoding threshold [33] (related to the

waterfall performance, see also Sec. IV-B) and the critical

exponent codeword weight ratio [34] (related to the error floor

performance), briefly reviewed next.

Let us consider a sequence of unstructured or structured

GLDPC code ensembles. All the ensembles in the sequence

share common features: for example, VN degree profile, CN

types and distribution in the unstructured case, protograph

in the structured case. Each ensemble in the sequence is

associated with a codeword length n. The expected number

of codewords of linear weight ωn of a length-n GLDPC

code randomly picked in the corresponding ensemble of the

sequence may be expressed as EAωn ≈ eG(ω)n for large

n. The function G(ω) is known as the growth rate of the

weight distribution or as the spectral shape of the ensemble

sequence [31]. The critical exponent codeword weight ratio,

here denoted by ω∗, is defined as

ω∗ = inf{ω > 0 : G(ω) ≥ 0} .

If ω∗ = 0 then a length-n GLDPC code randomly picked

in the corresponding ensemble of the sequence exhibits an

exponentially large number of small linear-sized codewords.

Therefore, it has bad minimum distance properties with high

probability, even for very large n. On the other hand, if

ω∗ > 0 then the expected number of linear-sized codewords

of normalized weight 0 < ω < ω∗ for a length-n code picked

in the corresponding ensemble tends to zero exponentially

as n tends to infinity. It turns out that GLDPC codes with

good minimum distance properties should be searched for

in (structured or unstructured) ensembles characterized by

ω∗ > 0, that is by good spectral shape behavior.

A complete solution for the spectral shape of unstructured

GLDPC ensembles has been developed in [35], [36], while a

complete analysis of G(ω) for small values of ω in unstruc-

tured ensembles is available in [37]. For structured GLDPC

ensembles based on protographs and for GLDPC ensembles

where each VN is checked by a CN of one type and by a CN

of another type we refer to [38] and [25], respectively.

B. Iterative Decoding of GLDPC Codes

Decoding of GLDPC codes is based on the belief-

propagation principle, and is performed through iterative mes-

sage passing over the Tanner graph. Each decoding iteration

consists of an exchange of messages between the VNs and

the CNs. In a first half-iteration, extrinsic log-likelihood ratios

(LLRs) are sent from the VNs to the CNs along the edges of
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Fig. 3. Tanner graph of a BBC with (7,4) Hamming component codes. The
nodes are grouped according to the time instant at which the code symbols
are generated.

the graph. Each CN interprets the received soft messages as an

a priori information and generates the corresponding extrinsic

LLRs: to this purpose, the same SISO algorithms employed at

the component codes of a product code (such as BCJR [18]

or other trellis-based decoding) are used. In a second half-

iteration, extrinsic LLRs are sent back from the CNs to the

VNs. Each VN interprets the received soft messages as an

a priori information and generates the corresponding extrinsic

LLRs. At the end of each iteration, the a posteriori probability

information is calculated for each encoded bit, and a hard

decision is taken. If the obtained binary sequence is a valid

codeword, then a success is declared. Otherwise either a new

iteration is started or, if a maximum number of iterations has

been reached, a decoding failure is declared.

The belief propagation threshold is a measure for the asymp-

totically achievable performance of iterative decoding. It is the

worst case channel parameter for which the decoding error

probability converges to zero with the number of iterations

for a specific class of codes. For the computation of such

thresholds, the probability density functions (PDFs) of the

messages exchanged in the decoder can be tracked as function

of the iterations (density evolution [33]).

In general it is difficult to express the input/output transfer

functions of the component decoders in an analytical way, so

that Monte Carlo methods are typically applied for empirical

threshold evaluation. In case of unstructured ensembles, the

message PDFs along different edges can be averaged over

the ensemble and density evolution is reduced to a single-

parameter problem. Furthermore, Gaussian approximations of

the PDFs are frequently used in practice to simplify the

calculations. In this case, a graphical representation of the con-

vergence behavior by means of Extrinsic Information Transfer

(EXIT) charts [39] can be a convenient tool not only for

threshold evaluation but also for component code matching.

As special role plays the binary erasure channel (BEC), for

which an exact density evolution analysis can be performed

analytically and is equivalent to an EXIT chart analysis [27].

