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Abstract

Numerous empirical studies have shown evidence of nonlinearities in financial time series,
which can be of both a deterministic and a stochastic nature. Chaos is an example of the
former, and heteroscedasticity in the conditional variance an example of the latter. We
apply a test, the BDS test, to Swedish Stock Index returns and detect large deviations
from the IID-hypothesis. There is no evidence of chaos, and most of the nonlinearities are
due to conditionally heteroscedastic error terms. We look at monthly, daily, and 15-minute
return series, and find no sensitivity in the results to choice of sampling frequency. Different
GARCH models often seem to explain the nonlinearities detected by the BDS test, which
is particularly the case for GARCH models with ¢-distributed errors fitted to monthly and
daily returns.

*The authors are grateful to Bjorn Hansson and Lars Nordén for providing the data, and to David Edgerton
for useful comments on statistical issues.



1 Introduction

Common assumptions in financial economics are that financial variables like stock returns and
exchange rates can be described by stochastic processes, and that economic systems are linear.
From a theoretical point of view, nothing indicates that this must be the case, and numerous
empirical studies have shown that different nonlinear dependences might exist in financial time
series. The high frequency of crashes and booms that can be observed in stock markets is an
example of behavior non-consistent with a linear model' with normally distributed disturbances.

Nonlinear models explaining this type of behavior can be both stochastic and deterministic.
An example of a stochastic nonlinear model is Engle’s (1982) autoregressive conditionally het-
eroscedastic (ARCH) model with extensions. These models have been successful in explaining
volatility clustering in stock returns and in modeling interest rates. A chaotic process, on the
other hand, is perfectly deterministic but its behavior is indistinguishable from pure randomness.
Chaotic systems are always nonlinear and have been important in explaining seemingly random
behavior in the sciences. A very important fact regarding chaotic models, which is different
from the usual situation in economics, is that all movements are generated within the model.
No external shocks need to be introduced.

The lack of explanative power in linear models has led numerous researchers to the study of
chaos in financial economics, see e.g. Scheinkman and LeBaron (1989), Peters (1991), Larrain
(1991), and Hsieh (1991). Hsieh (1989) instead focuses on nonlinear stochastic models, in
particular GARCH models. Varson and Doran (1995) try to distinguish chaos from random
nonlinearities with the Grassberger-Procaccia correlation dimension. The disadvantages of this
method are that very long data series are needed, and that it does not constitute a statistic
test. Therefore, Brock, Dechert, and Scheinkman (1987) proposed a related statistic test, the
BDS test, based on the correlation integral, a measure of spatial correlation, and it can be used
to detect deviations from the IID-hypotheses. Since the BDS test does not distinguish between
different causes for rejections of IID, Hsieh (1991) first filters data with different linear and
nonlinear filters in order to detect what kind of model can explain the nonlinearities.

In this chapter, we look at Swedish stock index returns, and try to detect the presence of
nonlinearities in this market. Can nonlinear effects, for instance, help explaining the large jumps
in stock prices that occur with fairly high frequency? Our data covers monthly returns from
1919 to 1996, daily data from 1977 to 1996, and intradaily data (15 minutes) from January 1992

!By a linear model, we mean a model with a linear mean and additive IID error terms.



to August 1993.

Since the movements cannot be successfully described by linear models, we try to determine
how to model the nonlinearities that must be introduced. Typically, nonlinearities can enter
in the process governing returns (nonlinearities in the conditional mean) or in the process of
the time-varying conditional variance (nonlinearities in the conditional variance). In order to
have a chaotic returns process, there must exist nonlinearities in the conditional mean. To test
this hypothesis, we investigate the predictability of linear versus nonlinear models fitted to data
by using neural networks. The weak evidence of nonlinearities in the conditional mean makes
us continue our search for causes of the non-IID stock returns. We turn to the BDS test, and
try to separate the different causes of a rejection of the IID-hypothesis in our market; chaos,
heteroscedastic conditional variance, nonstationarity, or simple linear autocorrelation. We reject
the hypothesis of conditional mean changes or nonstationarities causing the BDS test to reject
the IID hypothesis. Instead, we find strong evidence of conditional variance dependences in the
stock index returns. We do not only find significant ARCH-effects but also the stronger result
that ARCH-effects alone contribute to more or less all the non-IID behavior in our data.

In section 2, we give an introduction to chaos, nonlinearities, and the BDS test, in section 3

our data is described, in section 4 we present our results, and section 5 concludes the chapter.

2 Chaos and How to Detect it

What is chaos? A clear cut definition has not yet been generally accepted, but three fundamental

properties must be included (see Strogatz (1996)):

e Chaotic motion must have an aperiodic long-term behavior. This means that there are
trajectories’ which do not settle down to fixed points, periodic orbits, or quasiperiodic

orbits as t — oo.

e Chaotic motion exhibits sensitive dependence on initial conditions, which means that

nearby trajectories diverge exponentially fast.

e Chaotic motion is purely deterministic. The irregular behavior stems from the nonlinearity

of the system and not from random effects.

A dynamic system evolving in a chaotic way is also said to have a strange attractor. It

is possible to quantify the sensitivity on the initial conditions above by defining the Liapunov

?The phase space is the space spanned by the state variables. A trajectory is the path of evolution of a point

in the phase space.



exponents for chaotic systems in continuous time (flows), and discrete time (maps). For a flow
in n dimensions, an infinitesimal sphere will be distorted into an infinitesimal ellipsoid during its
evolution in phase space. If €,(t), k = 1, ...,n denotes the length of the kth principal axes of the
ellipsoid, then € () o € (0) e !, where the \;’s are the Liapunov exponents. The n different
Liapunov exponents therefore describe the deformation of the system. For a strange attractor, at
least one of the \;’s must be positive because of the separation of neighboring trajectories. The
sum of the A,’s describes the contraction of volume, which must be negative since, by definition,
an attractor (strange or otherwise) should attract all trajectories starting in a sufficiently small
open set containing the attractor. Chaotic behavior demands a positive Liapunov exponent,
which implies the existence of a time horizon beyond which prediction breaks down, since any
discrepancy in the estimate of an initial state will grow exponentially.

