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Sammanfattning

och han talar med bönder på böndernas sätt
men med lärde män på latin.

— E. A. Karlfeldt, Sång efter skördeanden

Alla levande varelser består av celler. En cell innehåller ett stort antal kemiska
föreningar, och särskilt viktiga är proteiner och DNA. Proteiner utför många
livsnödvändiga kemiska reaktioner, och DNA består av gener som beskriver
hur dessa proteiner konstrueras. En gen kan vara uttryckt, så att det protein
den beskriver – kodar för – tillverkas, men den kan också vara avstängd om
proteinet inte behövs.

Förmågan att reagera på förändringar i omvärlden är en viktig egenskap
hos alla former av liv. Signaler kan förmedlas från cellens yttre eller inre miljö
via kedjor av kemiska reaktioner som ofta involverar proteiner. De proteiner
som på så vis påverkas kan börja göra saker de inte gjorde innan. Framför allt
kan vissa av dem – transkriptionsfaktorer – binda till DNA och styra vilka ge-
ner som uttrycks. Somliga styrda gener kodar själva för transkriptionsfaktorer,
och därför har cellen ett helt nätverk av gener som kontrollerar varandra.

För att allmänt förstå hur sådana genregleringsnätverk fungerar kan man
skapa modeller av dem, och studera modellernas uppförande. Mer grovhugg-
na modeller är enklare att arbeta med och dra slutsatser från, men kan också
avvika mer från verkligheten. Särskilt enkla är booleska nätverk, där varje
gen antas vara antingen PÅ eller AV, utan mellanlägen. I sådana nätverk är
attraktorer, tillstånd som inte går att lämna, av intresse för sin koppling till
biologins celltyper. Det är dessutom viktigt att ett genregleringsnätverk inte
är alltför känsligt för störningar. I artiklarna I–III undersöker vi hur olika sor-
ters slumpmässigt byggda booleska nätverk klarar sig i dessa båda avseenden,
baserat på tanken att det genomsnittliga beteendet säger någonting om biolo-
gins nätverk, med förbehållet att riktiga nätverk har formats av evolutionen
under lång tid och inte uppstått ur tomma intet.

Andra halvan av avhandlingen handlar om något mer konkreta problem-
ställningar. I artikel IV försöker vi uppskatta hur aktiva några signalvägar är
genom att mäta uttrycktsnivån hos de gener som – åtminstone i vissa fall –
styrs av dem. Detta berör också frågan om hur relevanta signalvägarna är
som beskrivningar av hur systemet fungerar.

Stamceller är celler som kan ge upphov till många olika sorters celler och
ändå själva finnas kvar, och även om vi inte kan leva utan dem måste de hållas
under sträng kontroll. Det centrala genregleringsnätverket i embryonala stam-
celler är helt nyligen upptäckt, och hur det styr stamcellernas öde undersöks i
artikel V. Artikel VI, slutligen, handlar om en riktigt grundläggande aspekt av
genregleringsnätverk: under vilka omständigheter det alls lönar sig att reglera
hur mycket en gen uttrycks.





To Linda and —
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Introduction

The topic of this thesis is gene regulatory networks. Before I can even begin to
describe what such networks are and do, let alone go into all the gory details,
the context in which they appear must be made clear. The projects I have been
involved in for the past few years are all straddling the line between biology
and physics, albeit that they – and I – have a somewhat steadier footing on
the physics side. Everything I say, or do not say, about biology should thus be
seen for what it is: viewed from a physicist’s perspective.

The publications, which are presented at the end of this short introduction,
progress from the grand, sweeping, and abstract to the small, specific, and
fairly concrete. At the same time, biology goes from from being an underlying
idea and source of inspiration to forming a more integral part of the work.
To understand the ideas presented in the six publications, and to perceive
the common threads running through them, it is necessary to know a few
things about biology and networks. I will therefore just briefly define and
describe life, before narrowing the scope to those details and models that are
pertinent to the projects represented in this thesis. Much of sections i.2 and i.3
is standard textbook material, and more complete and accurate accounts can
be found in references [1–4].

In short, the broad and open-ended question behind this work is this: how
can living cells control the processes behind how they are, what they do, and
when they do it? I will attempt to answer this question, or at least outline
some answers, while explaining and exploring how methods from a physi-
cist’s toolkit can be applied to such problems.

i.1 Life

“Life,” said Marvin, “don’t talk to me about life.”
— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

The first step in discussing something as complex as life is to define what we
really mean. It may seem like a trivial matter to define “life”, because clearly

i



2 Introduction

a cat or a mushroom or even a yeast cell is alive, while a rock or a computer
or a glass of water is not. But just as a pile of grains eventually stops being
a pile if you remove one tiny grain at a time, even though you could not say
that any one particular grain made the difference, there are shades of gray
in the spectrum of alive-ness. There is no real consensus on what constitutes
life, because reasonable definitions will turn out to exclude things that some
people would like to view as living, or include things that others would prefer
not to see included. Various definitions have been proposed, some bolder than
others [5,6]. For the purposes of this discussion, let us adopt a broad definition
and consider something to be alive if it is self-replicating, responsive to its
environment, and evolvable.

By self-replicating I mean that if you have one, and the conditions are
right, you may soon have two. A prime example is the aphids that have been
plaguing my habanero plant; only a few days after I remove all but a few of
them, the plant will again be host to a sizeable population. The ability to self-
replicate is not a sufficient criterion for life, because even a simple salt crystal
or an open flame can reproduce if the circumstances are right.

The second criterion, responsiveness to the environment, is not a partic-
ularly well-defined concept, but what I mean is that a living thing is able to
detect and react to changes in a non-trivial way. For example, a yeast cell may
respond to the sudden availability of glucose by absorbing and metabolizing
it, consuming the glucose to grow bigger. In contrast, sulfuric acid would re-
act to the glucose by reacting with it, oxidizing it much like it does with just
about everything else.

Evolvability, finally, is where things gets interesting [7]. This requirement
on life states that a living thing has some properties that, when it reproduces,
are imperfectly inherited by its offspring. In biological terms, the changes un-
derlying the imperfect inheritance are called mutations. That some individu-
als, depending on their inherited properties, are more likely than others to re-
produce is referred to as natural selection, or often just selection, especially if hu-
mans are directly involved in affecting the reproduction probabilities. While
evolvability may seem like the most complicated of the three requirements, it
is in fact the easiest to fulfill, simply because pobody’s nerfect – most forms of
self-replication will typically result in an imperfect copy.

