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ABSTRACT*†

Engineering design problems are most frequently characte-
rized by constraints that make them hard to solve and time-
consuming. When evolutionary algorithms are used to solve 
these problems, constraints are often handled with the generic 
weighted sum method or with techniques specific to the problem 
at hand. Most commonly, all constraints are evaluated at each 
generation, and it is also necessary to fine-tune different para-
meters in order to receive good results, which requires in-depth 
knowledge of the algorithm. The sequential constraint-handling 
techniques seem to be a promising alternative, because they do 
not require all constraints to be evaluated at each iteration and 
they are easy to implement. They nevertheless require the user to 
determine the ordering in which those constraints shall be eva-
luated. Therefore two heuristics that allow finding a satisfying 
constraint sequence have been developed. Two sequential con-
straint-handling techniques using the heuristics have been tested 
against the weighted sum technique with the ten-bar structure 
benchmark. They both performed better than the weighted sum 
technique and can therefore be easy to implement, and powerful 
alternatives for solving engineering design problems. 

 

                                                           
* Address all correspondence to this author. 
† Both authors contributed equally. 

INTRODUCTION 
It is now common for complex engineering optimization 

problems to use evolutionary computational algorithms, such as 
genetic algorithms (GA, see e.g. [1] for a review). A characte-
ristic of engineering optimization problems is that the evalua-
tion of engineering constraints is time-intensive [2]. For an 
analysis related to structural or thermodynamic problems, finite 
element techniques may for instance be required. Despite that 
specificity, constraint handling is an issue that has been seldom 
addressed in the engineering design field. Most of the constraint 
handling techniques (CHT) used by evolutionary algorithms 
require an evaluation of all constraints at each generation, and it 
is also necessary to fine-tune different parameters in order to 
receive good results, which requires in-depth knowledge of the 
algorithm. Most of the time, the constraints are thus evaluated 
using the generic weighted sum technique, which requires few 
adjustments, or using techniques that are specific to the problem 
at hand. 

The sequential constraint-handling technique (SCHT) 
seems a promising alternative [2] to other CHTs and the 
weighted sum, because it does not require that all constraints be 
evaluated at each iteration. However, it too requires the user to 
give some parameters, especially the ordering in which those 
constraints shall be evaluated [3].  
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In this paper, we propose two heuristics to deal efficiently 
with the constraint ordering issue, and we compare two differ-
ent SCHTs with the weighted sum technique. The comparison is 
performed using the ten-bar truss problem [4]. We show that at 
least for this kind of application, the SCHT is indeed a promis-
ing alternative to the weighted sum technique. Its limitations are 
also discussed. 

In the first part of the paper the different CHTs are re-
viewed. 

 
CONSTRAINT-HANDLING TECHNIQUES 

Although small in comparison with the sum of works on 
evolutionary computing, the number of publications dedicated 
to CHTs is increasing at a fast pace. A website gathering studies 
in that area lists more than 870 references [5]. These techniques 
can be classified in four or five categories, see [3;6-8] for re-
view (note that other classifications are possible). These differ-
ent categories are reviewed below and the choice of the SCHT 
is motivated. 

The most common approach to handling constraints is to 
use methods based on penalty functions (category 1). The con-
cept behind those methods is "to transform a constrained-
optimization problem into an unconstrained one by adding (or 
subtracting) a certain value to/from the objective function based 
on the amount of constraint violation present in a certain solu-
tion" [6]. Those methods are relatively easy to implement, but 
the penalty factors/values must be determined by the user and is 
problem-dependent [9, p. 2]. The weighted sum can be seen as 
one specific penalty technique: the constraints are incorporated 
in the objective function and the given weights that penalize the 
fitness value. 

The second category groups methods that try to maintain 
feasibility of the solutions. For example, the genetic algorithm 
for numerical optimization for constrained problems system 
(Genocop, [10]) ensures that the next generated population of a 
feasible population will also be feasible. Another example is the 
work done by Schoenauer and Michalewicz [11], who noticed 
that in real-world problems the global solution lies on the boun-
dary of the feasible region, and devised a method to limit search 
to that boundary. Those methods require a feasible starting 
point that may be computationally costly to find, or that must be 
set by the user [6, p. 1259] and/or necessitates the use of prob-
lem-specific operators [11, p. 245]. 

The third category regroups methods based on the search 
for feasible solutions. One possibility is "repairing" unfeasible 
individuals (see details in [6, Section 4]), which has been 
proved an efficient method if the individuals can be easily trans-
formed; this unfortunately is rarely the case in real-world engi-
neering problems. Another technique often mentioned is the 
superiority of feasible points heuristic, presented in [12] and 
[13]. The method does not require any user-defined parameters, 
which makes it a good candidate, but according to [6, pp. 1263-
1264], the method seems to have problems maintaining diversi-
ty in the population, and specific methods (niching) need to be 
implemented to avoid stagnation. These methods are time-

consuming and introduce a new parameter to be tuned by the 
user.  

