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Abstract 

In a previous paper, we showed how classical ideas 
for dynamic programming in discrete networks can 
be adapted to hybrid systems. The approach is based 
on discretization of the continuous Bellman inequal- 
ity which gives a lower bound on the optimal cost. 
The lower bound is maximized by linear program- 
ming to get an approximation of the optimal solution. 
In this paper, we apply ideas from infinite- 
dimensional convex analysis to get an inequality 
which is dual to the well known Bellman inequality. 
The result is a linear programming problem that 
gives an estimate of the approximation error in the 
previous numerical approaches. 
Keywords: optimal control, duality, convex dynamic 
programming, hybrid systems. 

1. Introduction 

One of the most important aspects of the current re- 
search activity in the field of hybrid systems is the 
exchange of ideas between the research fields of dis- 
crete and continuous dynamics. This paper can be 
viewed as an attempt to approach optimal continuous 
and hybrid systems using a classical linear program- 
ming perspective for discrete transportation and flow 
problems. 
The transportation problem was formulated by 
Hitchcock [6] and a classic reference for network 
flow theory is [4]. A continuous analog is the "Monge- 
Kantorivich mass transfer problem" dating back to 
Monge in 1781 and nicely surveyed in [3]. 
A primal/dual formulation of a continous optimal 
control problem for a continuous system is presented 
in [9] based on the Bellman inequality. A central 
concept is L.C. Youngs notion of generalized flow [lo]. 
Discretization of the Bellman inequality for numeri- 
cal computations can be done in several ways [l, 8, 
7,51. 

This paper is devoted to an inequality which is dual 
to the "Hybrid Bellman inequality" which served as 
basis for the computations in [5]. The dual gives valu- 
able information about the conservatism introduced 
by the discretization. 
In Section 2, a discrete transportation problem is 
discussed as a preparation for the hybrid problem 
of Section 3. 

2. Discrete Problem Formulation 

Define a discrete dynamic system as 

where q E Q = { 1,2,. . . ,N} is the discrete state, 
p E Q, is the input signal of the system, and 
v : Q x R, H Q is a function telling what state 
transitions are possible. 
Let r C Q be the set of h a l  states and consider the 
optimal control problem of bringing the system from 
an initial state, qo E Q, to a final state, qf E r, while 
minimizing 

Here s(q,r) > 0, (q,r) E S is the cost for switching 
from state q to  r. The set S contains all pairs (q,r) 
such that a transition &om mode q to mode r is 
possible. The time when r is reached is represented 
by the variable k f .  
The function V is commonly referred to as the value 
function or "cost-to-go" function of the system. 

EXAMPLE 1-THE TRANSPORTATION PROBLEM 
A simple discrete dynamic system is shown in Fig. 1. 
Here the final state is r = (4) and the goal is to find 
the cheapest path from the initial state qo = 1. 0 
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F’igure 1: A simple discrete dynamic system. 

Define the optimal value function V*(qo) = 
minpEn,, Vp(.) (40). A lower bound on V* is then given 
by any function V : Q H R+ that satisfies 

0 5 s(q,F) + V(F) - v(q)  (q,;) E s (3) 
0 = V(q) q E r  (4) 

Moreover, a bound‘ on V* can be found for all 
possible initial states simultaneously by solving one 
LP, maximizing a sum of V for those states, i.e. 

where a suitable choice of v would be ~ ( q )  = 1. 

EXAMPLE 2-THE LP APPROACH TO THE 
TRANSPORTATION PROBLEM 
The transportation problem of Fig. 1 can be 
viewed as an LP problem according to (3)-(5), i.e. 

maximize V(1) + V(2) + V(3) 
subject to V ( l )  - V(2) 5 

V(1) - V(3) L 

V(3) - V(4) I 
V(4) = 

A common way to solve an 
Dijkstra’s algorithm [2]. 

4394) 
0 

LP of this structure is 
0 

2.1 Upper Bound on the Value Function via 

Knowing that every solution to the above problem 
gives a lower bound on the value function, it would 
be interesting to compute an upper bound as well. If 
the gap between the lower and upper bound is small, 
then the bounds are close to the optimal function. 
Fortunately, there is a dual LP problem that gives 
an upper bound on the value function. 

the Dual Problem 

EXAMPLE 3-DUAL LP OF THE TRANSPORTATION 
PROBLEM 
The dual LP of the transportation problem is to 

minimize S( 1,2)A12 + ~ ( i ,  3)A13 + S(2,3)A23+ 
+s(3,2)~32 + S(2,4)2z4 + ~ ( 3 , 4 ) a ~ ~  

subject to  -al2 + aZ3 - a32 + 2 2 4  2 1 
-al3 - aZ3 + a32 + L 1 

a12 +ai3 L 1 
where Aqr 2 0 are the decision variables. 