For an example of evolvability consider again the aphids, who inherit their
brown hue from their parent(s)1. There is a small chance that a mutation will
give an aphid a lighter color that it would otherwise have inherited. Dark
aphids are easier for me to find and squash, so an aphid that happens to be
born fairer stands a better chance of reproducing; it has higher fitness. The
descendants if this aphid will soon be a growing fraction of the population,

1These wicked sap-sucking creatures (my arch-nemesises, if you will) commonly practice
parthenogenesis, or virgin birth [8].
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and the darker aphids will go extinct. Thus, after a number of generations,
the aphids living on my plant are likely to differ in color from their ancestors
and be harder for me to kill, only because I tried to get rid of them in the first
place. This is evolution at work.

i.2 Real life

Seen in the light of evolution, biology is, perhaps, intellectually
the most satisfying and inspiring science. Without that light

it becomes a pile of sundry facts – some of them interesting or
curious but making no meaningful picture as a whole.

— Theodosius Dobzhansky

Having defined life, let us turn to the implementation of it. On earth there is,
at least in any traditional and reasonable sense, only one form of life: the good
old-fashioned biological kind that encompasses everything from the puniest
bacterium and slimiest mold to the mightiest whale and the loftiest redwood.
There is good reason to hold this view, that all organisms great and small are
but variations on a single theme. Even between the most dissimilar species, as
one looks beyond superficial appearances, the differences are small compared
to the similarities [9–11].

All living things consist of cells, small sacks or bubbles whose foremost
function is to keep their contents safely together, much like the function of an
office building is to keep its workers gathered and able to work. Inside the
plasma membrane, the lipid bilayer which encloses the cell, is a thick soup of
organic macromolecules mixed with a rich broth of smaller molecules. Cells
come in an assortment of shapes and sizes. Most are microscopically small,
but some are large enough to be seen by the unaided eye. Only a tiny frac-
tion of all cells are lumped together to form multicellular organisms such as
animals and plants. The rest make up a wide variety of single-celled organ-
isms that move around and reproduce on their own, without strong ties to
other cells. Many of these are prokaryotes, comparatively simple cells that
are often only a micrometer or less in diameter. Based on details that do dif-
fer, such as chemical composition of their plasma membrane, prokaryotes can
be classified into two distinct groups: bacteria and archaea. Those cells that
are not prokaryotes, including the cells that make up all multicellular life, are
called eukaryotes. What earns them their name, and most obviously distin-
guishes them from prokaryotes, is the presence inside the cell of a membrane-
enclosed, cell-like compartment called the nucleus. Almost all eukaryotic
cells contain two or more types of compartments of similar description, or
organelles, which are indeed believed to be the descendants of prokaryotes
that at some point got stuck in other cells.

i



4 Introduction

There is, of course, far more that could be said about what cells look like,
what structures they contain, who begot whom, and so forth. But consider
instead the molecules that are contained in the cells. Truly central to how cells
function, and the basis for my previous claim that all cells are very similar,
is a trinity of macromolecules found in absolutely all cells. These are, in no
particular order, proteins, DNA, and RNA.

i.2.1 A trinity of heteropolymers

Three for the Kings
Of the elves high in light

— Blind Guardian, Lord of the Rings

Proteins are long chains of amino acids, intricately folded into three-dimen-
sional structures. These amino acids are small molecules with a common back-
bone structure but different side chains and therefore quite different chemical
properties. Each protein has a well-determined sequence of amino acids that
are usually counted in the hundreds or thousands, and with twenty differ-
ent amino acids to choose from, the combinatorial possibilities are virtually
endless. The amino acid sequence by and large determines the structure of
the protein, because the protein folds so as to shield hydrophobic amino acids
from water, bring together oppositely charged amino acids, and in other ways
arrange itself in a conformation that minimizes free energy. Examples of what
folded proteins may look like are shown in figure i.1.

Figure i.1: The structures of two proteins, cytochrome c (left) and a sucrose specific
porin from Salmonella (right), visualized in two somewhat different ways.
Images by Klaus Hoffmeier (left) and Richard Wheeler (right, GFDL).
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The structure of a protein is closely linked to its function. By virtue of their
extraordinary versatility, proteins are the workhorses of the cell, and there
are several broad classes that serve radically different purposes. Some stick
together to form webs, tails, stiff pipes, and other large structures that a cell
may need, while others actively transport material into, out of, and around the
interior of the cell, or even team up to move the cell about in its environment.
Still others are enzymes, catalysts that facilitate specific chemical reactions, in-
cluding those that create the very amino acids that make up all proteins. The
chemical processes that involve breaking down, building up, and modifying
chemical compounds used by the cell are collectively known as metabolism,
and the compounds in question, and then especially the smaller molecules,
are called metabolites. Many of them, such as glucose and ATP, are common
to virtually all life, and the metabolic pathways through which they are trans-
formed are highly conserved (that is, they vary little between species), as are
the enzymes.

Something is missing from this picture if a cell is to be self-replicating.
Amino acids must be assembled into proteins, and they must be so accord-
ing to an inheritable blueprint. That blueprint could not be the proteins them-
selves, because not all of the proteins that a cell can manufacture are constantly
present in the cell. Instead, it is the DNA molecule that fills this role. DNA, or
deoxyribonucleic acid, consists of a potentially macroscopically long sugar–
phosphate backbone, to which a small molecule is attached at each metaphor-
ical vertebra. These small molecules are called bases, and there are but four of
them: adenine (A), cytosine (C), guanine (G), and thymine (T). Just as proteins
are heteropolymers of amino acids, so are DNA molecules heteropolymers of
nucleotides formed by sugar, phosphate, and the four bases. The bases A, C,
G, and T carry information, much like the ones and zeros in a digital computer.

Figure i.2: Double-stranded DNA twisted into its normal double helix structure. The
deoxyribose backbone is represented by ribbons, while the bases and phosphates are
shown in more detail.
Image by Michael Ströck/Wikipedia (GFDL).
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Figure i.3: Replication of DNA. Although conceptually simple, the actual process in-
volves a large number of proteins.
Image by Mariana Ruiz.

Crucial to the role of DNA as a blueprint is the concept of base pairing.
When two strands of DNA line up in opposite directions, they can be stuck
together by hydrogen bonds between their bases, but only where adenine
meets thymine or cytosine meets guanine. Other pairings do not leave room
for all atoms, or are otherwise disfavored. Thus every DNA sequence has a
complement, which is the sequence reversed and with bases substituted. For
example, the complement of GAGAACAT is ATGTTCTC. Base pairing makes it
possible to duplicate DNA by first assembling the complement of a sequence
and then the complement of that. The DNA in cells is normally found in
a double-stranded form, a pair of complementary sequences paired up and
twisted into a double helix by forces between the nucleotides, as illustrated in
figure i.2. Making a copy of the DNA is a matter of temporarily (and locally)
separating the two strands and copying both. Figure i.3 shows this process in
some detail.

