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NUMERICAL IDENTIFICATION OF LINEAR DYNAMIC SYSTEMS
FROM NORMAL OPERATING RECORDS

K. J. Astréom™%* T. Bohlin

SYNOPSIS

A technique for numerical identification of a discrete time system

irom input/output samples is described. The purpose of the identifica~
tion is to design strategies for control of the system. The strategies
are obtained using linear stochastic control theory.

The parameters of the system are estimated by Maximum Likelihood.
An algorithm for solving the M.L. equations is given. The estimates
are in general consistent, asymptotically normal and efficient for in-
creasing sample lengths. These properties and also the parameter
accuracy are determined by the information matrix. An estimate of
this matrix is given. :

The technique has been applied to simulated data and to plant data.
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INTRODUCTION

In order to apply linear stochastic control theory, the process to be con-
trolled should be described in terms of linear differential or difference
equations driven by the input signals and disturbances in the form of
weakly stationary stochastic processes with rational spectra. In this
paper we describe a technique for determining such models from samples

of the process inputs and outputs.

We restrict ourselves to the case of

® difference equations
e . single input and single output
e time invariant models

As will be discussed in section 7, these restrictions are not essential

for the application of the technique.

If it is also assumed that the disturbances are normal there is a canonical
form (2.1) containing a finite number of unknown parameters, for the
class of models of interest. Each set of parameters together with the
input sequence determine uniquely the distribution of the output sequence.
Conversely, given a sample of the observed output we have a statistical
parameter estimation problem. We will solve it using the method of

Maximum Likelihood. For alternative approaches to the identification
problem we refer to (3], [4], [5], (8], [15], [18], [19], [21], [24].

The problem is stated and commented on in section 2. In section 3, an

algorithm is given for maximizing the likelihood function, and in section
4 the statistical properties of the estimates are investigated. Section 5

contains an example. An alternative interpretation of the technique is

given in section 6.

The algorithm has been tested on artifically generated data and has

generally been able to identify the parameters with the theoretical
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accuracy. It has also been applied to design control strategies for
regulating a paper machine [2]. A large amount of data has been
analyzed. In general, it has in this application been possible to fit
the data with models of low order (first or second order with delay).
As a rule, we encountered very few numerical difficulties with the
standard algorithm. So far, our practical experience with the tech-
nique is, however, limited to systems of comparatively low order.

The results of the practical experiments have been very satisfactory.
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2,

STATEMENT OF THE PROBLEM

2.1. Model of the System to be Identified

Consider a discrete time single-input single-output dynamical system

whose input/output relation can be described by the equation -
-1 -1 -1
A(z ) y(t) = B(z )ult) + 2 C(z ) eft) (2.1)

where {u(t)} is the input {y(t)} the output and {e(t)} a sequence of in-
dependent normal (0, 1) random variables. Furthermore, z denotes

the shift operator [22].

z x(t) = x(t + 1) (2. 2)
and A(z), B(z) and C(z) are polynomials

A(z) =1 ta;z+... +anzn

B(z) = b +b;z +...4 bnzn

C(z) =1+ Cpz te..t c‘nzn (2.3)

We also introduce the row-vectors a, b and ¢ whose components are ai,

bi and c; respectively.
The following assumptions are made

® the functions A(z-l) and C(z-l) have all their zeros inside the unit

circle

¢ ' there are no factors common to all three polynomials A(z), B(z)
and C(z)

. . -1 . s .
The assumption that the function A(z ) has all its zeros inside the unit

circle implies that the homogeneous equation corresponding to (2.1) is
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asymptotically stable. The assumption that there are no factors common to
A(z), B(z) and C(z) implies that every state of the system (2.1) is controllable
~either from u or from e. [ 13]. This is no loss in generality. Neither is there
any loss in generality to assume that the leading coefficient of the polynomials
A(z) and C(z) are unity,we can, however, not make this assumption for

the polynomial B(z). Also, notice that in (2. 1) the degrees of all the
polynomials A(z), B(z) and C(z) formally are the same. If this is not

desired we can put some of the coefficients equal to zero.

The system represented by the equation (2. 1) is in fact the general,
single-input single-output linear discrete-time dynamical system, with
normal disturbances having rational power spectra. Notice in particular
that systems with time delays also can be represented by the model

(2.1) if the time delay is an integer multiple of the sampling interval.-

The system model (2. 1) contains 4n + 2 parameters, the 3n + 2

coefficients of the equation (2. 1) ajs @yrceerd bo’ bl' bZ’ cees bn' s
C,y+sesC_» Aand n initial conditions for the equation (2.1). The initial
2 n

conditions add little to the problem and are assumed zero. In practice,
it is often necessary to include a constant level as an additional para-
meter. This adds nothing of interest to the identification problem and
istherefore neglected. The complete problem including the initial con-

ditions and the constant level is considered in [1 1.