The lexicographic, or sequential, method is the one specifi-
cally studied in this paper. Coming from the domain of multi-
criteria decision making (see e.g. [14, pp. 188-191]), the lex-
icographic method consists in considering each constraint sepa-
rately, in a specific order. When the first constraint is fulfilled, 
the next constraint is considered. When all constraints are ful-
filled, the objective function is optimized. The techniques de-
veloped are the behavioral memory method (BM) [2;15] and 
the lexicographic constraint-handling technique (Lexcoht) [16]. 
They are presented in the next section. Theoretically, this ap-
proach presents the advantages of being easy to implement and 
less time-consuming than the non-sequential CHTs. An SCHT, 
however, requires from the user a sequencing of all constraints. 
This aspect is crucial, as the constraints ordering significantly 
influences the results (in terms of running time and precision 
[3]). How to choose an optimal sequence has not been consi-
dered in the literature. Two heuristics dealing with this issue are 
proposed in the section "choosing the right sequence" of this 
paper. 

Finally, the multiobjective optimization techniques can al-
so be used. The constraints are transformed into objectives to 
fulfill. This is also a promising technique for engineering opti-
mization problems. For reviews, see [6;7;9].  

Categories 4 and/or 5 regroup hybrid methods or specific 
methods. Hybrid methods combine techniques from the differ-
ent categories above and/or with techniques from other do-
mains, such as fuzzy logic [17] or constraint satisfaction prob-
lems [18], see [3;6]. They require supplementary knowledge 
from the user for their implementation; they have therefore not 
been investigated further. 

 
THE SEQUENTIAL CONSTRAINT-HANDLING TECH-
NIQUES 
The lexicographic constraint-handling technique 
(Lexcoht) 

Lexcoht [16] can be described as follows: 
For each constraint: 
• Evaluate the constraint violation 
• If the constraint is satisfied: evaluate the next constraint 
• If the constraint is not satisfied: stop the evaluation and 

score the individual according to: 

c
amp −+

=
1

 (1) 

where p is the individual’s score, m is the number of con-
straints the individual satisfied up until the last constraint 
evaluated, a is the constraint violation of the last evaluated 
constraint, and c is the total number of constraints. The 
constraint violation a is normalized (e.g. 

valueobserved
valueallowedmaximala = ), which means p also ranges 

from 0 to 1. 



 3 Copyright © 2011 by ASME 

As a result of Eq. (1), an individual satisfying m con-
straints is certain to get a higher score than an individual satisfy-
ing m–k constraints, k ∈ [1, m-1]. Lexcoht is presented in Fig-
ure 1. 

This method requires from the user a linear order of all 
constraints. 
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Figure 1. Diagram of the evaluation function of Lexcoht 
 

The behavioral memory (BM) technique 
In [2], Schoenauer and Xanthakis describe another se-

quential approach, the BM technique. It is based on the Beha-
vioral Memory paradigm [19], in which several techniques have 
been implemented to increase the diversity of the population to 
avoid premature convergence around certain constraints. The 
algorithm can be summarized as follows: 

A randomly initialized population is optimized in regard to 
the first constraint. This continues until a certain percentage, the 
flip-threshold φ, of the population satisfies the constraint. The 
population is then optimized in regard to the next constraint, 
until φ percent satisfies the second constraint. Any individual 
not satisfying the prior constraints is given the score zero. This 
continues until all constraints have been satisfied. The algo-
rithm is presented in Figure 2. 
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Figure 2. Diagram of the BM technique 
 
To maintain population diversity, a sharing scheme is used 

as described by [20] and [21]. This method reduces the fitness 
of individuals that are similar to each other to promote diversi-
ty. The user-defined parameter sharing factor, or σsh is used to 
decide whether two individuals are similar or not; it is also used 
to calculate the sharing score shi used to penalize individuals 
that are similar. The score p for each individual can be de-

scribed as 
i

it
sh

CMp −
= , where Ci is the constraint violation, 

and Mt is an arbitrarily large positive number larger than or 
equal to the largest constraint violation. 

Furthermore, a restricted mating scheme as described by 
[22] is used that promotes mating of similar individuals to 
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create fitter offspring. The parameter σsh is also used here to 
decide if two individuals are similar or not. 

This method requires the user to select a linear order of all 
constraints, and to determine the flip-threshold φ and the shar-
ing factor σsh. Recommendations for tuning the last two are giv-
en in [2]: “the order of magnitude of σsh can be approximated 
from below using large φ and increasing σsh until the required 
percentage of feasible points cannot be reached anymore. 
Slightly decreasing σsh should then allow to find good values for 
both σsh and φ.”  

 
CHOOSING THE RIGHT SEQUENCE 

The choice of the linear ordering of the constraints is im-
portant for the SCHTs to obtain good results. One of the diffi-
culties is that the number of sequences increases exponentially 
with the number of constraints: for c constraints there are also c! 
possible sequences. In this section we investigate this aspect 
and discuss a first heuristic to deal with constraint ordering. As 
mentioned in the review section, the different sequences lead to 
different running times and precision [3]. Precision here means 
the aptitude to converge for very sparse feasible space [23]. The 
convergence issue is dealt with in another on-going study, and 
the focus of the present work lies on the running time. 