Biologists make a distinction between an organism’s phenotype, the set
of traits that describe how the organism looks and functions, and its geno-
type, which is a set of genes, units of hereditary information usually carried
by DNA. In modern parlance, a gene is a stretch of DNA that codes for a pro-
tein or, as we shall soon see, something else. The words gene expression loosely
sum up the processes that lead from DNA to gene products (such as proteins).

To assemble proteins from the genetic information in DNA, the cell makes
use of base pairing, but not between DNA and DNA. Ribonucleic acid, or
RNA for short, is universally the mediator for protein sequence information
from DNA to proteins. It is a molecule quite similar to DNA, but the differ-
ence in its backbone composition means that RNA does not form long double
helices, and it is less stable than DNA over time. RNA primarily uses the same
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Figure i.4: The structure of RNA polymerase during the process of transcription. DNA
is the rope-like double helix, and the long molecule exiting to the upper left is RNA.
Part of the RNAP protein complex is not shown, to allow the DNA and RNA inside it
to be seen.
Image by David S. Goodsell.

four bases as DNA, except that uracil replaces thymine. The process of pro-
ducing an RNA molecule from a DNA template is called transcription, and the
protein that nucleotide by nucleotide carries out the transcription is known as
RNA polymerase (RNAP). The process is illustrated in figure i.4.

A piece of RNA that describes the amino acid sequence of a protein is re-
ferred to as messenger RNA (mRNA), to distinguish it from RNA with other
functions. In mRNA (and DNA), a protein build from twenty different amino
acids must be represented using only four different bases. The amino acid
sequence is encoded in a straightforward way, with the bases of mRNA orga-
nized into triplets called codons. With four bases, there is a total of 64 differ-
ent codons that can be used to code for amino acids and flow control (start/
stop signals). The genetic code describes how the codons are mapped to amino
acids. As there are more codons than there are amino acids, there is some
redundancy in the code, and the third base of each triplet on average carries
less information than the first two. Furthermore, codons that are similar often
code for amino acids with similar properties, which invites to speculation over
how the genetic code has evolved [12]. Not all species have identical genetic
codes, but only one quarter of all codons are known to ever take on a different
meaning [13].

RNA has other functions, beyond being a passive messenger. Of particu-
lar interest is ribosomal RNA (rRNA), which is at the heart of the ribosomes,
large RNA–protein complexes in which all proteins are assembled from the
information carried by mRNA. During translation, the process of protein syn-
thesis by the ribosomes, the physical mapping from codons to amino acids
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Figure i.5: A transport RNA (tRNA) molecule, used by the cell to translate mRNA into
proteins. All tRNAs have the same overall shape, but the bases of the codon-matching
anticodons are different, as are the amino acid binding parts.
Image by Neil Voss.

is performed by yet another type of RNA, dubbed transfer RNA (tRNA). Its
structure is shown in figure i.5. Each variety of tRNA transports a specific
amino acid, and contains an anticodon, a triplet of bases that can pair with
one or a few codons. When a strand of mRNA passes through a ribosome, its
codons are one by one exposed to tRNAs, and the correct tRNA will engage
and thereby bring its amino acid into position to be attached to the growing
protein chain.

This brings us full circle. A variety of proteins make the building blocks of
macromolecules, and produce DNA and RNA from DNA. Meanwhile, RNA
and proteins together make proteins from information carried from DNA by
RNA. This fits the description of a self-replicating system on our checklist for
life. Evolvability, too, is fulfilled, because DNA will inevitably suffer muta-
tions from time to time, in particular during replication. The final criterion,
responsiveness to the environment, will be given more attention in the next
section.
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i.3 Signaling and gene regulation

Spring into action!
— Topato Potato

It is primarily through proteins that the cell senses and responds to its en-
vironment. Receptor proteins inside the cell or embedded in its surface can
be activated by the binding of specific molecules (ligands) and other changes
in the immediate environment, and will in the activated form have chemi-
cal properties that differ in small but significant ways. A change in ligand
concentration constitutes a signal that a receptor may pass on by changing
its ability to catalyze reactions that modify other proteins. These reactions
frequently involve the addition or removal of small chemical groups such as
phosphate. More generally expressed, a signaling event may cause a protein
or protein complex to generate another signaling event. By chaining several
events together into signaling pathways, it is possible to get very strong non-
linear responses, but also to launch the same response to different external
signals, make a response conditional on multiple input signals, and so forth.

To be useful, signaling pathways must accomplish something more than
just the propagation of signals. In some cases it may suffice to activate or de-
activate existing proteins, but in many cases it is necessary to synthesize more
proteins to deal with whatever condition prompted the signal, or, conversely,
to shut down the production of proteins. Regulating the rate of protein pro-
duction can be done in a number of ways, for example by altering the trans-
lation rate or the degradation rate of mRNA. Yet the primary way to regulate
gene expression, especially when switching between zero and non-zero rather
than just fine-tuning the expression level, is to target the transcription rate.
Proteins are, as previously noted, a highly versatile class of heteropolymers.
It should therefore come as no surprise that there is a group of proteins that
can bind to DNA at more or less well-defined nucleotide sequences. These
are transcription factors, which can in detail control the transcription rates of
genes, and thereby change the corresponding protein production rates. Fig-
ure i.6 shows part of a signaling pathway that goes all the way from a receptor
protein to transcriptional regulation of genes.

RNA polymerase cares about the DNA sequence when it starts transcribing
DNA into RNA, and will only bind and start at certain sites, called promoters.
By binding in the vicinity of promoters, upstream of the genes along the DNA,
transcription factors regulate the rate of transcription of their target genes, ei-
ther by recruiting RNAP to the promoter or by blocking it from binding. This
description of transcriptional regulation is, like everything else I have said,
somewhat simplified. In reality, DNA is heavily coiled up around proteins
called histones, and different parts may be more or less accessible. Both hi-
stones and DNA can be modified (e.g., by methylation) in ways that further
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Figure i.6: A schematic view of a real signaling pathway. When a ligand (TNF-α) binds
to a receptor at the cell surface, a series of biochemical events are triggered, eventually
leading to activation or repression of the expression of a set of genes.

affect transcription rates. The packing of DNA also means that points far apart
along its length can end up close in space, so some transcription factors can
act over long distances [14].