2.2. Problem Statement

We now formulate the identification problem as follows

PROBLEM

Given the input {u(t), t=1,2,...,N} and observations of the output

{y(t) t=1,2,...,N]} find an estimate of the parameters of the model

(2.1).
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Special cases of this problem are well-known
l. n=0, regression analysis [6].
2. b =b,=...=b =c,=c,=...=c =0,

o 1 - n 2 n

3. b =b1=....=bn=a1=az=...=a = 0,

estimation of parameters in a moving average [10], [23], [26].

L3
o
]
o

t
it
o
i

o 1= n = 0, parametric estimation of rational power

5. €] =Cy, = ... =c 0, least squares model building (12].

6. a2, =cy, i= 1,2...,n, identification of noisefree process with

measurement errors L15).

The general case has been considered by Galtieri [9].

2.3. Minimum Variance Prediction and Control Algorithms

Before proceeding to the solution of the stated problem we will demonstrate
that once a model of type (2. 1) is obtained it is a very simple matter to
derive the minimum mean square control algorithm. This will be discussed
in detail elsewhere, let it therefore suffice to give an example. For the
sake of simplicity, we assume that bo = 0 and b1 # 0. Consider the situa-
tion at time t. The data ...,y(t - 1), y(t),..., u(t - 1),... have been
observed. The crucial step in the derivation of minimum mean square
control algorithms is to find the minimum mean square prediction. It is
well known that this problem is solved if we express y(t + 1) as a function
of the data ...,y(t - 1), y(t),..., ut - 1), ut) and a residual which is
independent of the data. From the equation (2.1) we can immediately

obtain such an expression. Solving (2.1) in terms of y(t + 1) we get

TP 18.159




y(t + 1) = Xe(t + 1) + A"l (z‘l)B(z'l)u(t +1)

s A Y lez™) - Az Ire(t + 1) (2.4)

Eliminating e(t + 1) using (2. 1) we get

-1

ylt + 1) = et + 1) + C-l(z )B(z-l) zu.(t) .

st

(znl) [C(znl) - A(z-l)] zy(t) (2. 5)

Due to the assumptions made we find that the series expansion in powers

of z”1 of the operators ¢! (z-l)B (z-l) and ¢~} (z-l) Ec(z'l) -A(z_l)] have no
constan: terms. The right member of (2.5) depends only on the data y(t),

y(t - 1), ..., u(t), u(t - 1), ...and et +1). As et + 1) is independent

of the other terms of the right member we have obtained the desired
expression. The last two terms of the equation (2. 5) can thus be interpreted
as the minimum mean square prediction of y(t + 1) based on the data y(t),

vyt - 1), ..., uft), u(t - 1), ... The prediction error is Xe(t + 1). As

e(t) is normal (0, 1) the number )\ has physical interpretation as the

standard deviation of the prediction error.

Having obtained the minimum mean square predictor we will now derive

the minimum mean square control law. We observe that
Ey2(t + 1) 2 A2 (2.6)
where equality holds if

-1, -1,r -1 -1
uft) = -B” (z7)lc(z"") -a(z"")1y(r) (2.7)
The equation (2.7) is thus the minimum mean square control law. As
bo = 0 and b, # 0, the series expansion of the operator of the right member

does only contain non-negative powers of z-1 and (2.7) is thus a physically

realizable control law.
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Thus we have demonstrated that under the particular assumptions b1
£ o0, bo = 0 the minimum mean square control algorithm is easily
obtained from the model (2.1). Hence once the identification problem
is solved we have infact also a solution to the minimum mean square

control problem, and the staiement made in the introduction is proven.
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SOLUTION

The problem as stated in section 2 is a statistical parameter estima-
tion problem. We will solve it by the method of Maximum Likelihood.
We first give an algorithm for the Maximum Likelihood estimator and
we will later show that the estimates have desirable properties as the

number of observations increase.

3.1. The Likelihood Function

Let pl{y(t)} I {u(t)}, a, b, c, ] be the probability density function

of the outputs {y(t)} given the inputs {u(t)} and the parameters a, b,

c, A. The likelihood function is defined as the function p regarded as

a function of the parameters and with the observed values {y(t)} and
{u(t)} inserted [61, [14], [27]. The function is thus a stochastic
variable. We will now derive an expression for the likelihood function.

It follows from (2.1) that the numbers €(t) defined by

oz et) = Alz™Y) y(e) - B="1) u(t) (2.8)

are independent and normal (0, A). The logarithm of the probability

density function of {e(t)} now becomes

N
L=l E32'(t) - N log A + const. (2.9)
2\t =1

Since {y(t)} is a one-to-one transformation of (¢ (t)} and the Jacobian is 1,
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L is also the logarithm of the likelihood function. The logarithm of the
likelihood function is thus obtained from (2.9) where the "errors'" € are
computed from the input {u(t)} and the output {y(t)} by (2.8). The likeli-
hood function is thus a function of the parameters a, b, ¢, A and of n initial
conditions of (2.8). For simplicity we will here assume that the initial
conditions of (2.8) are zero. This is not essential. For an analysis of

the complete case we refer to [1]