From where does chaos come? In the ”definition” of chaos, two properties seem hard to
combine. How can trajectories on a strange attractor diverge endlessly and yet remain bounded?
The answer is that strange attractors result from a stretching and folding process. To be more
concrete, consider again the sphere in the phase space. A strange attractor is generated when the
system contracts the sphere in some directions and stretches it in others. To remain bounded,
the distorted sphere must be folded back onto itself. After a large number of iterations, the
sphere is spread throughout a bounded region in the phase plane. The mechanisms involved
reflect the volume contraction, the sensitivity on initial conditions and the boundedness of the

attractor.

2.1 The Correlation Integral

How do we test for the presence of chaos? One way would be to calculate the largest Liapunov
exponent and see if it is positive, but this is not easily done in real world situations. Moreover,
the other Liapunov exponents are even harder to estimate so this procedure cannot distinguish
between different types of strange attractors. Grassberger and Procaccia (1983) therefore pro-
posed a different procedure based on spatial correlation.

Consider a set {x,}7 of points on an attractor. Define the correlation integral as C(l) =

lirnT—>oo CT(Z)a

1

CT(Z) = 72 Z@(l - |xt - Xs|)7

T st
where f(a) = 1 if @ > 0, and 0 otherwise. The quantity C(l) measures the fraction of the
total number of pairs (x;, X,) whose distance |x;, — x,| is less than [. Grassberger and Procaccia
found that C(I), and its sample estimate C7(l), are proportional to I¢ where d is called the

correlation dimension. In practice, d is estimated as the slope in a plot of In CT (1) versus In(l).



When dealing with finite data sets, the power law, C”7(I) oc 14, only holds over an intermediate
range of [, since at large [, all points will be within a distance of [, while on the other hand, at
extremely small [, no pair of points will be within [. Typically, strange attractors have a fractal

structure and therefore, a non-integer correlation dimension.

2.2 Attractor Reconstruction

A time series, {x;}, of all state variables x € R™ is often not accessible. In many cases, it
is not even possible to specify either the relevant components of x or its dimension, which
might be high. Nevertheless, such systems might have low-dimensional attractors. Fortunately,
Packard et al. (1980) and Takens (1981) show that the dynamics in the full phase space can
be reconstructed from measurements of a single-variable time series {{x,};z, € R,z C x}. The

main idea is to construct m-dimensional vectors

£t = (:Uta Ligrs - xt+(m71)7)

for some delay 7 > 0. If {x,} possesses an attractor that can be embedded in an n-dimensional
X-space, then the topological structure of the attractor remains unchanged when embedded in
&-space, provided that the embedding dimension m is large enough. A necessary condition is
m > n and a sufficient condition is m > 2n 4+ 1. In other words, it is possible to make some kind
of ”variable substitution” between the unobservable variables in x and the lagged observables.

Since {x,} and {&,} are observationally equivalent, they also have the same correlation
dimension, provided that m is large enough. Thus, C, (1) can be calculated, now with a subscript
m, using &, instead of x,. If {§,} is obtained from a chaotic time series, then the computed
correlation dimension will level off at its true value when the embedding dimension is large
enough, so that there is enough room for the attractor to unfold. The point to be made is
that if {&,} is obtained from a purely random (IID) sequence, the correlation dimension keeps
increasing with m, since noise always fills up the space in which it is embedded. In principle,
estimates of d can thus be used to distinguish chaos from noise.

The delay 7 should not be chosen too small since then z; ~ x;,, ~ ..., and the attractor
might have problems in disentangling. If, on the other hand, 7 is chosen too large, problems
arise because the spatial correlation is low for distant values in the time series.

Unfortunately, the Grassberger-Procaccia method has some drawbacks. First, it must be
emphasized that the method breaks down when the embedding dimension is too large due to the
sparsity of data, which causes statistical sampling problems. Second, Grassberger and Procaccia
based their results on time series of 10000-30000 points, although they argued that only a few

thousand points would be necessary to obtain reasonable estimates. Ramsey and Yuan (1989)



have shown that there is a tendency to underestimate the slope in data sets with as many as
2000 points, thus indicating chaos when none is present. Third, the graphical procedure is not
put on firm statistical ground and it might be difficult to interpret when noise is added to the

system.

2.3 Influence of Noise

In real life, systems can seldom be isolated from the unpredictable environment. The observed
dynamics will then consist of two parts; the intrinsic deterministic dynamics of the system and
the influence of random noise. One common way of modeling the randomness is as dynamical

noise:
Ty = f(xtfla ) + &, (1)

where ¢, is IID, x, is the observable, and f is a deterministic, possibly nonlinear, function. If
f is chaotic, much of what has been said above about chaos is still valid when noise is added
to the system, provided the noise level is not too high. Otherwise, the trajectories could jump
out of the basin of attraction, or jump between different parts of the attractor in such a way
that it becomes impossible to separate the behavior from true noise; the attractor has lost its
structure. An acceptable noise level is hard to determine since different chaotic systems exhibit
very different sensitivities to noise, but generally, only small amounts of noise can be introduced.

The Grassberger-Procaccia method must be modified when dealing with noise (see Ben-
Mizrachi et al. (1984)). For length scales, [, below those where the random component blurs
the structure, the slope of InCF (1) versus In(l) is proportional to the embedding dimension,
while for length scales above, the slope is equal to the correlation dimension of the deterministic
system (CT (1) oc 19).

Equation (1) can also be used to describe different stochastic processes. If, for instance, f
is a nonlinear (or linear) map with a stable attracting fix point, then the output corresponds to
passing random noise through a nonlinear (linear) recursive filter, thereby obtaining stationary
aperiodic behavior. In principle, the Grassberger-Procaccia method could be used to identify
the properties of f by calculating the slope at different [ and m, and comparing it to the slope
of an IID process of the same length and with the same moments, i.e. the time series randomly
permuted or scrambled.

Figure 1 shows In(C(l)) versus In(l) for the Hénon (1976) map

Tppr = L4y, —axp, (2)

Ye+1 = bxy, (3)
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Figure 1: Plot of In(C(l)) vs. In({) for the Hénon map with a = 1.4 and b = 0.3 (thick lines) and
its scrambled counterpart (dotted), for m = 2,3, and 4. Higher lying lines correspond to lower
m. Noise uniformly distributed on (—0.03,0.03) is dynamically added to the x -component. The
changes in slopes for [ < 0.06 (In(l) < —2.8) are clearly visible. The time series is normalized to

unit sample variance, and consists of 2000 observations.

for m = 2,3, and 4 with uniformly distributed noise dynamically added. In this case the attractor
can be completely reconstructed when m = 3.> From Figure 1, it is clear that the slopes are
different for length scales less than the magnitude of the imposed noise. Since the noise is
uniformly distributed in (—0.03,0.03), the slopes for I < 0.06, In(l) < —2.8) are equal to the
corresponding embedding dimensions. As expected, the correlation dimensions of the scrambled
time series show no saturation as m grows.