It should also be noted that transcription factors would be of little use if
they were always active. At least some of them need to be at the receiving
end of signaling pathways in order to be involved in responses to the envi-
ronment. The mechanisms by which transcription factors can be activated (or
deactivated) are numerous, and include the usual set of modifications: phos-
phorylation, methylation, dimerization, and so on. In eukaryotes it also mat-
ters whether the transcription factors can enter the nucleus, where the cell’s
DNA resides.

This all paints a picture of transcriptional regulation as something exceed-
ingly complicated. In most, if not all, cases, we can nevertheless view the tran-
scription rate of a gene merely as some function of the concentration levels of
a set of transcription factors. What is important to observe is that this ap-
plies also to those genes that themselves code for transcription factors. Hence,
we may regard the expression of all genes in the cell as being governed by a
network of interacting genes. The entire set of genes form a gene regulatory net-
work, a directed graph where every node is a gene and every edge represents
a regulatory interaction.

Gene regulatory networks have been studied from many angles and with
a wide range of tools. Attention has been lavished on structural aspects of the
networks, both in terms of statistics on local properties such as small network
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motifs [15] and degree distributions [16], and global properties such as fractal
dimension [17]. See reference [18] for a recent review.

Making sense of existing networks requires understanding of their evolu-
tionary origins. At the very smallest scale, it is feasible to watch components
evolve under high selective pressure, as was recently done with a small reg-
ulatory module, the lac operon [19, 20] of Escherichia coli, for over 500 gen-
erations at different lactose concentrations [21]. In an even longer-running
experiment, several strains of E. coli were allowed to evolve for the better part
of two decades, or some 20 000 generations [22]. Clearly it would be impossi-
ble to test all hypotheses with experiments of this magnitude, and more so if
the aim is to understand how the entire genome of an organism has evolved
from nothing. The natural course of action is to turn to computer simulations.
Evolution performed by computers has been applied to realistic models of sig-
naling pathways [23] and gene regulatory networks [24], but it has also been
used to create complex organisms that live in a digital world very different
from ours [25, 26].

Artificial chemistries [27], and in particular autocatalytic sets [28], have a
long history as models of the basic processes of life and evolution, but are less
suitable for studying higher-level biological systems where complex mech-
anisms, for example for DNA replication and protein synthesis, are already
firmly established. The application of artificial life concepts to systems where
such mechanisms are woven into the model is a fairly recent development; see
references [23, 29, 30]. Going beyond answering questions about evolutionary
processes [26] and fitness properties [31], such studies may shed light on the
emergence of gene regulatory networks and other biological networks.

i.3.1 Measurement techniques

There ain’t no ant bigger’n a bee’s knee for a thousand miles. . .
— a farmer in It Came From The Desert

A little something should be said about how gene expression and regulation
can be measured. The amount of mRNA from a very large number of genes
can be measured simultaneously using microarrays [32], which are small glass
slides covered with tiny but individually identifiable spots that contain single-
stranded DNA. Through the process of reverse transcription, mRNA is used
to create DNA, which is then fluorescently labeled and poured onto the mi-
croarray where it binds only to those spots which its sequence matches. The
end result is a rather noisy estimate of expression levels, possibly relative to
some reference sample, of up to several tens of thousands of genes.

There will inevitably be gaps and errors in the data. Furthermore, there
will be so many measured values that no human can possibly view them all

i
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at the same time or hope to see the big picture, at least not without the help of
computers to wash out the noise and purify the useful information. There are
many data-driven approaches to reduce the complexity of microarray data.
Supervised clustering methods, for example, can be used to build classifiers
for identifying new samples as belonging to one of several medically relevant
groups, to assist in diagnosing and treating patients. Unsupervised clustering
methods can find sets of samples or genes that behave similarly in a set of
experiments, to aid in the discovery of new biological subdivisions between
samples or causal relationships in gene expression.

Gene expression data reveal transcriptional regulation [33], but microar-
rays can also be used to more directly infer regulatory interactions. In ChIP–
chip experiments [34], one measures how strongly a transcription factor binds
to DNA in the regulatory regions of a large number of genes. The “ChIP”
step, chromatin immunoprecipitation, aims at extracting those pieces of DNA
that the transcription factor binds to. The DNA is fragmented with the tran-
scription factor still attached, and as the transcription factor-bound pieces are
plucked out of the solution, the rest of the DNA is discarded. Then, in the
“chip” step, the pieces of DNA are applied to a microarray, which will indi-
cate what genes are regulated by the transcription factor under the conditions
of the experiment.

These high throughput technologies are immensely efficient tools for re-
vealing the big picture, but the individual measurements are not all that reli-
able. For investigating smaller details of the regulatory system, more accurate
measurements are possible with other methods, and the high throughput re-
sults may then provide starting points for further investigations.

There exists an enormous corpus of literature on all things biological, with
whole papers dedicated to what I would view as tiny parts of regulatory net-
works. This is not to say that such studies are needlessly detailed, only that
a full description of a biological system is terribly complicated. Luckily, there
have been some efforts to gather these little pieces of information from the lit-
erature and arrange them into more or less well-structured databases of tran-
scription factors [35], signaling pathways [36], and so forth. To make better
use of these database, it is possible to make predictions of what genes a tran-
scription factor regulates, based on its known binding motifs and the the DNA
sequence of the studied organism. Hence, genome-wide searches for binding
sites can quickly uncover regulatory interactions that involve a great number
of transcription factors [37]. This can be one component of integrative ap-
proaches that combine data from several sources to expand our knowledge of
gene regulatory networks [38–40].



i.3 Signaling and gene regulation 13

i.3.2 Cell types

And the mice were squealing in my prison cell
— Brendan Behan, The Auld Triangle

Depending on how one counts, mammals have around a few hundred dif-
ferent types of cells, such as smooth muscle cells, helper T lymphocytes, and
olfactory receptor neurons. Cell type is closely linked with what genes are ex-
pressed, and cells will on the whole retain their type for long periods of time
without the need for external signals. This is largely the work of transcrip-
tional regulation. If a set of transcription factors are expressed in a given cell
type, and they together promote their own expression while preventing the
expression of others, the cell type may remain unchanged.