0 

In general, every constraint in a primal problem 
appears as a variable in the dual problem. For 
the transportation problem, every possible transition 
gives rise to a constraint via the switching cost, s, and 
the corresponding dual variable when switching from 
node q to F is denoted Aqr. (Conversely, every variable 
in the primal problem gives rise to a constraint in the 
dual problem, so V (1) , V (2), and V (3) correspond to 
the A inequalities above.) 
An interpretation of the dual problem can be given 
in terms of mass flow instead of the single mass unit 
transportation of the primal problem. The variable 
Aqr is the flow fiom node q to F .  There is a unit 
mass production in the starting states, and mass 
consumption in the end states. The dual problem 
is then to minimize the cost of the overall flow for 
this system. Conservation of mass implies that the 
production in a single node must not exceed the 
net flow out from the node. This corresponds to  the 
inequality constraints for A. 
The general formulation of the dual problem to the 
maximization of (5) subject to (3) and (4) is thus 

The trajectories that solve the original optimal con- 
trol problem of minimizing (2) subject to the dynam- 
ics in (1) are easily found in the solutions to  the pri- 
mal and dual problem above. In the solution to the 
primal problem, the constraint (3) is active (equal- 
ity holds) only for transitions (q, F )  along the optimal 
trajectory. The same information is available in the 
variables of the dual problem: if there is a unique 
solution to the problem, then Aqr is greater than zero 
for transitions (q, F )  along the optimal trajectory and 
zero elsewhere. 

3. Hybrid Problem Formulation 

The idea of how to obtain a lower bound on the 
value function of the discrete dynamic system was 
the primal problem of maximizing the sum of the 
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value function in a number of points (where ~ ( q )  = 
1 above) subject to the constraint that the value 
function in two neighboring states must not differ 
more than the cost of switching between those states. 
The dual problem to find an upper bound was in- 
terpreted as minimizing the entire mass flow in the 
graph subject to the constraint that the mass produc- 
tion in each state of the system ( W ( q )  above) must 
not exceed the net flow out from that state. 
A similar primal/dual problem can also be set up 
for a continuous system based on this reasoning. 
The discrete and continuous problems can then be 
combined to the hybrid version presented below 
(including the continuous problem as a special case). 
Define a hybrid system as 

where x ( t )  E X C R" is the state vector, u(t)  E 
R, = Co{ul, u2,. . . , uK} C Rm is a continuous input 
signal of the system. There is also a discrete input, 
~ ( t )  E R,, which allows for the selection between 
N Merent  system modes, q(t) E Q = {1,2,. . . , N } .  
The notation q(t-) is used for the left-hand limit of 
q at t. Sq,r is a set (parameterized by q and r )  such 
that switching from mode q to r is possible when 
x E Sq,r X. The continuous state, x ,  is constrained 
to a hyperrectangle X = { X I $  5 xi 5 Ci ,  E R, Ci E 
R, i = 1, ..., n}. 
The optimal control problem is to minimize the cost 
function 

subject to (8) while bringing the system from an 
initial state (xg,qo) at time to ,  to a final state 
( x f , q f ) l x f  E Tqr at time t f ,  where the end time, 
t f ,  is free. Here, kf is an arbitrary finite number 
of switches occurring at times t o  < t 1  < t 2  < ... < 
tkr  < tf and s(x,q,r)  > 0 is an associated cost for 
switching from discrete state q to  r ,  the continuous 
part being x just before the switch. Note that s ( - )  > 0 
prevents the problem of infinitely many jumps in a 
finite interval. The final set is represented such that 
rq c X contains those x that are final in mode q. (If 
finishing in mode q is not allowed, then rq = 0.) 
Sufficient conditions for a lower bound on the value 
function were given-in [5]: 
Let Vq : X H R, q E Q be a set of continuous, 

piecewise C' functions that satisfy 

where f,(x, U) gives the dynamics of a hybrid system 
according to (8) ,  Ip(x,u) and s (x ,q , r )  define a cost 
function for the system according to (9). Then, for 
every (xo,qo), Vqo(xo) gives a lower bound on the 
cost for optimally bringing the system from (xo, qo)  
to ( X f ?  Qf)lxf E r q f  * 

3.1 Upper Bound on the Hybrid Value 

One way of discretizing (lo)-( 12) to numerically ob- 
tain a lower bound of V, was shown in [5]. The orig- 
inal inequalities were stated to give a lower bound 
on the optimal value function and the discretization 
was chosen to preserve this property, i.e. the solution 
to the discretized problem is in turn a lower bound 
on a function Vq that satisfies (lo)-( 12). 
It is desirable to estimate the approximation error for 
the discretized problem and to grasp the importance 
of various discretization parameters, e.g. the grid 
size. The dual problem formulation, that renders an 
upper bound on V,, can give such insight. 

To state the dual hybrid formulation, the following 
assumptions are made: 

Function 

fq(% = f q ( 4  + s q w u  (13) 
lq(x,u) = lq(x)  + mq(x)u (14) 

Note that these assumptions are not as restrictive 
as they might look at first glance. They allow any 
functions fq (x ,u )  and 1p(x,u) to be approximated 
arbitrarily well. 