This graphical procedure should, in principle, also be valid for residuals from ARCH-type

3The slope for m = 2 is only slightly less than the slopes in higher embedding dimensions, thereby suggesting

that the attractor has a non-trivial structure already when m = 2.



models*, where ¢, = g(x,_1, ...)uy, u, IID, but it would be hard to tell if any deviation from the
scrambled counterpart is caused by the conditional mean process f or the conditional variance
process g or both (see Scheinkman and LeBaron (1989)). Brock, Dechert, and Scheinkman (1987)
modified the Grassberger-Procaccia method in order to circumvent some of its drawbacks by
developing the BDS test. A revised version of this test is found in Brock et al. (1996).

2.4 The BDS Test

The test is based on the observation that for an IID sample
Cn () = [Cf ()™

The identity should be understood in a statistical sense. Brock, Dechert, and Scheinkman (BDS)
derived a normalization factor® V,I(I) in order to make a correct statistical quantification of the
departure from IID. More specifically, they showed that the BDS statistic

[cno - ef o]
Z30)

WE() =VT

converges in the distribution to N(0,1) as T — oo, for [ > 0 and m > 1, under the null
hypothesis of IID.

The BDS test has proved to be quite powerful in finding departures from IID in a number of
Monte Carlo simulations; see, for example, Brock, Hsieh, and LeBaron (1991) and Hsieh (1991).
It has also been verified that the finite sample distribution well approximates the asymptotic
distribution for sample sizes above 1000 observations. As for the Grassberger-Procaccia method,
the results depend on the magnitude of the additive noise component. It is therefore recom-
mended (see Brock, Hsieh, and LeBaron (1991)) to apply the test for [ = 0.5 — 1.5 times the
sample standard deviation of the time series.

The BDS test suffers from the fact that a rejection of the null does not provide any hints
about the cause of the rejection. It has been shown in Brock and Potter (1993) and de Lima
(1996), however, that the null distribution of the test is not affected by applying the BDS test

to the estimated residuals from a general class of parametric models with additive IID errors:

vy = f(ry_q,..;0) +uy,

1By ARCH-type models, we mean models that exhibit autoregressive conditional heteroscedasticity.

®The normalization factor is a complicated function of correlation integrals in different dimensions. It is not
very illuminating and therefore not presented, but can be found in Brock et al. (1996).



where o is a parameter vector and u, is IID, provided that a V/T-consistency estimation of
the parameters is possible. The last requirement means that vT(& — a) — N(0,X) for some
covariance matrix X, and is fulfilled in maximum likelihood estimations. Moreover, de Lima
(1996) shows that the nuisance parameter free properties of the BDS test remain valid for

residuals from some multiplicative models

2y = f(@_1,50) + 9(_1, 5 B)uy, (4)

where u, is IID, which covers many, if not all, of the known ARCH-type models, if the test
is applied to the transformed residuals ¥, = In(4?) where 4, are the estimated residuals in (4).

The key idea is that the transformation gives rise to a model with additive IID errors:

B =1 (0 = (@15 0))?) = In (°(2 1,5 8)) + In(uf) = (21,5 8) +r,

where v, is IID because u, is IID. It must be kept in mind that the asymptotic properties of v,
and v, are equal only if o is known, i.e. when a GARCH model is fitted to the data without the
conditional mean process. However, the bias introduced is expected to be small when o and 3
are jointly estimated ”...because of the lack of predictability of the first moment compared to
the second central moment...” (see Brock and Potter (1993)), as is often the case in financial
time series’.

Furthermore, the BDS test does not require any moments for the time series studied to
exist, contrary to other nonlinearity tests, but when the test is applied to model residuals v/7-
consistency of the parameter estimates sometimes demand the existence of higher moments in
the disturbance process, typically a finite variance. The assumption of the existence of higher
order moments might otherwise be severe in the nonlinearity testing of financial time series,
whose distributions are often heavily tailed. The disadvantage is that the BDS test may require
longer samples to be as effective as some other tests.

Altogether, the BDS test may not only be useful in detecting chaos, but also in diagnostic

testing of estimated model residuals.

3 The Data

The data we use is log-returns from two different Swedish stock indices, the OMX-Index and
the Affirsviirldens Generalindex. The former was created as an underlying security for trading

in standardized stock index options and forward contracts, and consists of a value-weighted

SWith the possibility of bootstrapping small sample distributions, the asymptotic properties of the test are
nowadays of less importance.



Table 1: Sample statistics for return data.
Monthly  Daily 15 min. 1 15 min. 2 15 min. 3 15 min. all

No. of observations 936 2949 2579 2571 2767 7917
Mean (-102) 0.49 0.023 -0.0015 0.0072 0.0088 0.0049
Variance (~104) 21.61 0.30 0.03 0.13 0.036 0.06
Skewness -0.52  -0.18 1.05 4.53 0.27 4.36
Kurtosis 8.04 9.30 32.72 96.43 9.58 130.11

combination of the 30 most traded stocks at the Stockholm Stock Exchange. The latter is the
most used stock index in Sweden and it is a value-weighted index of the majority of all stocks
quoted on the Stockholm Stock Exchange.

The time interval between observations is sometimes of importance in financial time series.
Therefore, we look at series with different sampling frequency; monthly, daily, and 15 minutes.”
In this way, we can detect chaotic and nonlinear behavior on different time scales. In addition,
the problem of too short or too long delay times 7 in the reconstruction of the chaotic attractor
mentioned in section 2.2 can be mitigated.

The monthly data (Affirsvirldens Generalindex) is extended over the period 1919-1996,
while the daily data (OMX-Index) is for the period 1984-1996. The intradaily series (OMX-
Index), with data collected every 15 minutes, covers the period January 1992-August 1993 and
is divided into three series with approximately equal length to catch any instability in the
estimated parameters.® At the same time, the length of the series becomes comparable to the
length of the daily series. The first observation every day has been removed due to the auction-
like start up procedure at the exchange. All data is without dividends, but we have also looked
at monthly (1919-1996) and daily (1977-1991) returns with dividends included (Affarsvirldens

9 The results for these series are not reported but are similar to those without

Generalindex).
dividends and any differences will be commented upon. Table 1 displays some sample statistics
of the return data. The high degree of kurtosis and skewness, in particular for the 15 minute

data is observed.