Starting from a single cell, a multicellular organism grows by dividing and
specializing cells stepwise until it consists of a large number of tissues and
cell types. Dividing and being active carries risks for a cell, and its regulatory
system may be damaged in ways that cause it to start dividing unchecked,
creating a tumor or other form of cancer. Therefore, numerous safeguards
have evolved to prevent this from happening, including triggers for apoptosis
(programmed cell death) when errors are detected, and limits on the number
of times a cell can divide. Stem cells are those rare cells that even in an adult
retain the potential to keep dividing, and to differentiate into cells of various
types [41]. They form a hierarchy of cell development, where only a small
fraction of the cells live sluggish lives in the least differentiated states, and
from there give rise to more specialized stem cells, which in turn beget pro-
genitors to mature cells. Thus, when cells dies, whether by accident, old age,
or shedding, their ranks can be replenished promptly.

Stem cells are a way to create many types of cells from a single fertilized
egg, a means for the body to fill vacancies when cells die, and a part of the
solution to the problem of cancer. However, the properties of stem cells, such
as the ability to divide endlessly, make them dangerous if gone bad, so the
number of stem cells is kept low. That the population is divided into a smaller
number of long-term stem cells and more numerous short-term stem cells,
which are more active and prone to differentiate, reflects the need to keep the
pool of stem cells healthy and under control. It is crucial that cells do not
become stem cells by accident if their regulatory networks are broken, so the
transcriptional regulation of stem cell-ness and differentiation can be expected
to be extremely robust.

i
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i.4 Boolean networks

#define MAYBE 2

— a CodeSOD on thedailywtf.com

Only by idealizing and approximating can we hope to understand anything.
This does not, of course, imply that we should always try to oversimplify
things, but the more details we strip away, the more universal may our con-
clusions be. From a practical point of view, we may need to simplify to be able
to perform simulations and other mundane tasks. For a great many genes, a
significant portion of the information on their expression levels lies in whether
they are at all expressed. In other words, it may be sufficient for our under-
standing to know whether or not the genes are expressed, without differenti-
ating between levels for those genes that are “on”. Reducing gene expression
to discrete values greatly simplifies the description of interactions between
genes. This is the basis for modeling gene regulatory networks as Boolean
networks.

A Boolean variable is, as every computer geek knows, one that can only
take the values TRUE and FALSE. We may equally well call the two states 1 and
0 or ON and OFF. If we claim that the expression level of every gene can be
reasonably well described using just those two words, then the state of each
node of the gene regulatory network is a Boolean variable, and we call the
network itself a Boolean network. A more in-depth discussion of how Boolean
models can apply to gene expression is found in reference [42].

In addition to the network architecture – how the nodes are connected –
the behavior of a network depends on how the connected nodes interact. The
links (graph edges) that point to a node represent regulatory interactions. In
the Boolean world, the expression level of a gene is still some function of the
expression levels of those genes that regulate it, but it will necessarily be a
Boolean function. As a simple example, a gene might only be expressed when
induced by two transcription factors, and this corresponds to a node with two
incoming links that feed into the Boolean function AND. Figure i.7 shows a
larger example, a small Boolean network where one of the nodes has three
inputs. At every node there is a Boolean function that determines what the
state of the node will be, depending on what the state of its input nodes are.
We often refer to these functions as rules for updating the nodes, which makes
it clear that it must be specified how, precisely, the nodes are updated.

We are interested in the dynamics of the network, which is to say that we
want to know how it behaves as time goes by. Given a network architecture,
an assignment of rules, and a network state, it is easy to compute the next state
of any node. The problem is that if we update the states of the nodes one by
one, the behavior of the network will depend on the updating order. Unlike
in a continuous model, state changes are never gradual and we cannot take



i.4 Boolean networks 15

Figure i.7: A Boolean network of four nodes, where the number of inputs to the nodes
varies from none to three, as does, coincidentally, the number of outputs per node.

shorter steps in time. There is a variety of ways to update the network state
asynchronously, or one node at a time: draw a node at random each time, or
go through all nodes and then re-randomize the order, or just use the same
arbitrary order over and over. However, there is a conceptually simpler way
to update the network: all nodes are updated at the same time, so that at time
t + 1 the state of each node is given by its input nodes at time t.

Regardless of the updating order, there are some simple cases where a
Boolean network does not behave like the corresponding continuous model.
A gene which negatively regulates itself, as to stabilize its expression at an
intermediary level, may be represented in a Boolean model as a node that
changes its state every time it is updated. It will look as though the gene ex-
pression oscillates, which in reality is a possible but less likely behavior. For
larger networks, the synchronous updating scheme, which represents an ide-
alized, noise-free view of the dynamics, tends to suffer the most from artefacts
of this type. However, this scheme has the advantage of being deterministic
while treating all nodes as equal. It is possible to keep these positive attributes
and yet reduce the artefacts, by actively considering the effects of delayed up-
dating of some nodes [43].

The synchronous updating scheme, which is all I will consider from here
on, deterministically assigns a successor state to each of the 2N states of a
network with N nodes. Consequently, every state eventually leads to a state
that has already been visited, and then round and round in a loop. In other
words, every trajectory in the state space ends in an attractor, be it a fixed point
or a cycle of some finite length. Figure i.8 illustrates this concept for six of the
sixteen states in a network of four nodes. One of the states points directly to
itself, so it is a fixed point, an attractor of size one. The other five states are
part of its basin of attraction, the set of states that lead to the attractor.
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Figure i.8: An example of the dynamics of a Boolean network, namely the one in fig-
ure i.7, under the synchronous updating scheme. Six network states are shown, and the
nodes are colored according to their states, with dark for TRUE and white for FALSE.
Each node is updated according to the states of its inputs in the previous time step,
which leads to the trajectories indicated by the thick arrows. The lower right state
points to itself, and is therefore a fixed point of the dynamics.

i.4.1 Random Boolean networks

— XKCD, xkcd.com

Boolean networks in the context of biology trace back to the work of Stuart
Kauffman in the late 1960s, as do the ideas for what to do with such net-
works [44]. Much of what I have said about gene regulation was known back
then [45], albeit that some of the details were hazy. What was not known,
however, was what a complete gene regulatory network looked like. But as
always when there is something we do not know in detail, a reasonable ap-
proach is to consider the whole ensemble of possible cases, to see what that
can tell us. Applied to Boolean networks, this reasoning leads us to generate
networks where the network architecture and the rules are chosen randomly.
We may then proceed to investigate these random Boolean networks [46], in the
hope that properties common to most such networks are also shared by the
real gene regulatory networks. However, we should keep in mind that lack-
ing the selective pressure to perform a useful task, random networks could
potentially be very different from real networks.



i.4 Boolean networks 17

There is a class of Boolean networks, called NK models, which is defined
as networks with N nodes, all of which have exactly K inputs. The number
of distinct states that the input to a node can assume is 2K, and as the output
of a rule can be either TRUE or FALSE for each of those states, there are 22K

different K-input rules. It was randomly connected networks of this class that
Kauffman originally studied, with K = 2 and all 16 of the 2-input rules equally
probable [44]. To generate a random network – a realization of the random
network model – each of the N nodes is assigned a rule and two input nodes
at random (it may even be the same input node twice).