3.2. Maximizing the l.ikelihoord Function

We observe that the function L can be maximized with respect to the
parameters a,b and c separately. To do this we introduce the function
V(9) defined by

V(@):%t

W 'z

e?(t) (2.10)
1

where 6 = col (a, b, c). Maximizing L is equivalent to minimizing the loss
A
function V. When we have found £ such that V(£) is minimal we get the

Maximum Likelihood estimatc of Afrom

) (2.11)

and all parameters are estimated. We observe that V(8) is a quadratic
function of a and b but that the dependence on ¢ is more complex. Thus

we cannot obtain an analytical solution,

3.3. Numerical Algorithm

To maximize the likelihood function/minimize the loss function V(0) we

use the following Newton-Raphson algorithm
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oktl o gk L [y (65917 vy (8%) ©(2.12)

where Vg denotes the gradient and Vgg the matrix of second partial
derivatives of V(8). For a discussion of the algorithm (2.12) and related
ones see [1], (111,

The partial derivatives of the loss function are obtained by straightforward

differentiation. We get

N .
dv = £ €ft) 2¢(t) (2.13)
'Sgi t=1 i

BZV - IZ\:I Je(t) ae(t) 151 c a?‘e((tg 2 14
%, an Tl O 7% +t—l © i (2-14)

The derivatives of €(t) are obtained by differentiating the difference

equation (2.8).

oz )2 = 57y

aai -
C(z-l)gat-i:—‘(-t)- I u(t) (2.15)
C(z-l) ae_t = g7} e(t)

1
)
-1, o° e)(t) -iei ae(t)
C(z ") 2. oc, | 2 ’ aa.l
i)
-1 32 et “i=j oe(t
C(z )Bb_é_cl = -z EE-(-L (2.16)
i 7 1
2 .
-1y o%e(t) _ -i-j Q&(t
C(z )52_1-%)(? = =227

‘1
 The initial values for the difference equations (2.15) and (2.16) are zero.
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Notice that the second order partial derivatives of €(t) that do not in-
volve the coefficients c; are all identically zero. Notice that the
derivatives of the residuals are equivalent to Meissinger”s [20]

sensitivity coefficients.

The equations (2.8), (2.10), (2.15) and (2.16) immediately suggest a
recursive scheme for computating the loss-function V() and its partial
derivatives. Alternatively these functions can be obtained as outputs of
linear dynamical systems., Notice that in (2.15) and (2. 16) the derivatives
with respect to different parameters in the same group (a,b or c) can be

obtained by shifting. We get e.g. from (2.15)

oe(t) _ o€ (t-i+l)

3 d
a; a,

i< t4l (2.17)

This leads to considerable simplifications of the computations as it is

only necessary to solve the equations (2.15), (2.16) fori= j=1.

Also notice that by utilizing (2.17) it is also possible to simplify the com-
putation of the first term of the right member of (2.14). We have e.g.

b, b

5 =) | 2el) 5 fenirl) | e(e=it)
t=1 2§ J t=1 21 1

S)odefer4jei)  Re(t) s | (2.18)

=1 da ) abl

L ||

Similar formulas also hold for the other derivatives.

The algorithm for maximizing the likelihood function is thus

1. Put 65 = 8° (starting value of 9)

2. Evaluate Ve(ek) and Vee(ek) using (2.13), (2.14), (2.15) and (2. 16)
k+1

3. Calculate 8 from (2.12) and repeat from 2.

TP 18.159 11




3.4. Starting Value

The algorithm (2. 12) requires a starting value. We observe that if the
parameters c are given, then V(8) is a quadratic function of a and b and
the second partial derivatives of €(t) are all zero. The iteration (2.12)
then converges in one step from any initial value for the parameters a
and b. In particular if we put ¢, = 0, i > 0 we obtain in one step with the
approximative second partial derivatives, the least squa res estimate a®
and b° of a and b, The initial value for the iteration (2.12) is then taken

as 8° = col (ao, b°, 0).

12 TP 18.159




LARGE SAMPLE PROPERTIES OF THE ESTIMATES

When the identification scheme is applied there are many problems which

naturally arise. Typical examples are the following:

®  What happens to the estimate as the number of observations (N)
increases?
® How accurate is the estimate?

® Are there "better'" ways of estimating the parameters?

o What systems are possible to identify?

® In case we can choose the input signal, how should it be chosen?
@ What order should be chosen for the model?

@ Does the solution obtained correspond to the absolute maximum?

In this section we develop some means for dealing with such questions.
Many of these are essentially answered by an investigation of the large
sample properties of the estimates. It means that asymptotic expressions
can be utilized. The problem of several local maxima, however, cannot
be solved by the results of this section. In the sequel, we disregard it,

and hence assume that eN for all sufficiently large N is the parameter

value corresponding to the absolute maximum of the likelihood function.

