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Abstract—Families of asymptotically regular LDPC block
code ensembles can be formed by terminating (J,K)-regular
protograph-based LDPC convolutional codes. By varying the
termination length, we obtain a large selection of LDPC block
code ensembles with varying code rates, minimum distance that
grows linearly with block length, and capacity approaching
iterative decoding thresholds, despite the fact that the terminated
ensembles are almost regular. In this paper, we investigate the
properties of the quasi-cyclic (QC) members of such an ensemble.
We show that an upper bound on the minimum Hamming
distance of members of the QC sub-ensemble can be improved
by careful choice of the component protographs used in the code
construction. Further, we show that the upper bound on the
minimum distance can be improved by using arrays of circulants
in a graph cover of the protograph.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] based on a

protograph [2] form a subclass of multi-edge type codes that

have been shown to have many desirable features, such as

good iterative decoding thresholds and, for suitably-designed

protographs, linear minimum distance growth (see, e.g., [3]).

Analogously, ensembles of LDPC convolutional codes [4], the

convolutional counterparts to LDPC block codes, can also be

constructed using protographs and display the same desirable

properties (see [5] and [6], respectively).

So-called asymptotically regular LDPC block code ensem-

bles [7] are formed by terminating (J,K)-regular protograph-
based LDPC convolutional codes. This construction method

results in LDPC block code ensembles with substantially better

thresholds than those of (J,K)-regular LDPC block code en-

sembles, despite the fact that the ensembles are almost regular

(see, e.g., [7]). These codes were analysed further in [8] and

were also shown to have minimum distance growing linearly

with block length, i.e., they are asymptotically good. As the

termination length tends to infinity, it is further observed

that the iterative decoding thresholds of these asymptotically

good ensembles approach the optimal maximum a posteriori

probability (MAP) decoding thresholds of the corresponding

LDPC block code ensembles. More recently, this property has

been proven analytically in [9] for the binary erasure channel

(BEC) considering some slightly modified ensembles.

Members of the protograph-based LDPC code ensemble that

are quasi-cyclic (QC) are of great interest to code design-

ers, since they can be encoded with low complexity using

simple feedback shift-registers [10]. Moreover, QC codes can
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be shown to perform well compared to random codes for

moderate block lengths [11], [12]. However, unlike typical

members of an asymptotically good protograph-based LDPC

code ensemble, codes from the QC sub-ensemble cannot be

asymptotically good. Indeed, if the protograph base matrix

consists of only ones and zeros, then the minimum Hamming

distance is immediately bounded above by (nc + 1)!, where
nc is the number of check nodes in the protograph [13], [14].

In this paper, building on recent results by Smarandache and

Vontobel [15], we show that the upper bound on the minimum

Hamming distance of members of the QC sub-ensemble of

asymptotically regular (J,K) LDPC codes can be improved

by careful choice of the component protographs used in the

code construction. Even though we show that the QC codes

from the ensemble are not ‘typical’, we see that constructions

that improve the ensemble minimum distance growth rate also

increase the upper bound on minimum distance for members of

the QC sub-ensemble. In addition, for several of the examples

given in the paper, QC codes are constructed that achieve

this upper bound. Further, we show that the upper bound

on minimum distance can be improved by using arrays of

circulants in a graph cover of the protograph.

II. ANALYSIS OF PROTOGRAPH-BASED LDPC CODES

A protograph is a small bipartite graph B = (V,C,E) that
connects a set of nv variable nodes V = {v0, . . . , vnv−1} to

a set of nc check nodes C = {c0, . . . , cnc−1} using a set of

edges E. The protograph can be represented by a parity-check

or base biadjacency matrix B, where Bx,y is taken to be the

number of edges connecting variable node vy to check node

cx. Figure 1 shows an example of an irregular protograph with

repeated edges and the associated base matrix.

B =





2 1 0 0
1 2 2 1
0 0 1 2





Fig. 1: An example of a protograph and the associated base

matrix.

This protograph is called irregular because both the variable

and check node degrees are not constant.