For structured ensembles, however, multi-dimensional transfer

functions are required for the characterization of the com-

ponent decoders [40] and a graphical visualization becomes

difficult. For other channels the threshold computation for

structured ensembles is therefore still an open problem.

Consider a GLDPC code ensemble based on (15, 11) Ham-

ming component codes as defined by the base matrix (4). Its

BEC threshold is equal to ε∗ = 0.4678, which is equivalent

to the threshold of the corresponding unstructured ensemble

because of the regular structure of both the protograph and

the component Hamming codes. For the AWGN channel the

density evolution threshold can be evaluated by Monte Carlo

methods as (Eb/N0)
∗ = 0.86 dB [41], while an EXIT chart

analysis results in (Eb/N0)
∗ = 0.75 dB or (Eb/N0)

∗ = 1.04
dB, depending whether the mean or the SNR of the PDFs is

fitted at the output of the component decoder [30].

C. GLDPC Convolutional Codes

An example of specially structured ensembles of GLDPC

codes are braided block codes (BBCs) [41], [42], which can be

defined by means of an infinite, diagonally shaped array. Each

code symbol in this array is protected by one horizontal and

one vertical component code. BBCs may be interpreted either

as a convolutional code version of product codes or, if sparsity

is introduced into their structure, as GLDPC convolutional

codes. Figure 3 shows the Tanner graph of a BBC with (7,4)

Hamming component codes.

Analogously to block codes, an ensemble of GLDPC con-

volutional codes can be constructed from a protograph. Such

PG-GLDPC convolutional codes can be described by means

of a convolutional protograph with base matrix

B[−∞,∞] =
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,

where mcc denotes the memory of the convolutional codes

and the component base matrices Bi, i = 0, . . . ,mcc, describe

the edges from the VNs at time t to the CNs at time t + i.
Ensembles of protograph based BBCs can be derived by using

the Tanner graph of a BBC as a protograph [43]. Using the

Tanner graph in Fig. 3 as an example, the component base

matrices can be identified as

B0 =

[

1 1 1 1 0 0 0
1 0 0 0 1 1 1

]

, B1 =

[

0 0 0 0 1 0 0
0 1 0 0 0 0 0

]

,

B2 =

[

0 0 0 0 0 1 0
0 0 1 0 0 0 0

]

, B3 =

[

0 0 0 0 0 0 1
0 0 0 1 0 0 0

]

.

A density evolution analysis of such PG-GLDPC convolutional

codes shows a dramatic threshold improvement compared to

the corresponding block code counterparts [43]. In fact, for the

BEC it can be shown that the convolutional code thresholds

under belief propagation decoding are equal to the block

code thresholds under optimal maximum a posteriori (MAP)

decoding. For the ensemble based on (15, 11) Hamming

component codes, the threshold is improved from ε∗ = 0.4678
to ε∗ = 0.5277, while the Shannon limit is at ε∗ = 0.5333.



V. QUASI-CYCLIC GLDPC CODES AS ALTERNATIVE TO

PRODUCT CODES

A way of constructing structured quasi-cyclic (QC) GLDPC

codes was presented in [30]. The code construction is based on

the expansion of a GLDPC protograph by means of circulant

permutation matrices. Although the approach of [30] is general

and permits do construct both regular and irregular types

of GLDPC codes, we present next a simple deterministic

design for regular QC GLDPC codes. The construction aims at

producing a QC GLDPC with parameters as close as possible

to those of a target product code. The proposed approach

requires only that the component codes of the target product

code share the same coded block size, i.e. that n1 = n2 = ñ.

Thus, we will indicate as C1 and C2 the component codes of

the target product code with parameters (ñ, k1) and (ñ, k2)
respectively. The construction starts by building the adjacency

matrix of the QC GLDPC with the following form

Γ =

[

β0 β0 β0 . . . β0 β0

β0 β1 β2 . . . βñ−2 βñ−1

]

(6)

being β a ñ × ñ circulant permutation matrix obtained by

the right rotation (by 1 position) of the Iñ×ñ identity matrix,

with β0 = Iñ×ñ.4 The first “block” row (i.e., the first row of

circulants) of Γ is associated to the ñ CNs based on C1, the

second “block” row to the ñ CNs based on C2.