If we can measure some observable of interest on a network reasonably
quickly, we can generate a large number of network realizations and get an
estimate of what distribution the observable follows. For example, if we want
to know how common it is with nodes that have 25 outputs in networks of size
100, we can generate a large number of such networks and count how many
of them contain 25-output nodes. In this case it is fairly obvious that we can
also calculate the expected value without actually generating any networks,
but far from all observables have that property.

Robustness is an important aspect of any regulatory network. In random
Boolean networks it is of interest to know what the average effect of changing
the state of a single node is. Depending on the network model such a per-
turbation may die out, remain the same size, or grow to affect many nodes,
and the network dynamics are then referred to as ordered, critical, or chaotic,
respectively. The K = 2 Kauffman networks are critical, because the {mean
number of outputs per node} times {the chance that a rule will give a different
output when one input changes} is exactly 2 · 1

2 = 1. That is, a small perturba-
tion will on average neither grow to affect the whole network, nor rapidly die
down. Papers II and III give examples of networks that are not critical, and
introduce other measures of robustness.

It is natural to discuss the dynamics of a Boolean network in terms of its
attractor structure, starting from the question of how many attractors there are
and how their sizes are distributed. The number of attractors is an observable
with some coupling to biology, following the notion that the cell types of mul-
ticellular organisms correspond to different attractors of the gene regulatory
network. One could hope that Boolean networks with as many nodes as we
have genes, just over 25 000 by today’s best estimates [47], would on average
have an attractor count comparable to the number of cell types. It may seem
strange that a gene regulatory network, whose workings are heavily restricted
by the need for fitness, would behave essentially like a random network, but
selection can only work with the variations that spontaneously arise, and it is
conceivable that at large scales the network is mainly shaped by such events.
This does not mean that the network will necessarily look like a random net-
work, but it will at least improve the odds that it does so in some respects.

i



18 Introduction

Unfortunately, the number of attractors in a large Boolean network turns
out to be very difficult to find, as it is easy to overlook those cycles and fixed
points that have small basins of attraction. This problem of biased undersam-
pling is implicated in the original, erroneous finding for Kauffman networks
that the mean number of attractors grows with the number of nodes as

√
N,

which would have neatly matched the number of cell types. I will get back to
the true scaling with N, as this is the topic of paper I.

To further complicates things, there are some very rare networks with an
extreme number of attractors, for example those few where all states are fixed
points. If such pathological networks are not sufficiently rare, then the mean
number of attractors will be dominated by exceedingly rare networks whose
contributions are unlikely to be included even when many network realiza-
tions are examined. In these cases, the median may be a more suitable average
than the arithmetic mean for characterizing the typical network.

i.5 Continuous models

Year still after year flows
down the Seven Rivers;

cloud passes, sunlight glows,
reed and willow quivers

— J. R. R. Tolkien, The Last Ship

An important part of modeling a system such as the living cell is to choose the
right level of detail for the model. Depending on the goals of the modeler and
the sensitivity of the system to the assumptions made, different types of mod-
els will be appropriate. In some cases Boolean networks may be sufficient to
describe signaling and gene regulation, whereas in other cases it is necessary
to track the movement of individual molecules in the cell. Although spatial
effects inside the cell can play a role, for example in chemotaxis, it is often suf-
ficient to know the concentration levels of the different molecular species. For
example, the typical time scales in DNA transcription are far longer than the
time needed for diffusion to evenly distribute transcription factors in the cell.

When the number of molecules in a cell is small, stochastic fluctuations
must in general be taken into account, if the model is to capture the qualitative
behavior of the system. A classical example of this is the lysis–lysogeny switch
of phage λ [48]. However, when the number of molecules is large, it is possible
to work with continuous concentration levels and ignore the stochastic effects.
The model will then consist of a set of chemical rate equations, deterministic
differential equations that describe how concentrations change with time.

Even a seemingly simple reaction can consist of many steps, and the cor-
responding rate equations can in principle be quite complicated. However,
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when studying enzyme-driven reaction in metabolism and gene regulation,
such a detailed view is usually not necessary, as the equations to a good ap-
proximation result in simple Michaelis–Menten kinetics [49]. In general, en-
zyme reactions where the final step is irreversible can be described by Micha-
elis–Menten equations [2]. It is not difficult to derive similar straightforward
approximations for other types of reactions, given that the relative magnitudes
of the reaction constants are know.

Based on the conclusions of Shea and Ackers [50], the transcription rate of
a gene, and thus its protein production rate, can be modeled as being propor-
tional to the binding affinity of RNAP to the promoter. This affinity is largely
determined by what transcription factors occupy binding sites in the regula-
tory region, and by how they interact with RNAP. In real systems where the
regulatory interactions are known and the transcription rates under different
condition have been measured, it may be possible to write down an expression
for the Boltzmann weights of the states where RNAP is bound or not bound to
the promoter. When such details are not known, or the system exists in a com-
puter simulation only, a practical approach is that of Buchler et al. [51], which
is based on the thermodynamics of bacterial transcription regulation and was
shown to produce a rich set of transcriptional logic. There, transcription fac-
tors may bind to one or more sites in the regulatory region, each with its own
binding energy. As some sites are closely spaced or overlapping, the binding
is subject to cooperativity and mutual exclusivity, and it is in principle easy to
calculate how the transcription factors together recruit or block RNAP.

i.6 The Publications

If every PhD student changed the world,
everyone would get a migraine.