An ensemble of protograph-based LDPC block codes can

be created from a base matrix B using a copy-and-permute



operation [2]. A parity-check matrix H from the ensemble of

protograph-based LDPC block codes can then be obtained by

replacing ones with an N ×N permutation matrix and zeros

with the N ×N all zero matrix in the base matrix B. In the

case when a variable node and a check node are connected

by r repeated edges, the associated entry in B equals r and

the corresponding block in H consists of a summation of r
N ×N permutation matrices. The ensemble is defined as the

set of all possible parity-check matrices H that can be formed

using this method.

By construction, every code in the resulting ensemble has

the same node degrees and structure. The ensemble design rate

is given as R = 1−nc/nv . In addition, the sparsity condition

of an LDPC matrix is satisfied for large N . The code created

by applying the copy-and-permute operation to an nc × nv

protograph base matrix B has block length n = Nnv .

A. Density evolution for protograph-based ensembles

Since every member of the protograph-based ensemble pre-

serves the structure of the base protograph, density evolution

analysis for the resulting codes can be performed within the

protograph. In this paper, we assume that belief propagation

(BP) decoding is performed after transmission over a BEC

with erasure probability ε. Let p(i) denote the probability that

the incoming message in the previous update along an edge

of an arbitrary check node is an erasure. Then the density

evolution threshold of an ensemble is defined as the maximal

value of the channel parameter ε for which p(i) converges to

zero for all edges as the number of iterations i tends to infinity.

B. Weight enumeration for protograph-based ensembles

The preserved structure of members of a protograph-based

LDPC code ensemble also facilitates the calculation of average

weight enumerators. An ensemble average weight enumerator

Ad tells us that, given a particular Hamming weight d, a typical
member of the ensemble has Ad codewords with Hamming

weight d. Combinatorial techniques for calculating enumera-

tors for protograph-based ensembles have been presented in

[3] and [16]. The weight enumerator Ad can be analysed

asymptotically to test if the ensemble is asymptotically good.

If this is the case, then we can say that the majority of codes

in the ensemble have minimum distance growing linearly at

least as fast as nδmin, where δmin is the minimum distance

growth rate of the code ensemble [3].

III. QUASI-CYCLIC PROTOGRAPH-BASED LDPC CODES

One of the main advantages of quasi-cyclic LDPC codes is

that they can be described simply, and as such are attractive for

implementation purposes (see, e.g., [10]). In this section, we

focus on the quasi-cyclic sub-ensembles of protograph-based

ensembles of LDPC codes and review the existing literature

that will be used to analyse these ensembles.

A. Structure of QC sub-ensembles

Given a protograph base matrix B, a parity-check matrix

H from the ensemble of protograph based codes ξB(N) is

created by replacing each non-zero entry r with a summation

of r non-overlapping permutation matrices of size N ×N and

replacing zeros with the N × N all-zero matrix. The quasi-

cyclic sub-ensemble, denoted ξQC
B

(N), is the subset of parity-
check matrices from ξB(N), where each of the permutation

submatrices are chosen to be circulant. The notation Ia is used

to denote the N ×N identity matrix with each row cyclically

shifted to the left by a positions. The set of all such matrices

comprise the circulant subset of the set of N×N permutation

matrices. When applying the copy-and-permute operation, by

restricting the choice of permutation matrices to come from

this subset, the resulting parity-check matrix H will be quasi-

cyclic, i.e., H ∈ ξQC
B

(N) ⊆ ξB(N). For example, a quasi-

cyclic parity-check matrix can be formed from the base matrix

defined in Figure 1 as

H=





I1 + I2 I4 0 0
I5 I10 + I20 I9 + I18 I7
0 0 I11 I23 + I17



∈ ξQC
B

(N).

When considering a sub-ensemble such as ξQC
B

(N), one has
to be careful with the relevance of asymptotic results obtained

for the ensemble ξB(N). As N → ∞, if the probablility of

choosing a member of the sub-ensemble is non-zero we say

that the code is a typical member of the ensemble. By this

definition, it is clear that the sub-ensemble ξQC
B

(N) contains

atypical codes. This follows since there are only N out of N !
permutations that are circulant, i.e., the fraction of choices of

permutation matrices that are circulant is N/N ! = 1/(N−1)!,
which tends to zero as N → ∞. Then, if the base matrix

B contains only ones and zeros, the fraction of codes in the

ensemble that are circulant is (1/(N − 1)!)k, where k is the

number of ones in B. Repeated edges in B further reduce this

fraction.