The investigation of the large sample properties is a purely statistical
problem, and we will use concepts and methods from mathematical
statistics to find them. The complete investigation is uncomfortably in-
volved and detailed, and we have chosen to omit it from this paper.
However, the results are presented below in the form of mathematical
theorems, which are commented on with regard to their application to

some of the above problems. The proofs are published in T 1]

TP 18.159 13




To facilitate the reading we restate and define more closely some of
the problems and introduce a few statistical concepts.

A
® Consistency, i.e. 0 converges to 90 when N increases.

o Asymptotic normality, i.e. convergence in distribution of the

A
quantity VN (eN - 90) to a normal variable.

e Asymptotic efficiency, i.e. equalily of the covaricnce matrix of the
limiting distribution to the Crameér-Rao lower bound for regular

estimators.
For further definitions of terms see L27J.

We want to have conditions that guarantee these properties. In the present
case the properties depend on the input and the parameters 90. Since 90

is not known, the conditions should preferably be expressed in terms of

the input u and the output y which are both known quantities. If this is
possible we are then able to resolve whether a certain sequence of estimates
{/B\N} actually has one of the desired properties in each case. It is evident
that this can be done with certainty only if the sample is infinitely long,

and we will confine ourselves to this case when defining the required con-
ditions. This means that we will not consider here the problem of con-

structing statisticaltests for finite sample lengths N.

The consistency conditions can be used to resolve the following important
problem: to be able to design an experiment in order to estimate 90 we
must know what class of input sequences u that are able to excite the
system sufficiently enough to yield consistent estimates of the system
parameter 0 o+ Since at this stage we do not know 9 (or y) we can utilize
only u such that the estimates {6 } are consistent 1rrespect1ve of the

value eo' We are interested in such (smaller) classes of u.

The results of this section solve the following problems:
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A
1. What set in the parameter space does 6N converge into (Theorem

1 + Lemma 3).

A
2. In cases where {GN} is not consistent, find (singular) function of

A
8N that is consistent (Theorem 2).

3. F1nd a class of inputs u and of system parameters 9 such that

{6 } is consistent (Theorem 3).

A
4, Find conditions on u and y for {6N} to be consistent (Corrolary,

theorem 2).

A
5, Find conditions such that {GN} is asympotically normal and

asymptotically efficient (Theorem 4).

A
6. When {BN} is asymptotically normal and efficient find an estimate

of the covariance matrix of the limiting distribution (Lemma 4).
The theorems are in a sense ergodic theorems, since they all deal with
asymptotic properties of functions of a single sample y. The ergodic
property establishes that a single realization of the process output may

be used in place of an ensemble of realizations.

The following is a general regularity condition on the input sequence {u(t)}

Condition A

u(t) and the crossproducts u(t) u(t+T) be bounded and Cesaro summable,

i.e. the following limits

4

lim L

% ut)
N—'ooNt=l

TP 18.159 15




N

Lim g T ou(t) u(t+T)
N—»oo t--l :

exist for all finite T.

In the sequel it is necessary to distinguish between 0 = an arbitrary
point in the parameter space and 90 = the true parameter point, i.e.

the parameter point defining the observed output according to (2.1).
Denote the logarithm of the likelihood function by LN (v | 8), its gradient

vector Ll\el(y ‘ ), and its second derivative matrix Lle\xe(y | 8). Further,
denote the vector of length N with components y(i) by y. Analogously for u.

4.1. Consistency

Lemma 1

3n

Let R be a region in 3n+2 dimensional Euclidian space E t2 defined by

R = {6 | >0, and all zeros of A(z-l) and C(z-l) lie strictly inside the

unit circle}
Assume that u satisfies the condition A. Then

1 . N s
S Ly | 8) = 1im

N- N-=

1

lim N

ELN(y | 8) = L(8,8 )
with probability one if 9 € R and 90 € R,

Lemma 2

Let R“ 7 Rbe a closed set.
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Assume u satisfies condition A.

Then L(e, 90) is an analytic function in R“, and we have

N
. 1 N L (IZ o)
lim Ngrade L (Y ‘ ) = grade lim N ) = Le(e, 60)
N== N

with probability one. The relation also holds for higher derivatives.

The lemmas establish that the time average of the residuals €32(1:) i. e.

1 LN (y l 6) converges to its ensemble average, which is a differentiable

N
function in the parameters 8. The conditions are mild and natural, i.e.
the system, the model, and the optimal predictor of the noise component

C(znl)e be asymptotically stable.

The lemmas are fundamental for

Theorem 1

Let S_ be a set in E32! defined by

S, = {6 L, 8)=1L(8,, & )3

(o]

Assume u satisfies condition A, and that for all sufficiently large
A -
N, N € R’, where R°“ R_is a closed set., Then

A 1
Lm || 8N - 28N =0
N—om

with probability one, where P3isthe projection on So MR i.e. the

nearest point € S, MR-,

This theorem replaces a consistency theorem.
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A
It asserts that the estimates N converge into the set So' though not
necessarily to a point. It gives the consistency conditions in terms of

conditions on (u, 90) through the

Corrolary

A
If the set S_ contains only one point (90), (6N} is strongly consistent.