"The 15-minute time span between data points should be large enough that possible micromarket structure
dependences do not shine through. Such dependences can, for instance, arise from the sequential execution of

orders in the traders’ limit order book, or by thin trading in some of the underlying stocks.
8The second subperiod covers the volatile months when Sweden abandoned the fixed exchange rate regime.

9For monthly returns, the series with dividends has 936 observations and for the daily returns, 3489 observa-

tions.
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Table 2: BDS statistics for raw data. [ is the length scale, o is the sample standard deviation,
and m is the embedding dimension. The test statistic is asymptotically distributed as N(0,1).

m
L 2 3 4 5 6 7 8 9 10
monthly 0.5 833 10.83 1357 16.61 20.13 2649 33.56 4821 67.21
1 843 1074 13.39 1572 17.81 20.54 23.64 27.34 32.20
1.5 770 9.83 12,04 13.79 1520 16.73 18.24 19.76 21.49

daily 0.5 1236 14.66 17.55 21.05 24.82 30.05 36.82 46.94 59.21
1 12.53 14.40 16.35 18.53 20.49 22.82 2529 28.17 31.87
1.5 13.25 15.12 16.73 1813 19.21 20.34 21.47 2256 23.86

15 min. 1 0.5 11.43 13.13 12.82 13.58 13.81 13.81 13.67 13.67 13.00
1 12.76 13.53 1288 12.61 12.25 11.73 11.13 10.42 9.51
1.5 11.80 11.79 10.89 10.19 9.48 8.82 8.21 7.48 6.72

15 min. 2 0.5 16.71 19.11 20.87 2247 24.03 25.38 26.34 27.23 27.37
1 14.34 15.67 15.78 15.74 1532 14.78 14.01 13.25 12.36
1.5 9.51 10.01 9.67 9.19 8.53 7.85 7.16 6.48 5.81

15 min. 3 0.5 8.89 11.16 11.93 1339 15.15 16.79 18.13 19.29 20.77
1 8.36 10.59 11.23 1240 1348 14.27 14.79 1495 15.14
1.5 7.49 8.98 9.35 10.11 10.72 11.00 11.05 10.85 10.54

15 min. all 0.5 2498 29.87 32.63 36.31 40.49 44.78 49.12 53.58 58.02
1 24.09 6.89 27.75 28.68 29.28 29.57 29.65 29.52 29.21
1.5 20.12 2157 21.39 21.29 2092 2040 19.79 19.13 18.43

4 Empirical Results

In the following section, we apply the BDS test to the raw data to test if the different time
series are IID. If the null hypothesis of IID is rejected (and it is), we try to discover the cause of
the rejection by applying the BDS test to the estimated residuals from different models. More
precisely, we examine whether the rejection origins from nonlinear (possibly chaotic) or linear
dependences in the mean processes, nonstationarities, or if the rejection can be explained by

nonlinear stochastic models exhibiting conditional heteroscedasticity.

4.1 Test of the Raw Data

Table 2 shows the BDS statistics when the embedding dimension is between 2 and 10, and [ is

chosen as 0.5, 1 and 1.5 times the sample standard deviation of the different time series. As can

11



be observed, the test strongly rejects the hypothesis of I1ID stock returns at any conventional
significance level and for all m and [, even though little can be said about the cause of the
rejection. If the time series came from a noisy chaotic system with a higher dimensional attractor,
then the test statistic would typically be small for low embedding dimensions and large in
dimensions with enough “room” for the attractor. Obviously, this is not the case since the
rejections are significant already at m = 2.

Considering the results, we proceed to study how dependences in the conditional mean might

cause the rejection of IID.

4.2 Test of Dependences in the Conditional Mean

Suppose stock returns are generated as:

zy = f(@y_q,..) T & (5)

where ¢, is IID and f is the conditional mean process. The expression in (5) can be used to
describe noisy chaotic models as well as different stochastic processes. Now, we will investigate
whether f is nonlinear (and possibly chaotic), and whether any dependences in the conditional
mean can explain the rejection of I1D.

If f is nonlinear, it can be modeled by nonparametric regressions, e.g. artificial neural
networks. This powerful technique is exhaustively described elsewhere (see Hertz et al. (1991)
and Kuan and White (1994)), and thus, we will here merely say that a multi layer perceptron
(MLP), with one hidden layer of sigmoid transfer functions, can consistently model a time
series generated by an arbitrary function, provided that the function is bounded and uniformly
continuous. On the other hand, if the MLP only contains linear transfer functions, it can only
pick up linear dependences, i.e. the nonparametric modeling reduces to a linear regression. We
therefore proceed in the following way:

We split each time series into three parts of unequal size. The first 50% are used for the
regression, or training, while the consecutive 25% are used as validation sets. The last 25%
(t =1,...,T;.4) are used as test sets for out-of-sample evaluation. For each returns series, we
train 10 MLP’s with 3, 5 and 7 hidden neurons, each with sigmoid (tanh) transfer functions, in
a single hidden layer and a linear output neuron. As inputs we use x;_q, ..., Z;_g corresponding
to an embedding dimension m = 10. For each time series, we also train linear perceptrons to
capture the linear dependences. In all cases, the sum squared errors of the validation sets are
minimized, and for each time series, we pick the network with the best validation performance.

The different MLPs are then evaluated using the out-of-sample prediction error normalized with

12



Table 3: Out-of-sample evaluation for nonlinear and linear neural networks. MLP3 refers to a

MLP with 3 hidden neurons etc. MLPL refers to a linear perceptron.

E
MLP3 MLP5 pMLP? MLPL
monthly 1.0512 1.0418 1.1635 1.0357
daily 0.9913 1.0132 1.0046 1.0108
15 min. 1 0.9903 0.9871 1.0127 0.9852
15 min. 2 0.9942 1.0452 1.0015 0.9943
15 min. 3 0.9926 0.9869 1.0029  0.9820

15 min. all 0.9901 0.9925 0.9909 0.9895

the out-of-sample variance of x;:

1 T, ; 2
£ _ T,.., Dot (xt —f (xtfla "'7$t79))

P ~2
Otest

If f is nonlinear, E, should be smaller for nonlinear than for linear networks. Furthermore, if
f is chaotic, then the performance of nonlinear networks should improve as the forecast horizon
shortens, that is, when we go from a sample interval of one month down to 15 minutes, and it
is a consequence of the positive Liapunov exponent(s) in a chaotic system.