B. Minimum Hamming distance bounds for QC sub-ensembles

If the base matrix B contains only ones and zeros, then

it is well known that the minimum Hamming distance of

any code from the quasi-cyclic sub-ensemble of protograph-

based LDPC codes can immediately be bounded above by

(nc + 1)! [13], [14]. This result was improved and extended

by Smarandache and Vontobel to base matrices with entries

larger than one [15]. Let the permanent of an m×m matrix

B be defined as

perm(B) =
∑

σ

m
∏

x=1

Bx,σ(x),

where we sum over the m! permutations σ of the set

{1, . . . ,m}. Then the minimum distance of a code drawn from

the QC sub-ensemble can be upper bounded as follows:

Theorem 1: Let C be a code from ξQC
B

(N), the quasi-cyclic
sub-ensemble of the protograph-based ensemble of codes

formed from base matrix B. Then the minimum Hamming

distance of C is bounded above as1

dmin(C) ≤ min∗
S⊆{1,...,nv}
|S|=nc+1

∑

i∈S

perm(BS\i), (1)

where perm(BS\i) denotes the permanent of the matrix con-

structed as the nc columns of B from the set S\i.

1The min∗{·} operator returns the smallest non-zero value from a set. In
this context, if the all-zero codeword arises from a constructed matrix, this
operator ensures that 0 is disregarded as an upper bound in the minimization.



IV. TERMINATED PROTOGRAPH-BASED LDPC

CONVOLUTIONAL CODES

A rate R = b/c (time-varying) binary LDPC convolutional

code [4] can be defined as the set of infinite binary sequences

v[−∞,∞] that satisfy the equation v[−∞,∞]H
T

[−∞,∞] = 0,
where

H
T
[−∞,∞] =



















. . .
. . .

H
T
0 (0) · · · H

T
ms

(ms)
. . .

. . .

H
T
0 (t) · · · H

T
ms

(t+ms)
. . .

. . .



















is the transposed parity-check matrix, also called the syndrome

former matrix. The binary (c− b)× c submatrices Hi(t), i =
0, 1, · · · ,ms, satisfy the conditions that Hms

(t) 6= 0 for at

least one t ∈ Z and that H0(t) has full rank for all t. We

call ms the syndrome former memory and νs = (ms + 1) · c
the decoding constraint length. These parameters determine

the width of the nonzero diagonal region of H[−∞,∞]. The
sparsity of the parity-check matrix is insured by demanding

that its rows have Hamming weight much less than νs. The
code is said to be regular if its parity-check matrix H[−∞,∞]

has exactly J ones in every column and K ones in every row.

A. Constructing protograph-based LDPC convolutional codes

Analogously to block codes, an ensemble of LDPC con-

volutional codes can be constructed from a protograph. We

proceed by forming a time-invariant infinite base matrix2 with

component bc × bv submatrices B0,B1, . . . ,Bms
as follows:

B[−∞,∞] =



















. . .
. . .

Bms
· · · B0

. . .
. . .

Bms
· · · B0

. . .
. . .



















. (2)

The infinite Tanner graph associated with B[−∞,∞] can be

regarded as a convolutional protograph. An ensemble of

time-varying LDPC convolutional codes can be formed from

B[−∞,∞] using the protograph construction method based on

N ×N permutation matrices described in Section II. Given a

base matrix B, one can form a convolutional protograph with

the same rate and degree distribution by creating the submatri-

ces B0,B1, . . . ,Bms
using an edge-spreading technique [7].

Here, the edges of the protograph base matrix B are spread

over the component submatrices such that B0 + B1 + . . . +
Bms

= B. Note that the submatrices necessarily have the

same size as B.

B. Forming terminated protograph-based LDPC convolutional

codes

Suppose that we start the base matrix defined in (2) at time

t = 0 and terminate it after L time instants. The resulting

finite-length base matrix is given by

2If the base matrix contains only ones and zeros, it represents the parity-
check matrix of a rate R = 1− bc/bv time-invariant convolutional code with
syndrome former memory ms.