The set SO can be interpreted as the set of parameters O that are
equivalent to eo in the sense that any model with 8 € S, generates real-
izations that for long samples have the same statistical behaviour (same
likelihood function) as the system output y. The condition is then natural
since there is no way to judge from the output only which of the pararheters

6 € S, that generated the obse rved output.
The purpose of the following theorems is to characterize SO and find con-

ditions for S_ to contain only the point 0 = 90

Lemma 3

The set So’ as defined in theorem 1 has the following property
s =rMs’

o o
where Sc') is a linear set.

. AN . .
Hence, we know that in all cases 9 will at least converge into a hyper-
A

plane SO. This suggests that components of N orthogonal to this hyper-

plane will be consistent. We want to be able to calculate such components.

This can be done with the aid of
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Theorem 2

A} A
Let AN (y | eN) be the diagonal matrix of eigenvalues ole LN(y I eN)
A :
and let PN (y | eN) be a matrix of corresponding (ortfogonal) eigen-

vectors. Then

T
A A A
m [ AN | 8N) PN (v [ BN) 3N -8 ) il = 0
N——»m

with probability one.

The rather complicated form of this theorem is due to our desire to
express the projections in computable terms. The main difficulty arises
from the fact that it cannot be shown that %\I ngle(y | @N) converges. Even
if this is the case, the limit may have no unique set of eigen vectors so
that it is difficult or impossible to define a convergent sequence of ortho-
gonal transformations {PN(y l /e\N)} This is ‘the case particularly if

the limit is singular with at least two eigenvalues zero. The singular
case is of practical interest, since it arises from choosing a too high order
model or from the fact that the sysicm is degenerate (not controllable)
or not excited (see theorem 3). In such cases we can then use theorem

2 to find a more reasonable model by taking the projections orthogonal

to S(; as new parameters. The estimates of these new parameters are

then consistent.

From theorem 2 we immediately obtain a solution of the problem 4) posed

above through the

Corrolary

A - A
‘ eN)] ! is bounded then 8N is consistent.

1 N
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It is not shown that the converse is necessarily true. When calculating

A A

0N the matrix I_.I\ele(y | GN) is actually computed. Each estimate is

thus accompanied by a quantity which can be used to judge its significance.
A complete characterization of S_ in terms of (u, 90) is given in the

proof of theorem 3 (1],

4.2. Identifiability

From the equations characterizing SO it is possible, at least in princip}\e,
to resolve whether they possess a unique solution € = eo in which case 9
is consistent. We can also coﬁistruct conditions for this being the case.
These conditions are complicated and impractical for applications. It

is desirable to find simpler conditions, possibly more restrictive, that
are sufficient to ensure that So contains only one point. The correspond-

ing theorems will be called identifiability theorems, because they give

conditions for the system to be identifiable from the input/output record,
in the sense that the parameter estimates are consistent. It is attractive

to think of the conditions in the following terms:

A system at rest is defined by the parameters 90 according to (2.1),

u = 0 and regarded as a black box containing the unknown parameters 90.
In order to draw conclusions about the contents of this black box it is
necessary to excite the system by applying some u # 0 and observe the
response. The input must excite all components of 90 and must be
sufficiently persistent, since the response is obscured by noise. It is
evident that parameter components that cannot be reached by the input
(or the noise) can never be estimated. Hence, some controllability re-

quirements are also needed.

Definition

A process is said to be completely identifiable if the Maximum Likelihood
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estimates of 90 are consistent

Definition

A bounded signal u is said to be persistently exciting of order m if the

limits

- 1 N 13

u=lim = ~ u(t)and r_(7)=lim 3 u(t) u (t+7)
N-= N ¢z u N-e N ¢=)

exist and if the matrix
R = {r (i-)) | i,j=1,...,m+1}
is positive definite.

We can now state the main result.

Theorem 3

The process (2.1) is completely identifiable if the input is persistently
e xciting of order 2n and every state of the process is controllable either

from u or e.

The first condition is easy to verify in practice, since u is known. The
second condition is of less importance in a practical case, we can never
verify it before the experiment and we can always verify it after by means
of theorem 2. It is, however, useful as a means of diagnosis: Why are

the estimates inconsistent?
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4.3. Asymptotic Normality

Theorem 4

A
Assume that S_ contains only the point 8 so that BN is consistent. Then
A
the stochastic variable Lee(eo, 90)/—1\T (8% - eo) is asymptotically normal
(09 = Lee)'

A

If in addition Lee(eo, 90) is nonsingular, then N s asymptotically normal
1 -1

(eO’ - N Lee).