We first characterize the constraints in a way that we think 
is specific to engineering design problems and discuss the be-
havior of the Lexcoht and BM SCHT under this characteriza-
tion. We propose two possible heuristics for finding sequences 
giving satisfying results that will be tested in the subsequent 
section. 

 
Characterization of the engineering constraints 

As Schoenauer and Xanthakis describe it in [2], in engi-
neering optimization problems, "the feasible region is small and 
quite sparse, and the constraints are available only through 
some heavy numerical computation." The constraints can also 
be characterized in terms of how "hard" they are, and how time-
consuming they are.  

A "hard" constraint can be characterized by the large num-
ber of times the constraint is evaluated before an individual is 
found that fulfills the constraint. The "hardness" of a constraint 
using a SCHT is depending on its place in the sequence. The 
hardness of a constraint, that is, the size of its solution space, is 
indeed determined by the already fulfilled constraints. Let Fλ be 

the solution space for constraint λ. Let 
lastfirst cc ,...,

S  be the re-

maining search space after the constraints lastfirst cc ,...,  have been 

fulfilled. The solution space of λ given lastfirst cc ,...,  is 

lastfirstlastfirst cccc ,...,,...,| SFF λλ
= . The solution space of λ given 

lastfirst cc ′′ ,...,  is 
lastfirstlastfirst cccc ′′′′ = ,...,,...,| SFF λλ

. Depending on how 

Fλ overlaps with the different search spaces, the ratios between 
the sizes of the solution spaces and the search spaces, 

lastfirst

lastfirst

cc

cc

,...,

,...,|

S

F
λ

ρ =  and 

lastfirst

lastfirst

cc

cc

′′

′′
=′

,...,

,...,|

S

F
λ

ρ , may differ greatly. A 

constraint can thus be easy to fulfill in a certain configuration, 
and hard to fulfill in another.  

In the following, ti is the mean time needed to evaluate a 
constraint i, ni is the number of evaluations needed to fulfill 
constraint i, and nij is the number of evaluations needed to fulfill 
constraint i once constraint j is fulfilled (j ≠ i), etc. 

 
Lexcoht 

The total time T1,..,c needed to evaluate c constraints for the 
sequence S1,..,c using Lexcoht is on average 

ccc tntntnT 21...22111,..,1 ... +++=  (2) 
It is necessary to control at each generation whether the in-

dividuals evaluated at constraint i still fulfill the prior con-
straints. Therefore, constraints 1, 2, …, c-1 are evaluated even 
when they are fulfilled. For any sequence Sσ(1),..,σ(c), we have 

)()1()2()...1()(

)2()1()2()1()1()(),..,1( ...

ccc

c

tn

tntnT

σσσσσ

σσσσσσσ

−+

++=
 (3) 

For ease of notation, the permutation signs (σ) are dropped 
and Eq. (2) will be used instead of Eq. (3) to represent any se-
quence permutation.  

The sequence to choose is the one that takes the least time. 
This however depends on the tis and the different number of 
evaluations made for each constraint during each sequence. The 
tis can be easily determined by simulating the evaluation time of 
the different constraints and getting an average time. The hard-
ness is much more difficult to determine. First, because the 
number of ns to determine is equal to c!c, which is larger than 
the c! possible sequences. Second, the hardness in one sequence 
gives no indication on the hardness in another, as showed earli-
er. Nevertheless, the first constraint is always evaluated more 
often than the second, which is evaluated more often than the 
third, etc. We know from practice that the evaluation times for 
the different constraints may shift greatly: one problem can in-
volve both the determination of the length of a component 
(which takes virtually no time) and a structural analysis (requir-
ing time-consuming finite element analysis). That is, the evalua-
tion time ratio t1:t2:…:tc can easily be of the order of magnitude 
1 to 10, 1 to 100 or even more. On the other hand, nothing is 
known about the "hardness ratio" 

21...211 :...:: cnnn  when ap-
plied to engineering design problems. If the hardness ratios of 
the different sequences are similar, that is, of the same order of 
magnitude, then the influence of the hardness would be negligi-
ble in comparison with the evaluation time ratio. A first heuris-
tic would thus be to choose the sequence where the constraints 
are ordered according to their evaluation times. This heuristic 
will hereafter be called the evaluation time-based heuristic. 

How efficient is this heuristic? For a given problem, we 
expect the hardness ratio to change heavily depending on 
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whether the SCHT would be applied for finding one individual 
or several individuals, and on how long the subsequent optimi-
zation would be. If the user wants no more than one solution 
fulfilling all the constraints, 21...cn may well be very small if 
constraint c given c-1,.., 1 is easy to fulfill. Second, the particu-
larity of Lexcoht is that once an individual fulfills a constraint 
the convergence of the population is rapid. Thus the same ratio 
will decrease rapidly if several solutions are to be found (the 
increase rate of 21...cn  would be much higher than 1n ). Finally, 
if the algorithm converges, nearly all individuals will fulfill all 
constraints after a while. If optimization follows, the ratio be-
comes KnKnKn c +++ 21...211 :...::  where K is a constant 
representing the number of evaluations done by the subsequent 
optimization. The ratio decreases with K. This heuristic can thus 
guarantee finding very bad sequences, but not finding "very 
good" sequences Note that a large K means that the focus is on 
optimization rather than constraint handling, and a SCHT is no 
longer necessary. 