The results are reported in Table 3. Three things can be noted. First, the out-of-sample
prediction performance is very weak, with E,, slightly below one (and occasionally above). Sec-
ond, there is no support in the data for nonlinear regression being superior to linear regression.
Sometimes, it is superior but then the improvement is negligible. Third, the performance of the
nonlinear networks does not improve as the sample interval is reduced.

We also analyze the dependence of the output on the input variables by inspecting derivatives
after completed regression. This is done by calculating

3f($t—17 "'7$t—9)
Oxy_y,

Sk(t) — 5 k' — ]_,...,9

fort =1,...,T;, and then computing

1
Sk:T—Z’Sk(t)" (6)
test ¢
The measure in (6) shows which variables are the most important. For a linear network, this is
just equal to (the absolute values of) the coefficients from a linear regression.
The results are found in Table 4. We see that both types of networks identify approximately

the same variables as being important, often the first. The magnitudes of S, differ somewhat
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Table 4: Sensitivity dependences in the nonparametric regressions. MLP refers to a nonlinear

multi layer perceptron. MLPL refers to a linear perceptron.
S, s, S, s, S, S, S, S, S,
monthly MLP 0.1153 0.1208 0.0360 0.0929 0.0409 0.1091 0.0263 0.0515 0.1228
MLPL 0.1634 0.1131 0.0123 0.0230 0.0001 0.1681 0.0129 0.1049 0.1217

daily MLP 0.1217  0.0171 0.0462 0.0249 0.0107 0.0574 0.0475 0.0325 0.0242
MLPL 0.1843 0.0124 0.0569 0.0106 0.0210 0.0659 0.0898 0.0780 0.0281

15 min. 1 MLP 0.0537  0.0507 0.0511 0.0381 0.0191 0.0046 0.0206 0.0183 0.0105
MLPL 0.0812 0.0365 0.0816 0.0189 0.0292 0.0069 0.0053 0.0111 0.0157

15 min. 2 MLP 0.0939 0.0499 0.0223 0.0023 0.0665 0.0572 0.0040 0.0147 0.0219
MLPL 0.0714 0.0486 0.0298 0.0014 0.0105 0.0195 0.0381 0.0251 0.0224

15 min. 3 MLP 0.0341 0.0262 0.0102 0.0055 0.0134 0.0231 0.0068 0.0156 0.0056
MLPL 0.0585 0.0095 0.0153 0.0270 0.0039 0.0003 0.0109 0.0062 0.0216

15 min. all MLP 0.1330 0.0385 0.0091 0.0325 0.0070 0.0227 0.0132 0.0062 0.0303
MLPL 0.1371 0.0393 0.0053 0.0348 0.0054 0.0162 0.0025 0.0181 0.0314

between linear and nonlinear networks, but the point is that there seem to be no substantial
dependences in the data not captured by the linear networks.

Although this is not a statistical test of nonlinearities in the conditional mean process, we
draw the conclusion that there are none. Either the dependences in f are truly linear, or they are
so blurred with noise that the conditional mean can best be approximated by a linear process.
Since chaos can only arise from a nonlinear mapping, this suggests that there is no chaotic
behavior in the mean process.

Can the linear dependences in f cause the BDS test to reject IID? We try to answer this
question by applying the BDS test to the residuals from the linear networks above. As appears
from Table 5, the test strongly rejects the residuals as being IID at any reasonable significance
level. The test statistics of the linearly filtered data do not differ a great deal from those of the
raw data, indicating that the rejection is not only due to linear dependences'.

In the following, we try to sort out what kind of nonlinearities the BDS test in fact detects

in our data.

10We also applied the BDS test to the residuals from the nonlinear networks. As expected, the test statistics
did not differ a great deal from those in Table 5, but to our knowledge, it is not clear whether the nuisance free

properties of the test is valid for residuals from nonparametric regressions.
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Table 5: BDS statistics for linearly filtered data. [ is the length scale, o is the sample standard
deviation, and m is the embedding dimension. The test statistic is asymptotically distributed
as N(0,1).

2 3 4 ) 6 7 8 9 10

monthly 0.5 7.28 10.09 12,59 15.04 17.70 22.11 26.18 31.35 36.66
7.04 9.77 12,55 14.86 16.87 19.46 22.36 25.85 30.39
1.5 6.50 897 11.30 13.19 14.65 16.22 17.73 19.26 20.97

9~

—

daily 0.5 11.83 1441 17.04 20.54 24.45 3048 37.75 47.93 58.89
1 12.18  14.27 16.16 18.52 20.69 23.26 26.03 29.21 33.28
1.5 1294 15.05 16.68 1825 19.44 20.65 21.87 23.09 24.53

15 min. 1 0.5 10.58 12.21 1198 12.60 12.90 12.77 1248 12.10 11.14
1 11.27 1199 1146 11.18 10.86 10.34 9.74 8.99 8.08
1.5 1046 10.34 9.64 8.97 8.32 7.69 7.12 6.41 5.69

15 min. 2 0.5 14.34 16.87 18.52 19.83 21.12 22.25 22,78 23.33 23.34
1 14.27 1545 15.53 15,51 15.16 14.67 13.95 13.19 12.27
1.5 9.69 9.99 9.61 9.08 8.42 7.78 7.12 6.44 5.74

15 min. 3 0.5 7.99 1021 10.80 12.02 13.49 15.04 16.65 17.92 19.78
1 7.53 9.83 10.52 11.69 12.72 13.44 13.93 14.05 14.18
1.5 6.67 8.37 8.87 9.76 1042 10.73 10.77 10.56 10.23

15 min. all 0.5 2242 2725 30.09 3343 37.12 40.88 4446 48.19 52.13
1 2252 2529 26.25 2v.13 2770 2795 2796 27.78 27.42
1.5 19.56 20.82 20.62 20.49 20.12 19.62 19.01 18.34 17.59
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4.3 Test of Nonstationarities

Financial time series are not necessarily stationary. There might be a number of structural
changes creating nonstationary series: policy changes, changes in financial structures as well as
important technological innovations. Therefore, it is possible that a rejection of IID by the BDS
test is caused by nonstationarities and a closer study of whether this is the case is motivated.
The type of nonstationarities we discuss in this section arise from switching between different
linear models; that is, we allow the parameters of a linear model to change from regime to
regime.