. . .

. . .
B[0,L−1] =





















B0

...

Bms

B0

...

Bms





















(L+ms)bc×Lbv

. (3)

The matrix B[0,L−1] can be considered as the base matrix

of a terminated protograph-based LDPC convolutional code

ensemble. Termination in this fashion results in a rate loss.

The design rate RL of the terminated code ensemble is equal

to

RL = 1−

(

L+ms

L

)

bc
bv

= 1−

(

L+ms

L

)

(1−R) , (4)

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of the

unterminated LDPC convolutional code ensemble. Note that,

as the termination factor L increases, the rate increases and

approaches the rate of the unterminated LDPC convolutional

code ensemble. In addition, as L → ∞, the degree distribution

approaches that of the unterminated ensemble. It follows that

if the base matrix B is (J,K)-regular, and we apply the

edge spreading technique to preserve the structure, the degree

distribution of the terminated ensemble approaches that of a

(J,K)-regular ensemble as L → ∞, i.e., it is asymptotically

regular. The protograph-based LDPC block code ensemble

associated with B[0,L−1] can be studied using the analysis

discussed in Section II.

V. QC ASYMPTOTICALLY REGULAR LDPC CODES

In this section, we form families of asymptotically regular

LDPC block code ensembles by terminating (J,K)-regular
protograph-based LDPC convolutional codes. It was shown in

[8] that the minimum distance growth rates and the iterative

decoding thresholds of asymptotically good terminated ensem-

bles are sensitive to the choice of component protographs

used in the edge spreading technique. Here, we investigate

how the choice of component protographs affects the upper

bound on the minimum Hamming distance of the QC sub-

ensemble ξQC
B[0,L−1]

(N). Even though the QC codes are not

typical members of the ensemble, we observe that choosing

component submatrices that yield strong ensemble minimum

distance growth rates also gives large upper bounds on the

minimum distance of the QC sub-ensemble. Further, we show

that by using arrays of circulants, which can alternatively be

viewed as the QC sub-ensemble arising from a graph-cover

of the protograph, we can increase the upper bound on the

Hamming distance of codes chosen from ξQC
B[0,L−1]

(N).
To begin, we compare different edge spreadings that result

in asymptotically regular (3, 6) ensembles.

Example 1: Consider spreading the edges of the base matrix

B = [ 3 3 ] into component submatrices

B0 =
[

1 1
]

= B1 = B2,

where B0 +B1 +B2 = B. Using these component submatri-

ces, we can obtain the base matrix for a (3, 6)-regular LDPC
convolutional code ensemble with syndrome former memory



ms = 2. The terminated ensembles in this family were

shown to be asymptotically good with thresholds converging

to the (optimal) MAP decoding threshold ε∗ = 0.4881 for

(3, 6)-regular LDPC codes on the BEC as L → ∞ [8].

For termination factor L = 4, the ensemble has design rate

R4 = 1/4, minimum distance growth rate δ
(4)
min = 0.0814,

and BEC iterative decoding threshold ε∗ = 0.635. Terminating

after L = 10 time instants, the rate increases to R10 = 2/5,

the minimum distance growth rate is δ
(10)
min = 0.0258, and

the threshold is ε∗ = 0.505. As L → ∞, the minimum

distance growth rate tends to zero and the threshold converges

to ε∗ = 0.488 (close to the Shannon limit εsh = 0.5 for rate

R∞ = 1/2).
Using Theorem 1 and the base matrix B[0,2] (L = 3),

we calculate that the minimum Hamming distance for the

circulant sub-ensemble ξQC
B[0,2]

(N) is bounded above by 56,
i.e., dminQC ≤ 56 for any circulant size N . To show that

this upper bound is indeed achievable, consider the following

parity-check matrix:

H =













I1 I2 0 0 0 0
I5 I10 I20 I9 0 0
I25 I19 I7 I14 I28 I11
0 0 I4 I8 I16 I22
0 0 0 0 I18 I34













∈ ξQC
B[0,2]

(N).