Since NLee(eo, 90) ~ Lgre(y | 90) = the information matrix, the estimates

are also asymptotically efficient.
The fact that the estimates are asymptotically efficient means in practice
that we cannot expect to find an estimator with a greater accuracy for long
samples,

AN
The asymptoti c normality implies that the distribution of ™ is completely
known, that confidence regions for the parameters can be determined, and

that approximate significance tests can be performed. To perform the

tests an estimate of the covariance matrix is required. This is obtained from

Lemma 4

Assume that lemma 2 and theorem 1 hold. Then
1 | N AN AN
I & Looly | 87) - LggB 87, 8 ) Il =0
with probability one.
. . | : ix lim LN oy | Ny
Besides solving the consistency problem, the matrix ,\}I_"nm paly ) then
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also yields an estimate of the accuracy of the estimated parameters

in cases where the parameter estimates are consistent.

In practice we do not have an infinite sample and then the result means
that whenever we can invert the matrix% ngle(y l @N) without difficulty, we
may consider the obtained estimate 9 as consistent. The accuracy of

the estimate is given approximately by the inverse of the matrix. If the
matrix is nearly singular then the inverse will always contain somevery
large diagonal elements, and we may either say that the corresponding
component of 81\ is not consistent, or it is consistent but with a very

large standard deviation. The practical result is the same, namely the

conclusion that we have included too many parameters.

4,4, Tests of the Order of Model

According to Theorem 2, the second derivative matrix Lge(y | /éN) can
be used as an indication that there are redundant parameters in the model
and also to determine a new, non-redundant set of parameters. Hence,
we may in practice determine the order of the model by repeating the
identification with increasing order using some measure of singularity

of the matrix as a test figure. However, the following alternative may

sometimes be preferable:

We observe that if the model order is not less than the order of the
system then the residuals {e(t), t=1,...,N} form a series of independent

normal variables. We have then another test on the order:

If the residuals form a sequence of independent variables then the order
of the model is equal to or greater than the system order. A simple test

of independence is to compute the covariance function

1N-T

— 2 & € T
N-T,., (1) €(t + T) for a few delays.

A quick method is to count the sign changes, the number of which should

be ~ % N for a sequence of independent variables.
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EXAMPLE

As an example we will consider the identification of the following system

. Z 1y 0.5z "4 u(t)
Y(t) = -1 -2
1 -1.52 + 0.7z
-1 -2
s l-z + 0.2z 2e(t) ' (5.1)
1 -1.52 77 +0.72z ~

Three cases are considered

1,

[aY)
]

3‘

In the experiment 240 pairs of input/output variables (u,y) were generated
using the equation (5.1). The random numbers {e(t)} were obtained as
suitably scaled sums of twelyve rectangularly distributed pseudorandom
numbers obtained from a modified Fibonacci series. The same sequence
of pseudorandom numbers were used in all three cases. In Figure 1 we
show the chosen input and the output y in the three cases. As a reference

we have also in each case shown the output for A = 0,

The identification scheme described in this paper was applied to the
generated data. The estimates of the model parameters obtained are
given in Table 1. In this table we also give the standard deviations of
the estimates which are computed from the estimate of the covariances

A -
given by the matrix )\ZVeé .

From this table we find that the estimates of the coefficients b1 and b2
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are getting increasingly inaccurate in the experiments while the accuracy
of the coefficients a and ¢ are unaffected. This is very natural since the
response of the deterministic part of the model is corrupted by an in-
and ¢

1 2
should in general not be expected to depend on the noise amplitude.

creasing amount of noise. The estinates of the parameters ¢

To demonstrate the convergence of the algorithm we give in table II the
successive iterates for Case 3 and in table III the gradients of the loss
function in the various iteration steps. Notice in table II the large difference
between the least squares estimate (step 1) of ajs» a2, b, and b, and the

1 2
maximum likelihood estimate,

To illustrate the test of the order of the system as discussed in section 4,
the data of Case 2 was also identified as a first order system. The co-,
variances of the residuals for the first and second order models are graphed

in Figure 2.
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COMPARISON WITH MODEL ADJUSTMENT TECHNIQUES

There are many ways to approach the identification problem. Two

approaches are represented by

® statistical parameter estimation

o model adjustment

In the first case the problem is put in a probabilistic framework and
sufficiently many assumptions are made in order to ensure that the
methods of mathematical statistics can be applied. In the model adjust=
ment technique [4], [17], [25] a model characterized by some para-
meters and a criterion is postulated. The problem is then to adjust

the model parameters in such a way that the criterion is satisfied. The
model adjustment technique is very general in the sense that complicated
models and criteria can be used. The result of the model adjustment
procedure is a set of parameter values. When the problem is approached
as a parameter estimation problem many more assumptions must be made.
Instead the results are much more far reaching. The parameters as

well as their confidence intervals are obtained, questions related to
significance of the estimates can be answered. In many situations it is
rewarding to consider a particular problem from both points of view.
Statistical considerations may suggest a suitable criterion for the model
adjustment procedure. In a situation where the assumptions required by
the statistical approach are not fulfilled we can still obtain a solution to

a model adjustment problem. A typical case may be the situation when

the assumption on normality of the residuals is not fulfilled.