 
BM 

The total time Tσ(1),..,σ(c) needed to evaluate c constraints for 
the sequence Sσ(1),..,σ(c) using the BM technique is on average 

)()1()2()...1()(

)2()1()2()1()1()(),..,1( ...

c
BM

cc

BMBM
c

tn

tntnT

σσσσσ

σσσσσσσ

−+

++=
 (4) 

As above, the permutation signs are dropped in the follow-
ing, and Eq. (4) is expressed as 

c
BM
c

BMBM
c tntntnT 21...22111,..,1 ... +++=  (5) 
Equations (4) and (5) have the same form as in Lexcoht, 

but the number of evaluations for each constraint BMn1 , 
BMn21 ,…, BM

cn 21...  will be different than the equivalent number of 
evaluations for Lexcoht. The diversity technique used to avoid 
premature convergence adds several iterations. Consequently, 
the ratio BM

c
BMBM nnn )21...()21()1( :...:: σσσ  is likely to be inferior to the 

Lexcoht's hardness ratio, and the evaluation time ratio may be 
more important. The evaluation time-based heuristic is expected 
to give better results for the BM technique than for Lexcoht. 
Otherwise, as for Lexcoht, not much can be said about the 
hardness of the constraints. 

 
A stochastic sequence choice heuristic 

An alternative to the evaluation time-based heuristic is to 
test several sequences. For the cases of three constraints, there 
can be at most 6 different sequences. It is possible to test all of 
them and select the best one. From 4 and more constraints, test-
ing all the sequences becomes intractable. However, it is still 
possible to test a few constraints sequences and have a high 
probability of obtaining a good sequence. Let v be the propor-
tion of targeted top constraint sequences (for example one 
wishes to get a constraint from the top 10%) and let k be the 

number of sequences one is willing to test. 
!c

wv = , where w 

(rounded to the nearest integer) is the number of constraints 
sequences in v, and c! is the total number of possible sequences. 
The probability Pv of choosing at least one sequence among the 
k chosen that belongs to the top v of all the possible sequences 
is  

1!
1!..

1!
1!

!
!1

+−
+−−

⋅⋅
−
−−

⋅
−

−=
kc

kwc
c

wc
c

wcPv  (6) 

When k is negligible in front of c! and w, Eq. (6) becomes 
cvP k

v ∀−−= ,)1(1  (7) 
Table 1 presents the different probabilities of getting a 

constraint sequence in the top w sequences as a function of the 
number of randomly chosen sequences k and the number of 
constraints c. With a k relatively small, the probability of get-
ting a good sequence in the top 25% is high (P > 82% for 
k = 6). Moreover, Eq. (7) is already verified with c! = 7! or 8! 
This means that the probability of getting a good sequence re-
mains stable whatever the number of constraints. 

 
Table 1. Table of probabilities that at least one sequence 

is in the set v  
c 4 5 6 7 8 ∞ 
c! 24 120 720 5040 40320 ∞ 

v = 5% k = 2 0.163 0.098 0.098 0.098 0.098 0.098 
 3 0.239 0.144 0.143 0.143 0.143 0.143 
 4 0.312 0.188 0.186 0.186 0.186 0.185 
 5 0.380 0.230 0.227 0.226 0.226 0.226 
 6 0.446 0.270 0.266 0.265 0.265 0.265 
 7 0.507 0.308 0.303 0.302 0.302 0.302 
        

10% 2 0.239 0.191 0.190 0.190 0.190 0.190 
 3 0.343 0.273 0.271 0.271 0.271 0.271 
 6 0.597 0.476 0.470 0.469 0.469 0.469 
 7 0.664 0.531 0.523 0.522 0.522 0.522 
        

25% 2 0.446 0.439 0.438 0.438 0.438 0.438 
 3 0.597 0.582 0.579 0.578 0.578 0.578 
 6 0.862 0.830 0.823 0.822 0.822 0.822 
 7 0.908 0.874 0.868 0.867 0.867 0.867 
        

50% 2 0.761 0.752 0.750 0.750 0.750 0.750 
 3 0.891 0.878 0.876 0.875 0.875 0.875 
 6 0.993 0.986 0.985 0.984 0.984 0.984 
 7 0.998 0.994 0.992 0.992 0.992 0.992 
 

APPLICATION TO THE TEN-BAR TRUSS PROBLEM 
In this section we test whether the SCHTs are interesting 

alternatives to the weighted sum technique when applied to the 
well-known ten-bar truss benchmark problem [4]. The two se-
quence selection heuristics that have been proposed are also 
applied to the ten-bar truss problem. 
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The modified ten-bar truss problem 
The problem is based on a ten-bar truss with geometry, 

loads and boundary conditions as shown in Figure 3. The ten-
bar truss problem has been used as a benchmark in evolutionary 
computing in several works, for example [15;24-26], and con-
sists of ten bars connected to six nodes, with the external load P 
applied to nodes n3 and n6, and a fixed support at nodes n1 and 
n2. 