To investigate the influence of nonstationarity, we can either apply the BDS test to the
residuals from a linear switching model, or we can try to judge it more qualitatively (following
Hsieh (1991)). Since we have time series with different extensions in time, we do the latter. Our
longest return series is 77 years and our shortest is about 7 months. In between, we have a time
series of about 13 years. When we proceed to increasingly shorter time intervals, we expect the
effect of structural changes to disappear (we simply assume that less and less changes occur)
and consequently, any rejection of the IID hypothesis due to nonstationarities alone should
disappear.

There is no support for this idea. The linearly filtered statistics in Table 5 are as high for
the 15 minute data as for the monthly and daily data. As long as the linear regime shifts occur
with a frequency low enough to leave our 15 minute data unaffected, they cannot be the only
cause of the BDS test rejecting the IID hypothesis.

4.4 Test of Dependences in the Conditional Variance

As mentioned, there are many ways of generating non-IID data; we have treated linear and
nonlinear autoregression, chaos, and nonstationarity. Now, we turn to models exhibiting non-
linearities in the conditional variance. Examples of models with this behavior are autoregressive
conditionally heteroscedastic models like ARCH, GARCH, and their extensions.

Many time series exhibit periods of unusually large volatility followed by periods of tranquil-
ity. Under such circumstances, the assumption of a constant variance is obviously inappropriate.
In order to detect the time-varying variance, the conditional variance can be modeled as a linear
function of past squared errors. This is the ARCH model. Further extensions of the model, al-
lowing the conditional variance to also be a function of its own lags, gives us Bollerslev’s (1986)
generalized ARCH model, GARCH(p, q), where p and ¢ are the number of lagged conditional

variance and squared error components, respectively. In the case of an AR(2) process with the
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conditional variance modeled as GARCH(1,1) we have:

Ty = oot oqT_q+ T ot &

2 2 2
op = ¢g+ P1Ef_1 T P07 1,

where 07 is the conditional variance of ¢, ¢, = o,u,, and u, ~ N(0,1). Most empirical studies
suggest that p and ¢ larger than one are rarely needed. One problem with GARCH modeling
is that the parameters are restricted; ¢q, ¢;, and ¢, must all be larger than zero and the sum
of ¢,and ¢, must be less than one. The sum ¢; + ¢, measures the persistence of conditional
variance to shocks, which approaches infinity as the sum approaches one from below. The case
where the sum of ¢; and ¢y equals one is referred to as Integrated in GARCH or IGARCH.
We proceed one more step, this time using an asymmetric specification for the conditional
variance process, by extending the standard ARCH-model to Nelson’s (1991) EGARCH-model:

_El

where as above o7 is the conditional variance of ¢, and ¢, | &,_; ~ N(0,0,). Unlike simple ARCH

€1 €1

O¢—1 O¢—1 Ot

E4_
mﬁ=%+%tl+@<

] ) +61n(o?_,)

and GARCH, EGARCH can capture the asymmetric response of the variance to the direction
of ¢,, that is, a higher variance when ¢, is negative, and a lower variance when ¢, is positive. In
this model, ¢; < 0 represents the asymmetric effect while ¢, > 0 produces the ARCH effect.
The @-parameter determines the persistence in variance. Unlike the GARCH model, there are
no non-negativity restrictions on the parameters in the EGARCH model.

A crucial assumption in the specifications above is the normality assumption on the stan-
dardized error term wu,; the conditional heteroscedasticity of €, alone is expected to explain the
observed kurtosis in the return distribution. Since empirical evidence strongly rejects the idea
that financial returns are normally distributed, we compare estimates with normally distributed
errors with t-distributed ones. In this way, a larger part of the excess kurtosis in the stock
returns might be captured.!!

Baillie and DeGennaro (1990) as well as Poon and Taylor (1992) clearly demonstrate that the
t-distribution gives a better fit to the error term of financial return series. For the t-distribution

one additional parameter must be estimated, the degree of freedom, v. The t-distribution is

" For the EGARCH model, one must be aware of the fact that the conditional variance expression changes with
the distribution; E H e H depends on the chosen distribution. For the normal distribution E HE—] = \/g,
1

1
t—1 Tp—
} _r) v

r(y) Vo

o

€11

For large values of v (over 30), this

and for the t-distribution, our calculations give F H =

ﬂ

t—1

expression is very close to %
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Table 6: GARCH with normally distributed errors. The asterisk indicates that the null hypoth-
esis of an IGARCH cannot be rejected. Small numbers indicate standard errors.
ap-10° o S [ ¢y ¢p-10°
monthly”* 0.01 0.16 -0.088 5.87 0.17 0.81

0.002 0.035  0.034 1.830 0.024  0.025
daily 33.20 0.20 0.14 0.11  0.83
8.710  0.019 0.022 0.008  0.012
15 min. 1 -1.36  0.21 0.07 0.10  0.27 1.89
223 0.021 0.0024  0.013  0.017 0.119
15 min. 2 4.55 0.26 0.19 0.20 0.17 13.75
3.640  0.019 0.0068  0.021  0.013 0.452
15 min. 3 443 0.14 0.12 0.15 0.34 1.70
2.993  0.022 0.0063 0.017  0.025 0.163
15 min. all 1.98 0.21 0.13 0.24 0.17 6.35
1.650 _ 0.012 0.002 0.013  0.0073 0.099

symmetric, but has fatter tails and a higher kurtosis than the normal distribution. When v goes
to infinity, the ¢-distribution approaches a normal distribution.

In this section, we estimate the parameters in different GARCH models. EGARCH models
have also been estimated but the results are not presented since these are very similar to those of
the GARCH models. For each time series, a number of different GARCH and EGARCH models
have been estimated, and the models with the best fit have been chosen, on basis of parsimony,
likelihood value, and behavior of the standardized residuals.

For the t-distribution, one problem that has earlier been found for the 15-minute data is the
low degrees of freedom (below 4), which means that fourth-order moments do not exist (Hansson
and Hordahl (1994)). One possible explanation for these results is that the density for the 15
minute returns has very fat tails, driving the degrees of freedom of the t-distribution to low
levels. In fact, these problems are solved by adding a daily overnight dummy to the 15-minute
series in order to account for the increased variance in overnight returns.'?> Using a process like

the following for the conditional variance in the GARCH model,

07 = ¢pD + ¢y + ret_1 + P07 4

where D is the dummy variable with parameter ¢, we capture a considerable part of the
kurtosis and get well-behaved residuals.'?