Classically, the two techniques have been developed in parallel. Let

it suffice to mention least squares fitting of linear models.
So far in this paper the identification problem has been discussed entirely

from the point of view of statistical parameter estimation. We will now

interpret our procedure as a model adjustment technique.
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Consider the equation (2.4). We recall that the last two terms of the

right member of this equation can be interpreted as the prediction of

y(t + 1) based on y(t), y(t - 1), ... and u(t), u(t - 1),... and that the
quantity #€(t + 1) has physical interpretation as the error of the one-step
ahead prediction of y(t). Now consider the equation (2.8) which we rewrite

as

e(t+1) = y(t+1) - {C-l(z-l) [C(z-l) - A(zul)]y(t+l)

1

+ ¢ MYy Blz™h u (t41)) (6.1)

A comparison with the equation (2.4) now shows that the last two terms

of the right member can be interpreted as the prediction of y(t+1) based
on y(t), y(t-1),... and u(t), u(t-1),.... In the algorithm (2.8) the number
€(t+1) can thus be interpreted as the difference between y(t+1) and its one

step ahead prediction based on y(t), y(t-1),..., and u(t), u(t-1),...
Now consider the one step ahead predictor

y&) = ¢ Mz Bz Hau(i-1)

+ C-l(z-l) [C(z-l) -A(z-l)]zy(t-l) (6.2)

as the model, and let the criterion be the sum of the squares of the

prediction errors i.e.

V=3
t

Mz

) - 501 = F2 et (6.3)

Compare with equations (2.5) and (2.10). Notice that in the ordinary
model reference techniques the model is a deterministic input/output

relation while in our case the model is a predictor.
As we intend to use the results of the identification procedure to calculate

the minimum variance control strategy i.e. a control strategy such that

the one-step ahead prediction of the output is zero we find that even with
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the model adjustment interpretation our identification procedure has
the required properties. Also notice that the identification algorithm
solves the prediction problem for a stationary process with unknown,

but rational power spectrum.

It is also of interest to compare the algorithm (2. 12) with the algorithms
currently used in model reference techniques. Blandhol [4] only evaluates
the function V(8). Judging from our experience it is very difficult to get
a reasonable convergence rate by probing techniques using the values of

V(6). Blandhol also confirms this.

Notice that V(e)/V(eo) is asymptotically independent of N. This implies
that the loss function does not get ""sharper" with an increasing number
of observations and that the ""sharpness' of the minimum alone does not

determine the accuracy of the estimates.

The gradient Ve(e) is evaluated in some model reference techniques that
are implemented in adaptive systems e.g. (17], [20]. In these cases the

e

parameter adjustment routine is chosen as

k+1 k k

Notice that a more effective algorithm is obtained with very little extra
computational effort, using an approximate second partial derivative i. e.
neglecting the last term of (2. 14). We then conclude that it appears worth-
while to consider this modification in model reference adaptive systems
currently in use. By including this feature we could also obtain an
estimate of the information matrix and thus also of the accuracy of the 3

estimated parameters.

28 TP 18.159




EXTENSIONS

There are many ways in which the problem can be generalized. The
identification scheme can be immediately generalized to continuous time.
The convergence proofs are, however, more difficult in this case and

some modifications might be necessary.

The extension to multiple inputs is trivial. Both the algorithm and the
convergence proofs generalize immediately. The extension to multiple
outputs is more difficult. The crucial problem is to find a suitable

structure. Once the structure is given, the generalization is immediate.
The algorithm can also be extended directly to non-linear and/or time
variable systems with known structure. Consider for example the follow-
ing system:

x(t + 1) = glx(t), u(t), t]]

where g(x, u,t) is a function which contains some unknown parameters.

Let u be the input(s) of the system and let the output y be given by
y(t) = xl(t) +z,(t) + S e(t) + u
where the vector z(t) is given by

z(t + 1) = Fz(t) + Ge(t)

" The system described by these equations is an arbitrary non-linear

system with a single output, with a random disturbance in the output
that is stationary and a rational spectrum. The problem is to

identify the unknown parameters of the function g(x,u,t), the constants
<, and #, and the elements of the matrices F and G. This identification
problem can be solved immediately using the technique described in the

report. To obtain the likelihood function we first write e(t) as a function
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of the inputs and the observations. We get

x(t + 1) = gx{t), uft), t]

2(t+ 1) = Fa(t) + 2 G Ly(t) - x(6) - z (1) - »]

S(t) = CO e(t) = Y(t) = Xl(t) - Zl(t) - %

and the logarithm of the likelihood function is

N 2
-L(y; 9) = L €%(t) + N log e, +
Zco t=1

N
> log 2m

We can now proceed in exactly the same way as was done in section 3 to

obtain an algorithm to maximize L(y|8).