The objective of the problem is to find a truss structure that 
supports the load P given the boundary conditions and con-
straints. The original problem has been modified to include ad-
ditional constraints, presented in the next section. The focus 
being on comparing different CHTs, the optimization part is not 
considered here. 

In order to fulfill the constraints, the constraint-handling 
algorithm can change the material and profile of each of the ten 
bars. The cross-sectional profile and material selection for each 
bar constitutes each individual’s genome and are the only de-
sign variables. The positions and connections of the nodes are 
fixed. The possible values of the design variables are presented 
Table 2. 

 
Table 2. Materials and beam profiles 
Material Elasticity 

modulus 
(Pa) 

Density 
(kg/m3) 

Price  
(€/kg) 

Max tensile 
stress (Pa) 

Max compres-
sive 
stress (Pa) 

1 2.00×1011 8000 7.2 5.70×108 3.50×108  
2 1.10×1010 600 9.5 4.00×107 1.96×107  
3 1.10×1011 4500 13 1.00×109 9.70×108  
4 6.90×1010 2700 3.2 3.10×108 5.30×108  
Profile A (m2) I (m4)   
1 7.64×10-4 80.14×10-8   
2 1.32×10-3 317.8×10-8   
3 2.01×10-3 869.3×10-8   
4 3.34×10-3 2,770×10-5   

 

h = 1 m
P = 100 N

n3 n6

n5n4n1

n2

 
Figure 3. The ten-bar structure 

 

The constraints 
Six constraints need to be fulfilled. 
Each bar is subject to  

max
ii

min
i σσσ ≤≤  (8) 

and 
cr

ii σσ ≥  (9) 

where iσ  is the stress in bar i, 0≤min
iσ is the stress limit in 

compression for the bar profile and material, and 0≥max
iσ  is 

the stress limit in tension, and 0≤cr
iσ  is the stress limit for 

buckling, and is calculated as 
A(KL)

EIπσ cr
i 2

2
= . 

Each node is subject to  
maxi uu ≤  (10) 

where ui is the node displacement, and umax is the maximum 
displacement. 

The entire truss structure is subject to 
maxpp ≤  (11) 

 

maxnn ≤  (12) 
 

maxww ≤  (13) 
where p, n, w are the price, number of different combina-

tions of member profiles and materials in the structure, and 
weight of the structure, and pmax, nmax, wmax are the maximum 
allowed price, number of different combinations of member 
profiles and materials, and weight, respectively. For demonstra-
tion purposes the price of the truss structure is used as a con-
straint, although in most applications it would rather be an ob-
jective. The stress constraints are dependent on the profile and 
material used in the member; the rest of the constraints are set 
as follows: umax = 0.001 m, pmax = 55 €, nmax = 3, and 
wmax = 6 kg.  

Preliminary runs where the constraints were individually 
studied showed that the number of generations needed to find a 
feasible point was 1:1:28.3:52.3:1:1 for the stress, buckling, 
weight, price, number of elements, and displacement constraints 
respectively. 

 
Evaluation times for each constraint have been set at 

10:10:1:1:1:10 time units (t.u.). They are thought to reflect a 
typical engineering design problem: groups of constraints have 
an evaluation time of the same order of magnitude, and differ 
among each other by one or several orders of magnitude. This 
difference was not set too high in order not to mask the possible 
hardness effect. In reality, the evaluation of the stress, buckling, 
and displacement constraints rely on a single finite element-
analysis, which means the time-consuming analysis only needs 
to be run once to evaluate all three constraints. However, in this 
example they are still treated as independent constraints. The 
handling of groups of constraints dependent on one evaluation 
is discussed in the conclusion. 



 7 Copyright © 2011 by ASME 

Objectives of the study 
The first objective of this study is to compare the SCHTs 

against the weighted sum technique. The second objective is to 
investigate the efficiency of the proposed selection heuristics. 
For sake of simplicity, this section begins with the second ob-
jective. 

With the 6 constraints of the problem, 720 sequences are 
possible.If the stochastic sequence choice heuristic is correct, 
large differences in the constraint satisfaction time should be 
observed among a small set of randomly chosen sequences. 7 
sequences are chosen randomly among the 720 sequences. Hy-
pothesis 1a: for Lexcoht, there is one group of sequences per-
forming significantly better than another group of sequences. 
Hypothesis 1b: for the BM technique, there is a group of se-
quences performing significantly better than another group of 
sequences. 