The maximum likelihood estimates (the BHHH algorithm) of GARCH models with normally
distributed, as well as t-distributed, errors are presented in Tables 6 and 7. For all our models

and return series, we get significant parameter estimates, except for oy, for the 15-minute returns.

121t would also be straightforward to include a weekend dummy but its impact should be smaller than the
overnight dummy; the number of nontraded days each weekend is much smaller than the number of nontraded

15-minute periods overnight.

13In the EGARCH-case, a dummy is introduced in a similar manner; In of =In(1+ ¢,D) + ¢pg+-..
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Table 7: GARCH with t¢-distributed errors. The asterisk indicates that the null hypothesis of

an IGARCH cannot be rejected. Small numbers indicate standard errors.
o, 10° o a, ¢ 10° @ ¢,  Hp-10°  w

monthly™ 0.01 0.16 -0.078 6.60 0.16 0.82 9.13
0.002 0.035  0.035 2.56 0.031  0.033 2.580
daily 34.00 0.17 -0.037 0.09 0.11 0.86 7.28
7.490  0.019  0.019 0.020 0.015  0.018 0.630
15 min. 1 -1.28  0.17 0.06 0.10 0.34 1.54 4.90
1.910  0.019 0.005 0.024  0.033 0.190 0.455
15 min. 2 2.24 0.24 0.16 0.21 0.26 777 4.66
3.246  0.019 0.013 0.034  0.027 0.925 0.438
15 min. 3 5.10 0.11 0.11 0.16 0.35 2.07 4.62
2.656  0.019 0.011 0.031  0.042 0.158 0.438
15 min. all 1.35 0.17 0.10 0.25 0.31 3.07 4.02
1.436  0.011 0.006 0.023 _ 0.018 0.235 0.196

For the monthly data, we cannot reject the null of an infinite unconditional variance (we cannot
reject the null of an IGARCH in these GARCH models) even though intuition suggests a mean-
reverting variance. This conflicting evidence might be reconciled by allowing for fractional orders
of integration (Bollerslev and Mikkelsen (1996)). Including AR(2) terms in the conditional mean
gives better fit to data and less (linearly) correlated standardized residuals for some data series.
In general, the coefficients of the AR(2) terms are very small, however. The estimates of the
degrees of freedom parameter v for the t-distribution are clearly finite, indicating non-normally
distributed errors. The degrees of freedom parameters differ between time series but are similar
for the GARCH and EGARCH models, respectively. Overall, the parameter estimates are fairly
non-sensitive to the specification of the error distribution.

For our daily OMX-Index data, Hansson and Hordahl (1997) have estimated EGARCH
models where the errors are described by the normal distribution as well as the generalized error
distribution (GED). A comparison of our estimates with the results from Hansson and Hordahl
(1997) shows almost identical estimates for ¢;, ¢, and € when the errors are assumed to be
normal. The same holds for our parameters in the ¢-distributed model, when compared to the
estimated GED models by Hansson and Hoérdahl.!4

In practice, all models retain some skewness in the residuals, a finding common in empirical
studies of conditionally heteroscedastic models. A comparison of the values of kurtosis between
the models shows that, as expected, the t-distributed model has residuals with higher kurtosis
than the normally distributed one. While the normally distributed standardized residuals show
excess kurtosis for all data series, the t-distributed standardized residuals show a lower than

theoretically predicted kurtosis of about the same size for all but the daily series.

Y1t is important to note that, as Nelson (1991) shows, EGARCH models with a t¢-distributed u, give rise
to strictly stationary although not covariance stationary of and e,; i.e. Uf and e, have no finite unconditional

moments.
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Table 8: BDS statistics for transformed GARCH residuals, normal distribution. [ is the length
scale, o is the sample standard deviation, and m is the embedding dimension. The test statistic

is asymptotically distributed as N(0,1).

m

L 2 3 4 5 6 7 8 9 10

monthly 0.5 -1.13 -1.10 -0.98 -0.79 -0.43 0.04 035 -0.17 -2.24
1 -0.69 -0.46 -0.28 -0.15 -0.13 -021 -0.20 -0.27 -0.13

L5 -0.49 -022 -0.08 -0.07 -0.06 -024 -0.29 -0.46 -0.46

daily 0.5 0.82 118 137 174 201 184 141 060 0.13
1 050 0.65 080 129 138 129 1.09 097 0.92

15 0.67 037 041 087 086 071 057 050 045

15min. 1 0.5 0.19 -0.26 -0.48 -0.45 -0.25 -0.11 0.02 1.04 1.38
1 -0.52  -0.44 -0.29 -0.08 021 055 091 128 1.46

15 -0.89 -0.36  0.05 037 080 120 159 196 2.16

15min. 2 0.5 1.30 147 138 159 169 161 0.80 -0.52 -2.69
1 151 137 1.33 152 1.60 1.80 1.95 214 2.00

15 183 186 1.89 1.97 206 222 231 243 239

15min. 3 0.5 -0.44  -093 -1.04 -0.68 -0.71 -0.43 -0.87 -1.49 -2.94
1 -0.27 -0.71 -0.98 -0.72 -0.57 -0.55 -0.59 -0.60 -0.59

15 -0.39  -0.90 -0.97 -0.67 -0.49 -0.55 -0.59 -0.62 -0.61

15 min. all 0.5 0.40 0.03 001 045 070 0.90 0.95 0.83 0.84
1 0.27 0.06 010 063 101 140 166 191 2.04

1.5 0.38 030 056 103 143 180 211 238 251

4.4.1 BDS Statistics on Transformed Standardized Residuals

A comparison of BDS statistics for the linearly filtered financial data and for the GARCH
residuals, the extent to which the rejection of IID residuals are due to ARCH-effects is captured.
As discussed in section 2.4, we circumvent the problem in GARCH filtering related to the issue
of nuisance parameters by looking at the transformed standardized residuals. In Table 8 and
Table 9, we present the BDS statistics for the transformed standardized residuals from the fitted
GARCH models in Table 6 and Table 7, respectively.

The most obvious result is the substantial decrease in rejecting frequency after GARCH fil-

tering!9. We cannot reject the null hypothesis for monthly and daily data with normal errors.