— Andy Hopper

As I said at the very beginning of this introduction, the six papers in this the-
sis span a range of abstraction and generality. The first three papers revolve
around models that do not have immediate biological counterparts. Instead,
they describe whole classes of regulatory networks that include the biological
ones. In contrast, paper V describes a specific network, and makes predictions
about its behavior. The modeling in paper VI is closer to paper V in this re-
spect, but it does make some wider generalizations. Paper IV is the odd man
out; instead of modeling the regulatory networks, it introduces a data mining
algorithm that relies on previous knowledge about them.
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i.6.1 About Boolean networks

Papers I–III are concerned with random Boolean networks in various forms.
In paper I, we explore how the numbers of fixed points and cycles of different
length grow with the number of nodes in the critical K = 2 Kauffman net-
works. The background is that the quoted

√
N scaling law for the mean num-

ber of attractors [44] had been called into question [52–55]. Bilke and Sjun-
neson reported that improved sampling showed at least linear scaling [54],
and Socolar and Kauffman went on to demonstrate a super-linear relation-
ship [55]. In paper I we show that biased undersampling (see section i.4.1) can
lead to observations that suggest scaling as a power law such as

√
N. A fixed

number of trajectories from random states will not always find all attractors in
a set of network realization, and more will be missed the larger the networks
are. Over a limited range of network sizes, the number of found attractors can
then look like a power law with N.

The main result of paper I is an expression for the mean number of fixed
points or cycles of length L in networks of size N. This expression, eq. (I.10),
is not easy to evaluate for cycles longer than a few steps, but it is easily shown
that for any given power law, it is possible to find an L such that the number
of L-cycles grows faster than that power. Hence, the total number of attractors
grows faster than any power law with N. The reasoning used to arrive at the
expression is based on the idea that rather than try to count the number of
attractors in networks with a given architecture and assignment of rules by
looking at network states, one may count the number of rule assignments and
architectures that let a state be a fixed point.

In more detail, the reasoning goes like this: All network states are equal,
in the sense that the rule distribution does not favor some states over others,
so we only need to consider one state. If that state is chosen to have all nodes
set to FALSE (or all TRUE), then every architecture is equivalent if the state is
a fixed point. Left to consider is only the chance that the rules of N identical
and independent nodes really make the state a fixed point. For cycles it gets
a bit more complicated, but the problem is readily mapped to a similar fixed
point problem.

We have proved that the mean number of attractors in K = 2 Kauffman
networks grows extremely rapidly with the network size, but it is not clear
how this relates to biological function. For a large network, long cycles with
hopelessly small attractor basins would not seem to have any bearing on the
system’s normal operations, or they might represent pathological cell types
that are rarely realized. Furthermore, Klemm and Bornholdt have demon-
strated that in large networks only a small fraction of all attractors are stable
under infinitesimal perturbations in time, but a disproportionally large frac-
tion of all trajectories end in stable attractors [43].

In papers II and III we apply some of the knowledge gained over the past
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decades to random Boolean networks in a biological context. The architec-
ture of the gene regulatory network of yeast, Saccharomyces cerevisiae, was in
part determined by Lee et al. in 2002, in a set of ChIP–chip experiments in
which the genes regulated by 106 transcription factors were identified with
some level of confidence [56]. Disregarding genes that are not transcription
factors, we extract a core transcriptional network from the data, and use it as
the architecture for otherwise random Boolean networks. To better mimic real
regulatory interactions we introduce nested canalyzing rules, a class of Boolean
functions that includes many of the rules that we would consider “simple”
and seemingly easy to implement biochemically. There is a distribution of
nested canalyzing rules that agrees well with rules collected and inferred from
the literature by Harris et al. [57]. A caveat is that not all the possible input
states are experimentally tested for rules with many inputs, as this would re-
quire hundreds of experiments. This presumably introduces a bias towards
thinking the rules simpler than they really are.

Aside from introducing nested canalyzing rules, paper II describes the dy-
namics of the yeast network with random such rules, and then especially the
response to perturbations. The nested canalyzing rules confer far greater sta-
bility than a flat distribution of all Boolean rules, and as a result the network
almost always finds its way to a very stable fixed point. When the states of
several nodes are flipped at once, the typical behavior of the network is to
relax back to the same fixed point within a few time steps.

Self-couplings, links directly from nodes to themselves, present something
a problem in Boolean models, as they can behave quite unlike their contin-
uous counterparts. In the continuous world, negative autoregulation pushes
something up when it is low and down when it is high, so that it is stabilized
at an intermediate level. The Boolean version instead drives the state back
and forth between TRUE and FALSE, even without any external signals. For
this reason we remove such interactions from the network in paper II, except
to investigate their effects on the dynamics.

Paper III goes on to describe the stability properties of networks where the
nested canalyzing rules are applied to random network architectures. Instead
of returning to the K = 2 networks, we study networks where the in-degrees,
i.e., the number of inputs per node, are drawn from a power law distribu-
tion. This is closer, but not identical, to the distribution seen in real transcrip-
tional networks [56, 58]. How robust a network is towards perturbations can
be quantified as the number of nodes that are immediately affected if the state
of a single node is changed when the network is at equilibrium. This number,
which we call r, is always less than 1 in the studied class of networks, which
means that the nested canalyzing rules confer great stability to the network
dynamics. The networks are well inside the ordered regime, and only ap-
proach criticality when the power in the power law grows very large. In that
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limit, all nodes have a single input, and the network consists of long loops
where signals circulate forever.

Through some rather convoluted mathematical jiggery-pokery, it is possi-
ble to show that the number of attractors in large networks is highly sensitive
to r. The results in this direction in paper III were subsequently expanded on
in reference [59] by Samuelsson and myself.

i.6.2 About pathway profiling

What we set out to do in paper IV is to combine microarray data with prior
knowledge about signaling pathways and transcriptional regulation. By map-
ping microarray data to the activity of pathways, it should be possible to sum-
marize the main trends of a biological sample in a concise and intuitive man-
ner. The pathways, as described in the TRANSPATH database [36], start at one
or more receptors, proceed through multiple reaction steps, and end at a set
of transcription factors. With the information in the TRANSFAC [35] database,
it is possible to find out what genes the individual transcription factors regu-
late. If some genes are controlled by the same signaling pathway, then their
expression levels should change in unison, provided that the activity level of
the signaling pathway shows some variation across the samples. However,
the databases do not reveal whether activity in a pathway can be expected to
result in the up- or down-regulation of a gene.

We define a score based on squares of the correlations between those genes
that are regulated by the same transcription factor. Using data from some pub-
licly available cancer microarray data sets, we verify that this score identifies
more transcription factors as regulating their target genes than would be ex-
pected by chance. That many transcription factors do not show a significant
signal is not a failure, as they can not all be expected to be differentially acti-
vated between samples in the data sets. Entire pathways, too, are shown to
be significant. Hence, the data sets carry some information about the activity
levels of pathways.