Using the evaluation-time based heuristic, the sequences in 
which the constraints whose evaluation times are the largest are 
positioned last should perform better than the sequences in 
which the constraints whose evaluation times are the largest are 
positioned first. Two sequences with constraints with large 
evaluation times positioned last and one sequence with con-
straints with large evaluation times positioned first were chosen. 
Hypotheses 2a and b: At least one of the two sequences with 
constraints with large evaluation times positioned last should 
perform better than the sequence with constraints with large 
evaluation times positioned first a) for Lexcoht and b) for the 
BM technique. 

Moreover, at least one of these two sequences should per-
form well in comparison with the 7 sequences chosen at random 
using the stochastic sequence choice heuristic (Hypotheses 3a 
and 3b). Finally, it is expected that the evaluation time-based 
heuristic will perform better for the BM technique than for Lex-
coht (Hypothesis 4). 

 
Several elements intervene in the comparison of the 

SCHTs against the weighted sum technique. The weights of the 
weighted sum can play a role, and thus three sets of weights are 
used (see next section). Comparing the Lexcoht and BM tech-
niques against the weighted sum technique amounts to compar-
ing their best sequences for each heuristic against the three 
weighted sums. It is expected that the Lexcoht and BM tech-
niques should perform better than the weighted sum technique 
variants (Hypothesis 5). The relative performance of the Lex-
coht and BM techniques is also tested. We thus test the hypo-
thesis that the Lexcoht and BM techniques will get different 
running times for the same sequences vs. the null hypothesis 
that they will not (Hypothesis 6). This experimental setup al-
lows us also to investigate whether there are differences among 
the different weighted sum technique variants (Hypothesis 7). 

Finally, determining the weights of the different constraints 
is a recurring problem when using GAs [27, p. vi]. Because 
three weighted sum variants are used in this investigation, it is 
possible to study whether the assignment of different weights 

plays a role. The constraint sequences used for the study of the 
BM and Lexcoht techniques are also used for this test: the 
weights are put in the same order for each sequence. It is ex-
pected that different weighting schemes will lead to differences 
in performance (Hypothesis 8). 

 
Experimental setup 

The factors (or independent variables) of the experiment, 
are the methods (5 in total: Lexcoht, BM and 3 weighted sum 
technique variants) and the sequences (10 in total: 7 randomly 
chosen sequences, 2 sequences with constraints with large eval-
uation times positioned last and 1 sequence with constraints 
with large evaluation times positioned first), forming a 5 × 10 
factorial design. The dependent variable is the time taken by a 
population to fulfill the constraints of the modified ten-bar truss 
problem. For each level of the methods and sequences factors, 
the problem is run 200 times, i.e. 10,000 times in total. For each 
run, a new population is created. When there is no convergence, 
the run is discarded. 

The parameters for the BM techniques are set according to 
the recommendations from [2], and yield good results with 
φ = 0.6 and σsh = 0.05. 

The three different weighting schemes are as follow. In the 
first configuration, all weights are set at 1 (unweighted sum 
technique, or UWS). The second is a linearly weighted scheme 
(WS1), where the constraint i in the sequence is given the 
weight (c+1-i)∙10. The third scheme is an exponentially 
weighted sum (WS2), where the constraint i in the sequence is 
given the weight 10c-i. 

Each individual is represented by the design variables de-
scribed earlier, in total 20 variables per individual with 4 possi-
ble values per variable (one bar profile and one type of material 
can be chosen for each of the 10 bars independently from one 
another). Using binary chromosome encoding, the chromosome 
can thus be represented by 2 bits per variable resulting in a 
chromosome with 40 bits. 

The genetic algorithm used is the standard MATLAB im-
plementation, with bit string as population type, rank as scaling 
method, stochastic uniform as selection method, Gaussian as 
mutation function, single point as crossover function, elite count 
2, and crossover fraction 0.8. The genetic algorithm is run with 
a population of 150 individuals, during a maximum of 1500 
generations. 

 
Results 

All the experiment runs converged. The exploratory data 
analysis revealed that the distributions of the convergence time 
for each combination were markedly positively skewed. The 
standard deviations were found proportional to the means, thus 
a logarithmic transformation was applied to the data [28, pp. 
319-321]. The log-transformed populations were mostly nor-
mally distributed; the Jarque-Bera test for normality [29] failed 
to show a significant deviation from a normal distribution for 
most of the combinations. With the largest variance ratio being 
1:11.8, the heteroscedasticity was much higher than the limit on 
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heterogeneity of variance for which the analysis of variance is 
still robust (see [28, p. 317]). In the case of equal sample sizes, 
the procedure is found to be too liberal. Therefore, the Box pro-
cedure [28, p. 317;30, p. 891] was applied. 

The 5x10 factorial analysis of variance reveals that there is 
a significant method effect, a significant sequence effect and a 
significant interaction between methods and the sequences; see 
Table 3, upper level. The simple effect analysis of the sequence 
factor for each level of the method factor reveals that the differ-
ent sequences significantly affect the sequential methods, but 
not the unweighted and weighted methods; see Table 3, lower 
level. Thus hypothesis 8 has to be rejected. 