EXAMPLE &&PROXIMATION OF A QUADRATIC COST 
FUNCTION 
Consider the cost function lq(x,u') = ut2 where 
U' E [-1,1]. This function can be approximated by 
mq(x)u, u E Co(e1,ez ,..., eK}, where ei E RK is 
a unit vector in the direction of the i:th coordinate 
axis, mq(x) = [U:, U;, . ..,U$] is a row vector where 

The accuracy of the approximation increases with K .  
U 

ui = (2i - K - l ) / (K - 1). 

A n  example of K = 5 is shown in Fig. 2. 
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Figure 2: The solid line shows one possible approximation 
of u2 (the dashed line) when K = 5. 

THEOREM I-UPPER BOUND ON THE INTEGRAL OF THE 
VALUE FUNCTION 
A s s u m e t h a t d : X H R + , q E Q , k = 1 , 2  ,..., K i s  
piecewise C 1  and Aq,r : X H R+, (q, r) E Q x Q, q # P 
such that 

O = / $ ( X )  xEdX,qEQ,k=1,2  ,..., K 

and 
K 

Wq(.) I v .  ( 4 ( 4 ( f P ( 4  + a 7 ( 4 U k > )  
k = l  

rlxESa, 

for all ( x , q )  E (X\T,) x Q. 
Then the following inequality holds for every V, : 
X H R, q E Q satisfying (10)-(12) with fq and 
given by (13) and (14). 

Remark 1. This theorem can be interpreted the same 
way as was done for the purely discrete case. Noting 
that the continuous control signal can be written as 

corresponds to the mass production in state (x ,q ) ,  
yq(x) not exceeding the outflow (represented by the 
flow to other continuous states within the same 
discrete mode, 4, and the flow to other modes, Aq,r). 
The inequality (16) shows that a summation of the 
value function is bounded fiom above by the cost of 
the overall flow in the dual setting. 

u(x, 4) = x k  & ( x ) U k /  / $ (x ) ,  the (l5) 

/ K  

where the inequality above makes use of (lo), (ll), 
and (15). 
Gauss' theorem is applied to the first equality on 
the last row (n is a unit vector that is orthogonal to 
d(X\r,), pointing outwards fiom X\Tq). Note that 

since Vr(x)  = 0, x E Tr and that 

since rq n Sq,r = 0 (switching is not allowed from a 
final state). U 
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4. Discretization 

Utilizing a computer to solve (15) for a specific 
control problem, a straight forward approach is to 
grid the state space to require the inequality to be 
met at a set of uniformly distributed points in X.  
This approximation will, however, not guarantee an 
upper bound on the integral of the value function, 
unless the nature of f J x )  between the grid points 
is taken into consideration. This can be dealt with 
using a method similar to the one in [5]. 

For readability, discretization of a purely continuous 
system in a two-dimensional state space is presented 
below (Q = {l),  n = 2), i.e. the discrete mode 
subscript q and the mode switching terms containing 
R vanish. Knowing how to handle the discretization 
of the continuous states, the discretization is easily 
extended to the hybrid case. 
Introduce the notation 

where el and e2 are unit vectors along the coordinate 
axes, and h is the grid size. Define the minj, operator 
such that 

and the maxjp operator analogously. 

Figure 3: Illustration of XJP and X J P .  

Also introduce new variables, a : ( j , p )  E R and 
p k ( j , p )  E R for k = 1,2 ,..., K ,  i = 1,2, and ( j , p )  
such that xJp E X \ r .  The inequality (15) can then 
be replaced by the following combination of backward 
and forward difference approximations that should 
hold for all k = 1,2,. . . , K ,  i = -2, -1,1,2, and ( j , p )  

The following result applies. 

THEOREM 2-DISCRETIZATION IN R2 
If Q = (1) and p k ( j , p )  satisfy (17)-(21) for all grid 
points xjp E X c R2 such that XjP intersects X,  
then the interpolatingfunctions p" ( x )  defined by (22) 
satisfies (15) and an upper bound of Jx,r V(x)y(x)dx  
is given by (16). 0 

Applying the above discretization scheme to a couple 
of examples, the resulting problem often seem to 
be ill conditioned. The reason for this is likely the 
inequalities (17)-(21) being to conservative. Various 
other discretization schemes will be tried. 

5. Summary 

We have derived an inequality which is dual to the 
"Hybrid Bellman inequality" presented in an earlier 
paper. The dual optimization problem has a simple 
physical interpretation in terms of particle flows. For 
a given control law one should envision particles 
flowing along the system trajectories everywhere in 
the state space. In a steady state situation, with 
particle production everywhere, the concentration of 
particles must be infinite near the equilibrium. The 
dual linear programming problem is stated in terms 
of the particle concentrations. It can be viewed as 
a generalization of the classical flow problems in 
discrete optimization to the case of hybrid systems. 
The dual gives an upper bound on the optimal cost 
and thus contains valuable information about the 
conservatism introduced in the discretization of the 
primal problem. A discretization scheme that pre- 
serves the upper bound property has been proposed. 
Numerical problems call for further research on al- 
ternate discretization. 
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