Interestingly, the above-proposed construction provides the

same girth of the product code, g = 8, and therefore guarantees

that the minimum distance of the GLDPC code is lower-

bounded by that of the target product code. To see this, we first

note that the adjacency matrix (6) is free from cycles of length

4. This is due to the fact that there are no identical columns

in Γ. Moreover, regular block-circulant matrices with column

weight 2 admit only cycles with lengths multiple of 4 (see

Cor.2.1 in [44]). Hence, we obtain a first lower bound on g as

g ≥ 8. The bound is actually met with equality. To show this,

it is sufficient to combine the first two “block” columns (i.e.,

the first column of circulants) of Γ and to compare the result

with a combination of the third and the fourth “block” column

of Γ. The combination of the first two block columns brings

to
[

0 (β0 + β1)
]T

, while the combination of the third and the

fourth block column is given by
[

0 (β2 + β3)
]T

. It is easy

to check that there are ñ columns in
[

0 (β0 + β1)
]T

which

have an identical column in
[

0 (β2 + β3)
]T

.5 This means that

there are sets of 4 columns in Γ that are linearly dependent,

and hence that there are cycles of length 8.

The QC GLDPC code parameters are given by n = ñ2,

k ≥ n− (ñ(ñ− k1 + ñ− k2)). Hence, the final code rate may

be slightly less than that of the target product code. As an

example, if we assume that the two component codes are both

a (32, 26) extended Hamming code, we would obtain a product

code with parameters (1024, 676) (the code rate is 0.66), while

the GLDPC would have n = 1024 and k ≥ 640 (hence, the

4{β0, β1, . . . , βñ−1} forms a cyclic multiplicative group of order ñ.
5(β2+β3) is a cyclic rotation of (β0+β1), i.e. (β2+β3) = β2(β0+β1).
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Fig. 4. Performance of the (1024, 640) QC GLDPC code, compared to that
of the (1024, 676) product code based on the (32, 26) extended Hamming
code. 20 iterations.

code rate is ≥ 0.625). In both cases we have dmin ≥ 16. For

the unstructured regular GLDPC ensemble with VN degree

2 and CNs based on the (32, 26) extended Hamming code,

the EXIT chart threshold can be evaluated as (Eb/N0)
∗ =

1.41 dB, while the Shannon limit for the binary-input AWGN

channel is at Eb/N0 = 0.82 dB.

The (1024, 640) QC GLDPC code performance are depicted

in Fig. 4 in terms of CER vs. Eb/N0, and are compared

to those of the (1024, 676) product code based on the same

component codes. Since the QC GLDPC possesses a slightly

lower code rate (0.625 vs 0.66), the RCBs for both (1024, 640)
and (1024, 676) codes are provided. Hence, when comparing

the codes one shall take into account a penalty of ∼ 0.1 dB

for the GLDPC code due to its lower rate. Accounting for that,

the performance of the two codes in the waterfall region are

nearly the same (we consider as reference curve for the product

code the one obtained using the w.e.i. approach). However, as

expected, the GLDPC code exhibits a coding gain at lower

error rates w.r.t. the product code. At the last simulation point

the GLDPC code achieves a CER = 10−6 without signs of

floor at Eb/N0 = 3.2 dB, while the product code would

require (according to the error floor estimation) nearly 3.75
dB for the same error rate. The decoding complexity of the

GLDPC code is equal to that of the product code and its QC

structure allows linear complexity encoding.

VI. CONCLUSIONS

It can be observed that the special structure of product

codes leads to large minimum distance multiplicities. In this

paper, we demonstrated that these large multiplicities have a

significant negative influence on the error floors of product

codes. We presented an overview on the concept of GLDPC

codes and pointed out additional degrees of freedom that

can be used in the construction of product-like codes. As a

practical example, employing the same component codes we

proposed a simple QC GLDPC code construction as alternative



to product codes. This construction shows that with simple

modifications to the product code structure it is possible to

design GLDPC codes with the same minimum distance but

much lower minimum distance multiplicity, resulting in lower

error floors while leaving the decoder architecture almost

untouched.
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