 
Table 3. Overall analysis of variance and simple effects of 

of the Sequences factor 
Overall analysis     

Source df Sum of 
Squares 

Mean 
Squares 

F 

Methods 4 3150.22 229.71 329.89* 
Sequences 9 2067.43 787.56 1131.00* 
Methods × Sequences 36 3271.48 90.87 130.50* 
Error 9950 6928.52 0.70  
Total 9999 15417.65   

Simple effects of Sequences 

Lexcoht 9 3053.30 339.26 487.20* 
BM 9 2270.30 252.26 362.27* 
UWS 9 6.30 0.70 1.01 
WS1 9 4.83 0.54 0.77 
WS2 9 4.18 0.47 0.67 
Error 9950 6928.52 0.70  

* p < .001, FBox,α = .001(1, 200  − 1) = 11.16. 
 
For Hypotheses 1 to  7, post hoc multiple comparisons us-

ing the Tukey test were performed. As for the analysis of va-
riance, the Tukey test, tend to be liberal for large ratios [31]. 
However, a study by Game and Howell [32] shows that the this 
test is still robust for a ratio as large as 1:13, which is higher 
than the largest variance ratio of this experiment (1:11.8). Fig-
ure 4 presents the log-transformed means for each method and 
sequence. In the following, the reported means are the antiloged 
means; cf. [28, p. 319]. 

Concerning the stochastic sequence choice heuristic, the 
worst randomly chosen Lexcoht sequence (M = 19,718 t.u.) was 
significantly different from the best Lexcoht sequence 
(M = 957 t.u., Tukey p < .001), and the randomly chosen BM 
sequence (M = 59,415 t.u.) was significantly different from the 
best BM sequence (M = 5,491 t.u., Tukey p < .001). This con-
firms hypotheses 1a and 1b. 

Concerning the evaluation time-based heuristic, the best 
sequence of constraints with large evaluation times positioned 
last (Mlast = 705 t.u.) was significantly better than the sequence 
of constraints with large evaluation times positioned first 

(Mfirst = 19,229 t.u., Tukey p < .001) for Lexcoht. The same 
result was obtained for the BM method (Mlast = 2,981 t.u., 
Mfirst = 58,105 t.u., Tukey p < .001). This confirms hypothes-
es 2a and 2b.  

The sequences chosen through the evaluation time-based 
heuristic performed well in comparison with the 7 sequences 
chosen at random using the stochastic sequence choice heuris-
tic. The best sequence selected using the stochastic sequence 
choice heuristic was not better than the best evaluation time-
based sequence (M = 957 t.u. vs. Mlast = 705 t.u., Tukey 
p = .15) for Lexcoht. The best evaluation time-based sequence 
for BM was even better than the best randomly chosen sequence 
(M = 5,491 t.u. vs. Mlast = 2,981 t.u., Tukey p < .001). This 
confirms hypotheses 3 and 4. 

The best Lexcoht sequences for each heuristic were better 
than the UWS (MUWS = 19,051 t.u.), WS1 (MWS1 = 19,026 t.u.), 
and WS2 (MWS2 = 17,413 t.u., Tukey ps < .001). Likewise, the 
best BM sequences for each heuristic were better than the 
UWS, WS1, and WS2 (Tukey ps < .001). This confirms hypo-
thesis 5. The best Lexcoht sequences for each heuristic per-
formed better than the best BM sequences for each heuristic 
(Tukey ps < .001, hypothesis 6). The three weighted sum tech-
nique variants did not differ significantly from one another, 
rejecting hypothesis 7. The worst Lexcoht sequence did not 
differ at all from the weighted sum technique variants (Tukey 
ps ≈ 1.0), but the worst BM sequence did (Tukey ps < .001). 

 
Empirical results for the hardness ratios 

The hardness ratios for the Lexcoht and BM techniques are 
presented Table 4. 

 
Table 4. Hardness ratios for the ten-bar truss problem 
Seq Lexcoht 

21...6211 :...:: nnn  
BM 

BMBMBM nnn 21...6211 :...::  

1 831:831:831:109:109:109 2454:2450:2439:90:50:31 
2 925:925:104:1:1:1 2214:2161:274:65:33:15 
3 872:872:872:872:80:1 2441:2434:2419:2404:173:15 
4 881:881:114:114:114:114 2321:2299:151:114:93:71 
5 828:75:75:75:1:1 1831:260:223:217:44:15 
6 764:764:75:75:1:1 2276:2234:202:178:43:15 
7 830:642:642:88:88:1 2320:2289:2260:168:137:15 
8 877:877:877:877:110:1 2391:2385:2370:2355:168:15 
9 815:79:1:1:1:1 1939:319:78:52:32:15 
10 865:120:1:1:1:1 1820:277:83:52:34:15 

 
Discussion 

In this application, both the Lexcoht and the BM tech-
niques performed significantly better than the weighted sum 
technique. The difference is huge: MLexcoht, best = 705 t.u. and 
MBM, best = 2,981 t.u., vs. MUWS = 19,051 t.u., MWS1 = 19,026 t.u. 
and MWS2 = 17,413 t.u. This also confirms that the SCHTs are 
relevant alternatives for engineering design problems. 
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Figure 4. Representation of the log-transformed means 

and their comparisons intervals (99.9%) for the 
a) Lexcoht, b) UWS, c) BM, d) WS1, and e) WS2 

techniques. 
 