We do not know whether a pathway up- or down-regulates each of the
genes it is thought to affect, but if most target genes go the same way, a signal
should still be seen if the expression data for all of them are combined. This
reasoning leads us to a procedure for finding a sign and a p-value for the
activity of each pathway in each individual sample. To demonstrate that these
scores capture some real biological signal in the data, we make a comparison
between the predicted status for a few pathways and the medical annotations
of the samples, and find a significant level of agreement. This does not imply
that our method presently would be useful for diagnosing patients, but it does
indicate that a pathway-level view on gene expression data may find uses in
such contexts.
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In a recent paper, Liu and Ringnér present a related method of pathway
profiling. Starting from lists of differentially expressed genes, and using tran-
scription factor binding motifs to identify target genes, they identified path-
ways that were abnormally regulated in experiments on mice or in cancer in
humans [40].

i.6.3 About the stem cell switch

Stem cell regulation is a vital component of mammalian life. During develop-
ment, embryonic stem cells must differentiate at the right times and into the
right types of cells for tissues to form as they should. Later in life, stem cells
play a critical role in damage repair, and there is great hope for practical med-
ical applications in fields like restorative neurology. Unfortunately, stem cells
are difficult to maintain in vitro, as they spontaneously differentiate in the ab-
sence of various chemical signals that are normally present in vivo [60]. Such
tendencies can be understood in the light of the potentially dire consequences
of mutations in stem cells; they already possess the mobility and unlimited
replication that are two of the hallmarks of cancer [61]. Similarly, differentia-
tion is essentially a one-way process, but one that it would be greatly useful
to be able to reverse, as the least differentiated stem cells are very rare and
difficult to extract. Understanding stem cell regulation is a big deal.

Central to maintaining embryonic stem cells in human and mouse are the
genes OCT4, SOX2, and NANOG [62]. These genes code for three transcrip-
tion factors whose exact interactions are still being mapped out. In paper V,
we use the available knowledge about these players to make a model of their
transcriptional network. For this we use rate equations and the Shea–Ackers
approach to expressing the transcription rates. How the three genes regulate
each other has been fairly well characterized, but how they together control
their target genes less so. What is known is that the transcription factors pos-
itively regulate each other and themselves, and that they together keep genes
that are involved in stem cell self-renewal expressed, while genes that initiate
differentiation are heavily repressed.

What our model reveals is that due to the multiple positive regulations be-
tween OCT4, SOX2, and NANOG, the system is strongly bistable. The three
genes can be regarded as forming a switch with two distinct states, ON and
OFF, and external signals help move the system between these states. It is
shown that the transcription factors can regulate all their target genes in qual-
itatively similar ways, and yet achieve completely different expression of the
differentiation genes and the stem cell self-renewal genes, but only if NANOG
is positively autoregulating. Thus, the model can help fill gaps in our knowl-
edge of the regulatory interactions.
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One set of external signals can cause the expression of NANOG to be re-
pressed, and it is predicted that this irreversibly causes the switch to be shut
OFF. When this happens, the stem cell self-renewal genes are repressed, and
differentiation is triggered. This matches the response of the cell to DNA
damage and similar disasters. Another signal causes SOX2 and OCT4 to be
up-regulated, and depending on the basal transcription rate of NANOG the
switch may either be turned ON by the signal and then stay ON when the sig-
nal is removed, or require the signal to be present to avoid being irreversibly
turned OFF. If this signal is lost, a similar same chain of events will unfold as
above. The cell may use this mechanism to start differentiation when it is not
needed as an embryonic stem cell, or as a fail-safe if the signal is lost for some
other reason.

i.6.4 About metabolic pathway regulation

For all that has been said about regulatory networks, it remains to be asked
why transcriptional regulation is so common. In the light of evolution, why
do gene regulatory networks exist, and why are they so complex? Only if
a regulatory interaction confers some fitness benefit will it be retained once
it has arisen by mutation. This is true even though the network is mostly
built though the duplication and subsequent modification of existing sets of
genes. To understand how evolution shapes entire gene regulatory networks,
we would do well to understand when and how a single regulatory interac-
tion can be of use.

In paper VI we develop a highly simplified model of a microorganism that
does nothing but eat and grow. Every detail that can possibly be removed or
simplified is given the axe. What is left is a small set of differential equations
that describe how a nutrient diffuses into a cell and is converted into a use-
ful form by the action of a single enzyme. From this useful form, which we
may picture as representing pyruvate or some other small, energy-carrying
metabolite, the cell can both manufacture more of the enzyme and grow larger.
Cell division itself is simplified into an average dilution effect, and all that
remains for gene regulation to decide is how to balance the investments in
enzyme production and growth.

Consider first how the growth rate of the modeled organism depends on
the enzyme production in a perfectly static environment. There is no need
for fancy transcriptional regulation, provided that the basal transcription rate
of the enzyme can be adjusted. Evolution will effectively tune the expression
level of the enzyme to maximize the growth rate. This point was experimen-
tally demonstrated in E. coli that were grown in a constant lactose concen-
tration [21]. It is conceivable that transcriptional regulation would still fill a
function here, if it can reduce detrimental stochastic fluctuations in the en-
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zyme level. However, a major enzyme in a metabolic pathway would likely
be expressed at comparatively high levels, and then the relative fluctuations
would be small.

A reasonable definition of fitness is the expected growth rate of an organ-
ism’s genetic material over a period of time, taking into account not only
growth and reproduction, but also the risk of death. If cells live in envi-
ronments where the nutrient abundance is always high enough for sustained
growth, and individuals are siphoned off at random so as to keep the total
population constant, as in the example above, then the average growth rate
alone is a good measure of fitness.

Rather than simulate an environment where the nutrient level changes
with time, which certainly can be done in this context [24], we assume that
changes are rare, which means that the fitness of an organism can be com-
puted from a set of fixed environments. As a positive practical consequence
of this approach, the fitness becomes easy to compute with high precision, and
for different variants of the model we can find the parameter values that max-
imize it. The first such variant we consider is the most central: a transcription
factor is added and given the power to up- or down-regulate the expression
of the enzyme.

What we find is that when the transcriptional regulation is tuned to maxi-
mize fitness, the resulting fitness is far greater than for any unregulated case.
In fact, there is a substantial benefit in regulating the enzyme production even
when the range of nutrient concentrations is narrowed down. This goes some
way towards explaining what is so great about gene regulation.

When we extend the model to include two nutrients and two metabolic
pathways, we see that the activation of a pathway ideally is a continuous, if
steep, function of the nutrient level. This fits with the in silico observation that
the lac system in E. coli shows a graded response to lactose [24]. This lack of
hysteresis in the system is also indicative of the stability of those regulatory
networks that govern metabolic pathways.
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