The results can also be generalized in a different direction., So far, we
have assumed that the estimate should be calculated from a complete
record of inputs and observations. Such a situation is referred to as
off-line estimation. In certain applications, particularly in connection
with adaptive control, the problem is different because the inputs and
outputs are obtained . recursively in time. This situation is referred to

as on-line identification. Due to the recursive structure of the computation
scheme only minor modifications are required to obtain an on =line
identification. Some preliminary numerical experiments with very

encouraging results have been performed.

The choice of model structure has not been discussed in this paper. There
is, however, one point we would like to comment upon. The important
feature of the model (2. 1) is that it contains only one noise source e(t).
This is essential, for the reason that it enables us to solve (2. 1) for

e(t) in terms of y(t) and u(t). According to the representation theorem

for stationary random processes it is always possible to find a representa-

tion such as (2.1). However, in many cases a different representation
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would appear more natural. Consider for example the case when there
are independent measurement errors. In such a case we would obtain

a model of the type
Alz” Y x(t) = B(z"Y) u(t) + Ac(z™) elt)
y(¥) = x(t) + bv(t) (7.1)

where {e(t)} and {v(t)} are sequences of independent equally distributed

(0, 1) random variables. The disturbances e(t) and v(t) represent process
disturbances and measurement errors. In the model (7.1) we thus have
two noise sources and one output. To solve the identification problem for
the model (7.1) we can proceed by the method at Maximum Likelihood. The

negative logarithm of the likelihood function is

1 N o R 2
-log L = — Zoef(t) + —5 Z Ly(t) - x(t)]
2\ t=1 24 t=1
- -é— N log AW + const.

where

1

) x(t) - B(z"1) u(t)

C(z-l) et) = Az~

Analyzing the details, we find that the problem of maximizing the likeli-
hood leads to a two point boundary value problem for the equation (7. 1)
and its adjoint. The computational aspects of this have been investigated
and tried. We have found that the computations are much more involved
and time consuming than the corresponding computationsfor the model
(2.1). It is also much easier to solve the minimum variance control
problem for the model (2.1). The reason for this is that the necessary

spectral factorization has already been carried out.
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TABLE 1
Estimated and true parameter values for cases 1, 2 and 3.
Parameter CASE 1 CASE 2 CASE 3 TRUE
-a, 1.512 + 0.008 | 1.544 + 0.03 | 1 586 + 0.06 | 1,500
a, 0.705 + 0.005| 0.720 + 0.02 | 0.722 +0.06 | 0.700
bl 1.025 + 0.04 1.161 + 0,16 1.338 + 0.6 1.000
b, 0.413 + 0.05 0.076 + 0.2 [-0.313 + 0.6 0.500
-cy 0.978 + 0.06 1.015 +0.07 | 1.039 + 0.10 | 1.000
<, 0.158 + 0.06 0.151 +0.07 | 0.143 +0.07 | 0.200
A 0.419 + 0.019 | 1.880 + 0.08 7.572 + 0.3
TABLE II
Successive estimates of the parameters
c c b b _ LOSS
STEP 1 2 1 2 17 °2 7 2 | FUNGTION
0 0.000000 , 0.000000 ; 0,000000 0.000000 0.000000 0.000000 | 17794.97
1 0.000000 | v.000000 | 1.793699 1.215727 | -0.669223 | 0.067462 7696.58
2 1-0.953107 | 0.036294 | 1.939274 | -1.258858 | -0.658175 | 0.654775 7162.93
3 -0.992611 | 0.108536 | 1.370642 | -0.282776 | -0.558668 | 0.583354 6891.57
4 |-1.038508 | 0.134742 | 1.389544 | -0.396304 | -0.549532 | 0.585416 6882.01
5 1-1.035053 | 0.142406 | 1.332628 | -0.294744 | -0.548205 | 0.578284 6880, 34
6 |-1.038635 | 0.142974 | 1.337403 | -0.313218 | -0.547242 0.578912 6880.12
7 1-1.038668 | 0.143086 [ 1.337638 | -0.313263 | -0.547204 | 0.578810 6880, 12
8 |[-1.038671 | 0.143088 1.337638 | -0.313265| -0,547203 | 0.578809
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TABLE III

First order partial derivatives of the loss function

oV oV A% oV vV vV
STEP Fcl EE2 %, ‘g}—’z Aaj-cp) | Olay-cy)
0 0. 0000 0. 0000 {1339.5956 |-1450,3118 s R —
1 197.1321] -704.2079 0.0001 0. 0000 -0.0001 | -0.0049
2 |9352.8641|8950.7504 | 532.4016| 513.5850 — —_—
3 |-479.7225| -960.5074 | 78.6591| 97.8004 |1007,8257 |1459,4972
4 |-167.4281|-163,6832 | -20.8965| -27.5368 | 241.4333 | 300.0271
5 8.0683| -8.4731| 14.5029| 15.7974 |-107.2980 {-124.7181
6 3.0052 2,3351 | -0.6982| - 0.6224 8.6651 9. 0144
7 0.0131 -0.0039 { -0.0010 0. 0000 0.0030 0.0011
TP 18,159
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