1The BDS test is asymptotically distributed as N(0,1) and considering our long data series, we assume the
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Table 9: BDS statistics for transformed GARCH residuals, ¢-distribution. [ is the length scale,
o is the sample standard deviation, and m is the embedding dimension. The test statistic is
asymptotically distributed as N (0, 1).

m
ﬁ 2 3 4 5 6 7 8 9 10

monthly 0.5 -1.14  -1.27 -1.16 -094 -0.68 -0.38 -0.43 -0.81 -1.31
1 -0.73  -049 -0.28 -0.12 -0.11 -0.20 -0.19 -0.25 -0.19

1.5 -0.49 -0.20 -0.03 -0.04 -0.06 -0.26 -0.32 -0.51 -0.53

daily 0.5 0.72 112 122 147 176 157 093 028 0.27
1 0.55 0.68 0.84 1.21 1.23 113 097 084 0.73

1.5 0.72 0585 065 1.04 094 079 0.65 060 0.59

15 min. 1 0.5 0.27r 0.02 -0.0r -0.00 0.16 053 1.04 164 2.77
1 -0.39 -038 -0.21 -0.04 030 054 077 099 113

1.5 -0.76  -0.28 0.16 048 099 136 1.65 1.89  2.02

15 min. 2 0.5 1.27 126 1.18 1.21 1.20  0.72 -0.14 -0.75 -2.45

1 1.38 119 1.27 148 164 1.8 204 222 218

1.5 2.00 197 206 216 231 257 272 289 288

15 min. 3 0.5 -0.58 -0.93 -1.03 -0.82 -0.56 -0.28 -0.62 -0.80 -1.69

1 -0.34 -0.74 -1.03 -0.83 -0.70 -0.68 -0.74 -0.80 -0.78

1.5 -0.57 -097 -1.07 -0.85 -0.70 -0.75 -0.80 -0.85 -0.83

15 min. all 0.5 0.35 -0.03 -0.15 0.15 028 051 0.71 1.07 147
1 0.32 0.02 -0.00 044 088 1.25 147 1.67 1.75

1.5 0.64 040 055 093 137 1.72 1.93 213 219

Some test statistics are outside the often used 95% confidence intervals, but that is not unex-
pected with as many as 27 test statistics for each return series. We still reject IID returns for
the 15-minute data in period 2 and the overall period. For the third period, one statistic is very
large. We should reject 11D for this period, but the asymptotic properties of the test might not
be applicable for m as high as 10, with these sample sizes. A proper bootstrapping may clear
these doubts, however.

For the t-distributed residuals, we have no rejection for monthly and daily data, and a slightly
better fit of 15-minute returns, but we still have problems with period 2. It seems that the data

same holds in our finite samples. Any rejection mentioned is at the 5% significance level. For a two-sided test at

this level, the critical values are £1.96.
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series contain linear or nonlinear dependences that we have not successfully captured. Treating
overnight effects with only one dummy might be too simple, at least for this period.

There might be another explanation, however. Table 8 and Table 9 clearly suggest that
there are ARCH-effects in all our data, although the specification for period 2 is not correct.
As mentioned above, this period includes a highly volatile part in the Swedish financial history
when the fixed exchange rate regime was abandoned. In section 4.3, we concluded that linear
regime shifts could not explain the rejection of IID in our returns, but we cannot exclude
nonlinear regime shifts in the volatility. Such nonlinearities may be captured by the Markov
switching model, SWARCH, where a Markov-chain governs the transition probabilities between
the volatility states (Hamilton and Susmel (1994)). In the SWARCH model, the conditional
variance is described by an ARCH model which is the same in the different regimes, but the
scale of the conditional variance differs across regimes. Moreover, the regimes are solely identified
from the data in the estimation procedure and involves no subjective classifications other than
the number of volatility states.

It might be argued that if we have regime shifts in our 15-minute data, then the residuals
from ordinary GARCH models for the monthly and daily data covering that period should not
be IID. However, nonstationarities detected in one time scale are not necessarily detectable in
another. For example, a shift to a higher volatility regime for some months would probably
not be detectable in the analysis of monthly returns, but would most likely be detected when
analyzing 15-minute returns. Some indications of nonstationarites are indeed observed in our
parameters; in Tables 6 and 7 the variation in parameter estimates for the 15 minute return

sample and its subsamples can be noted.

5 Summary and Conclusions

We have searched for nonlinearities and chaos in Swedish stock index returns and find strong
evidence of nonlinear behavior, but no evidence of low-dimensional chaos. To our help, we use the
BDS test to detect deviations from IID errors in time series. This test detects both deterministic
and stochastic dependences, and lacks some of the disadvantages of the more commonly used
Grassberger-Procaccia method. Applying this test to Swedish stock index returns of different
sampling frequencies (monthly, daily, 15 minutes) strongly rejects the IID hypothesis. Since
many possible dependences in the data, linear as well as nonlinear, may be the cause of this
rejection, we apply the test to residuals from different models.

Linear dependences do not explain much of the deviation from IID. The same applies to
nonstationarity; IID is not more strongly rejected for low frequency data. In order to detect

chaos in stock indices, we compare the predictability of nonlinear and linear neural networks.
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No significant improvement is found, giving low importance to nonlinearities in mean or chaotic
dependences in the time series. However, this does not exclude the possibility of chaos in
individual security returns, since a combination (like in a stock index) of chaotic time series
might very well lose its chaotic structure, as examined by Atchison and White (1996).

Instead, heteroscedastic conditional variance models are found to explain much of the re-
jection of IID. The BDS statistics decrease substantially when GARCH or EGARCH models
with normal or ¢-distributed errors are fitted to the time series. In particular, the ¢-distributed
GARCH model explains the rejection of IID for monthly and daily data, while no model fully
explains the nonlinearities found for the 15-minute data, but there is little doubt that the answer
to a better fit lies in the specification of the conditional variance. If the rejections are caused
by (not too many) regime shifts in the volatility process, these might be successfully captured
by SWARCH models. We find our results quite robust and nonsensitive to the chosen type of
GARCH model, and the inclusion of dividends or not. Our findings increase the strength of
the already strong support for ARCH-type models of financial returns. For future research, we
suggest searching for nonlinearities in other financial variables like implicit option volatilities,
interest rates, and currencies. Analyzing nonlinear dependences both in time series and panel
data might be of interest. The availability of transaction data also gives the possibility to study

nonlinear effects in the micromarket structure.
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