With circulant size N = 49, this parity-check matrix defines a

[294, 51, 56] QC binary linear code with girth 8 (in this case,

H has 2 redundant rows). Note that, for typical codes from

the ensemble ξB[0,2]
(N), the (asymptotic) minimum distance

growth rate is δ
(3)
min = 0.1419.

For termination factors L > 3, the upper bound dminQC ≤
56 remains constant. It follows that this is also an upper

bound on the free distance of the circulant sub-ensemble of

protograph-based LDPC convolutional codes, i.e., dfreeQC ≤
56. In addition, as the termination length of the convolutional

protograph increases, the asymptotically regular ensembles

display capacity approaching iterative decoding thresholds.

Even though these thresholds are not achievable with QC

codes because small cycles exist in the Tanner graph, we

expect that QC codes drawn from ensembles with a better

iterative decoding threshold will display better performance

in the waterfall region of the bit error rate curve, even for

finite block lengths (see, e.g., [17]). In practice, the design

parameter L adds an additional degree of freedom to existing

block code designs. Starting from any LDPC block code, it

is possible to derive terminated convolutional codes that share

the same encoding and decoding architecture for arbitrary L.
Example 2: Let B be the all-ones matrix of size 3 × 6.

Consider the following edge spreading of B:

B0 =





1 1 1 0 0 0
0 1 1 1 0 0
0 0 0 1 1 1



 and B1 = B−B0.

Using B0 and B1 as given above, the asymptotically regu-

lar (3, 6) ensemble defined by (3) has six degree 3 check

nodes and 3L − 3 degree 6 check nodes for termination

factors L ≥ 2. The protographs in this terminated family

will be highly regular with no degree 2 check nodes. The

family of terminated (3, 6)-regular LDPC convolutional code

ensembles resulting from this edge spreading were shown

to have increased minimum distance growth rates and BEC

thresholds when compared to equal rate ensembles from the

family defined in Example 1 (see [8]). For example, for L = 2,

R2 = 1/4, δ
(2)
min = 0.0920, and ε∗ = 0.6471. The improved

minimum distance growth rates are reflected in the upper

bound on codes chosen from the QC sub-ensemble. For this

family, we calculate dminQC ≤ 176 for L ≥ 2.
Example 3: We now consider a ‘bad’ example of edge

spreading. Consider the following component matrices ob-

tained by edge spreading the all-ones base matrix B of size

3× 6:

B0 =





1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1



 and B1 = B−B0.

This ensemble has relatively poor iterative decoding thresholds

and minimum distance growth rates compared to the other

asymptotically regular (3, 6) families. The BEC thresholds

for this family converge to 0.4734 (compared to 0.4881 for

the other asymptotically regular (3, 6) examples), and for

L = 2, when R2 = 1/4, the minimum distance growth

rate is just δ
(2)
min = 0.0296 with threshold ε∗ = 0.4949.

When calculating the upper bound on the minimum distance of

members of the QC sub-ensemble ξQC
B[0,L−1]

(N) for this edge

spreading, we note that, for any termination factor L, after
some row permutations the ensemble contains the following

sub-structure:
1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 1 1 1

,

which limits the circulant minimum distance to dminQC ≤ 36.
This small upper bound for the QC sub-ensemble reflects the

poor ensemble minimum distance growth rates.

Example 4: As a final asymptotically regular (3, 6) example,

the edge spreading [8]

B =
[

3 3
]

 B0 =
[

2 1
]

and B1 =
[

1 2
]

.

was shown to result in a family with the largest minimum

distance growth rates of all the asymptotically regular (3, 6)
families considered. In addition, for small values of L, the
thresholds were shown to be the same as or larger than

other asymptotically regular (3, 6) ensembles of the same rate,

and, as with the other ‘good’ edge spreadings, the BEC BP

thresholds converge to the optimal MAP decoding thresholds

for (3, 6)-regular ensembles (ε = 0.4881).