One of the main issues related to the use of SCHTs is the 

selection of a satisfying constraint sequence. The two heuristics 
presented in this paper have both permitted the selection of a 
good sequence for the ten-bar truss benchmark application. This 
is a strong indication that the SCHTs can be used in practice. 
Using Lexcoht, the hardness ratios can vary greatly among the 
sequences. For example, the ratios of sequences 1 and 4 are 
quite different from those of the other sequences. This implies 
that the evaluation time-based heuristic is less likely to be ade-
quate for Lexcoht. In this particular application, the two se-

quences selected by the evaluation-time based heuristic did not 
perform better than the stochastically selected best sequence. 
The hardness ratios vary less dramatically for the BM tech-
nique, making the evaluation time-based heuristic more power-
ful. This is confirmed by the empirical results where the se-
quences selected with this heuristic performed significantly bet-
ter than the best sequence selected by the other heuristic. This 
makes the BM technique very interesting if one does not want 
to test 6 or 7 sequences before selecting a good one. 

The evaluation times ratio (10:10:1:1:1:10) proved to be an 
interesting choice. It was clearly less than the hardness ratios 
(Table 4) but still considerably influences the time taken for the 
different sequences to fulfill the constraints. This also speaks 
for the relevance of the evaluation time-based heuristic. 

The weighted sum technique variants did not perform sig-
nificantly better from one to the other. Surprisingly, the weights 
put on the different constraints did not affect the constraint sa-
tisfaction time. This may be an artifact of this specific problem 
and would require further investigation. 

What this experiment also shows is that it can be detrimen-
tal to select only one sequence and solve the problem at hand 
with it. The worst BM sequence was significantly worse than 
the weighted sum technique. Lexcoht did not perform worse 
than the weighted sum technique with the chosen sequences, but 
it cannot be excluded that it wouldn't with some of the 710 re-
maining combinations. In this particular problem, all the simu-
lations have converged towards a solution. In other problems, 
this may not be the case. 

 
CONCLUSION 

In this paper, the issue of CHT for engineering design 
problems has been emphasized and the SCHTs presented as an 
alternative to the weighted sum technique regarding genericity 
and computation time. The efficiency of the SCHTs depends on 
the choice of a "good sequence". For that purpose, two heuris-
tics have been proposed and tested. They have proved to per-
form well for the ten-bar truss problem. Moreover, both the 
Lexcoht and BM techniques have performed better than the 
weighted sum technique. 

In terms of usability, Lexcoht has a slight advantage over 
the BM technique because it does not require the determination 
of a flip-threshold or sharing factor value. A sharing scheme for 
maintaining diversity has not so far proven necessary for Lex-
coht. This leaves another parameter out of the hands of the user. 
Nevertheless, this may be useful in other applications. The Lex-
coht and BM techniques have behaved quite similarly for the 
ten-bar truss problem, that is, the sequence running times have 
the same ordering for both methods. This requires further inves-
tigation. 

The two heuristics do not require any advanced knowledge 
from the user: either choose the sequence where all constraints 
are ordered according to their evaluation time, or choose 6 or 7 
sequences randomly and test them. These simulations may take 
time and might be a limitation of the SCHTs if the user's prob-
lem has only to be solved once. This is, however, not unlike the 
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tuning of a penalty function or the determination of the weights 
for a weighted sum. Recommendations for minimizing the se-
quence selection testing time of the stochastic heuristic need to 
be devised. 

This paper has dealt with the constraint satisfaction time is-
sue. As mentioned in the CHT review section, there can be a 
problem of "precision" by using SCHTs, i.e. the difficulty for 
the SCHTs to converge for some sequences {Michalewicz, 
1996 MICHALEWICZ1996A /id} (there was no such problem 
in this application). This is being investigated in a subsequent 
study, not published yet. 

In computationally-intensive simulations, it is quite com-
mon to have some constraints evaluated simultaneously, for 
example constraints on stress, displacement or buckling in the 
case of finite element analysis. For such linked constraints, an 
SCHT cannot be used as described in this paper; instead, a pos-
sibility could be to treat these linked constraints as a grouped 
constraint evaluated at the same time using techniques such as 
the weighted sum; further research is needed in this area. With 
SCHTs, the constraint satisfaction and optimization parts of a 
structural problem are considered separately. Only the con-
straint satisfaction part has been investigated here. It is possible 
to transform constraints into objectives to fulfill and use mul-
tiobjective optimization techniques instead of the SCHTs; see 
[6;7;9]. The relative benefits of the multiobjective optimization 
techniques and the SCHTs require further analysis.  
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