In this case, for L = 2, R2 = 1/4, δ
(2)
min = 0.0950, and ε∗ =

0.6447. However, we note that for the circulant sub-ensemble,

we obtain only dminQC ≤ 30 for L ≥ 2, a relatively small

upper bound, which can be achieved for small circulant size

N . The parity-check matrix given as an example in Section

III-A is a member of the QC sub-ensemble ξB[0,1]
(N). Using

circulants of size N = 38 in this parity-check matrix, we

achieve dmin = 30 (this is a [152, 38, 30] binary linear code

with girth 8).
We now show that by takingm-covers of this protograph we

can increase the bound. For example, consider the following

2-cover:



B
′
0 =

[

1 1 1 0
1 1 0 1

]

and B
′
1 =

[

1 0 1 1
0 1 1 1

]

.

Using these component submatrices, we obtain the base ma-

trix B
′
[−∞,∞] for a (3, 6)-regular LDPC convolutional code

ensemble with syndrome former memory ms = 1. The termi-

nated ensemble constructed from the component two-covers

is denoted as ξB′

[0,L−1]
(N). It follows that ξB′

[0,L−1]
(N) ⊆

ξB[0,L−1]
(2N), because any N -cover of an m-cover exists in

the set of mN -covers of the original protograph. Interestingly,

we calculate the minimum distance growth rate δ
(2)
min = 0.095

(and threshold ε∗ = 0.6447) for both the original ensemble

ξB[0,L−1]
(N) and the two-cover ensemble ξB′

[0,L−1]
(N). From

this we conclude that typical codes with the same length from

either ensemble would have the same minimum distance.

This is clearly not the case for the QC sub-ensembles. It is

a simple exercise to choose circulants so that a code C ′ from

the quasi-cyclic sub-ensemble of the two-cover ξQC

B
′

[0,L−1]
(N)

does not exist in the original QC sub-ensemble ξQC
B[0,L−1]

(2N),
and vice versa. Using the 2-cover component submatrices, the

upper bound on the minimum distance of members of the QC

sub-ensemble increases to dminQC ≤ 82. The improvement

can be verified quickly, since it is relatively easy to construct

a code with minimum distance larger than 30 from this sub-

ensemble.

Moreover, by taking 3-covers of the component submatrices:

B
′′
0=





1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1



,B′′
1=





1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



,

the resulting terminated ensembles also have minimum dis-

tance growth rate δ
(2)
min = 0.095 and threshold ε∗ = 0.6447,

yet we calculate dminQC ≤ 210 for codes from ξQC

B
′′

[0,L−1]
(N)

with L ≥ 2. Comparing the value obtained for this 3-
cover with Examples 2 and 3, which also have component

submatrices of size 3 × 6 and ms = 1, we obtain the largest

bound for the ensemble with the largest minimum distance

growth rate. The improvement we observe by taking graph

covers of the protograph can be attributed to permitting arrays

of circulants to replace entries in the base matrix B.

Table I gives a summary of the results for Examples 1-4
considered above.

Example δmin (R = 1/4) ε∗ (R = 1/4) Upp. bnd. on dminQC

1 0.0815 0.6353 56

2 0.0920 0.6471 176

3 0.0296 0.4949 36

4 (3-cover) 0.0950 0.6447 210

TABLE I: Comparison of δmin, BEC thresholds, and bounds

on dminQC for several asymptotically regular (3, 6) families

VI. CONCLUSIONS

Asymptotically regular LDPC codes based on protographs

have been shown to display capacity approaching iterative

decoding thresholds with minimum distance that grows lin-

early with block length. Both the minimum distance growth

rate and threshold have been shown to depend closely on the

choice of component protographs. In the interests of efficient

implementation, this paper has explored the properties of the

quasi-cyclic sub-ensembles of protograph-based codes. It was

shown that, even though the members of the QC sub-ensemble

are not typical members of the ensemble, the upper bound

on the minimum Hamming distance of members of this sub-

ensemble can be improved using choices of edge spreading

that result in good ensemble minimum distance growth rates.

In addition, the upper bound obtained for several of the

examples presented here was shown to be achieveable by

constructing codes with this minimum distance. Finally, we

showed that the upper bound obtained for the QC codes in

the ensemble can be improved by using arrays of circulants

in a graph cover of the protograph. Due to space limitations,

we have only presented results for edge spreadings of (3, 6)-
regular base matrices B; however, similar results are observed

for arbitrary J and K.
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