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Abstract

Controller synthesis for nonlinear systems is considered with the following ob-
jective: no trajectory starting from a given set of initial states is allowed to enter
into a given set of forbidden (unsafe) states. A methodology for safety verification
using barrier certificates has recently been proposed. Here it is shown how a safe
control law together with a corresponding certificate can be computed by means of
convex optimization. A basic tool is the theory for density functions in analysis of
nonlinear systems. Computational examples are considered.

1 Introduction

Safety verification or reachability analysis addresses the question whether an unsafe re-
gion in the state space is reachable by some system trajectories starting from a set of
initial states. The need for safety verification is crucial in many engineering disciplines,
especially in the presence of nonlinear dynamics.

Various methods have been proposed for safety verification. For verification of dis-
crete (finite state) systems, model checking techniques [3] have been quite successful and
have garnered a popularity that prompts the development of analogous approaches for
verification of continuous systems, mostly requiring computational propagation of ini-
tial states (see e.g. [1, 6]). Unfortunately, while these techniques allow us to compute
an exact or near exact approximation of reachable sets, it is difficult to perform such a
computation when the system is nonlinear and uncertain.

Using a different approach, a method for safety verification was recently proposed
based on barrier certificates [7, 8], closely related to the notion of Lyapunov function
for stability analysis. Computation of barrier certificates was done using polynomial
parameterizations and convex optimization.

In this paper, we point out that the same problem can be addressed using density
functions, as introduced in [12]. This makes it possible to also include synthesis in the
convex optimization problem, to find a controller that satisfies the safety specification
and at the same time a certificate that verifies the safety.

The paper is structured as follows. The technique with barrier certificates is reviewed
in Section 2. After that, the corresponding technique based on density functions is
introduced in Section 3 and the synthesis procedure is described in Section 4.

∗This paper was written while the first author spent a sabbatical year 2004/05 at Caltech supported
by the Swedish Foundation for Strategic Research.
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2 Safety Verification Using Barrier Certificates

Our conditions for safety can be stated as follows. Given a system ẋ = f(x) with the
state x taking values in X , a set of initial states X0 ⊆ X , and an unsafe set Xu ⊆ X ,
suppose there exists a continuously differentiable function B : X → R such that

B(x) ≤ 0 ∀x ∈ X0, (1)

B(x) > 0 ∀x ∈ Xu, (2)

∂B

∂x
f(x) ≤ 0 ∀x ∈ X . (3)

Then the system is safe, namely, there is no trajectory x(t) of the system such that
x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T ].

A function B(x) satisfying (1)–(3) is called a barrier certificate. The above method
is analogous to the Lyapunov method for stability analysis [5], and is also closely related
to the use of viability theory [2] and invariant sets [4] for safety verification. When the
vector field f(x) is polynomial and the sets X , X0, Xu are semialgebraic, a polynomial
barrier certificate B(x) can be searched using sum of squares programming [10]. The
method can also be extended to handle hybrid, uncertain, and stochastic systems [8, 9].

Example 1 Consider the two-dimensional system (taken from [5, page 180])

ẋ1 = x2,

ẋ2 = −x1 +
1

3
x3

1 − x2,

with X = R
2. We want to verify that no trajectory of the system starting at

X0 = {x ∈ R
2 : (x1 − 1.5)2 + x2

2 < 0.25}

will ever reach the unsafe set

Xu = {x ∈ R
2 : (x1 + 1)2 + (x2 + 1)2 < 0.16}.

Using sum of squares programming, we are able to find a polynomial barrier certificate
B(x) that satisfies (1)–(3), e.g.,

B(x) = −13 + 7x2
1 + 16x2

2 − 6x2
1x

2
2 −

7

6
x4

1 − 3x1x
3
2 + 12x1x2 −

12

3
x3

1x2.

For example, non-positivity of the Lie derivative ∂B
∂x
f(x) can be shown by considering

the quadratic form

−∂B
∂x

f(x) =
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In this quadratic form, the coefficient matrix is positive semi-definite, which implies the
existence of a sum of squares decomposition for −∂B

∂x
f(x) (and hence its nonnegativity).

That (1)–(2) are satisfied is depicted in Figure 1, and in fact can also be shown by sum
of squares arguments. Hence the safety of the system is verified.

�
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Figure 1: Phase portrait of the system in Example 1. Solid patches are (from the left) Xu

and X0, respectively. Dashed curves are the zero level set of B(x), whereas solid curves
are some trajectories of the system. The function B(x) is greater than zero for all x ∈ Xu

and less than zero for all x ∈ X0.

3 Safety Verification Using Density Functions

An alternative criterion for safety of the system ẋ(t) = f(x(t)) is stated using a density
function ρ in the following way.

Theorem 1 Consider f ∈ C1(Rn,Rn) and let X0 and Xu be open subsets of the open

set X ⊂ Rn. Suppose there exists a function ρ ∈ C1(Rn,R) such that

[∇ · (ρf)](x) ≥ 0 ∀x ∈ X , (4)

ρ(x) > 0 ∀x ∈ X0, (5)

ρ(x) ≤ 0 ∀x ∈ Xu. (6)

Then there exists no solution to the equation ẋ(t) = f(x(t)) with x(0) ∈ X0, x(T ) ∈ Xu

for some T > 0 and x(t) ∈ X for all t ∈ [0, T ].

Remark 1 It should be noted that in points where ρ(x) = 0 the divergence inequality
reduces to a gradient constraint:

0 ≤ [∇ · (ρf)](x) = ρ(x)∇ · f(x) + ∇ρ · f(x) = ∇ρ · f(x).

Hence, on the zero level set, the density function ρ plays a very similar role to the barrier
functions of the previous section. �

Remark 2 In applications where the system has stable equilibrium points, it is often
convenient to exclude a neighborhood of the equilibria from the region where the diver-
gence inequality must be satisfied, since the inequality is otherwise impossible to satisfy
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without a singularity in ρ. This does not make the conclusion of the theorem weaker as
long as the excluded set does not intersect Xu and is entirely surrounded by a region of
positive ρ. �

Theorem 1 will be proved using the following version of Liouville’s theorem (from [12]).

Lemma 2 Let f ∈ C1(D,Rn) where D ⊂ Rn is open and let ρ ∈ C1(D,R) be integrable.

For x0 ∈ Rn, let φt(x0) be the solution x(t) of ẋ = f(x), x(0) = x0. For a measurable

set Z, assume that φτ (Z) =
{

φτ (x)
∣

∣ x ∈ Z
}

is a subset of D for all τ between 0 and t.
Then

∫

φt(Z)

ρ(x)dx−
∫

Z

ρ(z)dz =

∫ t

0

∫

φτ (Z)

[∇ · (fρ)] (x)dxdτ. (7)

Proof of Theorem 1 Assume that the theorem is false. Then there exists an x0 ∈ X0 such
that φT (x0) ∈ Xu for some T > 0 and φt(x0) ∈ X for t ∈ [0, T ]. Let Z ⊂ X0 be a ball
surrounding x0 such that also φT (Z) ⊂ Xu and φt(Z) ⊂ X for t ∈ [0, T ]. Let D be a
bounded open set containing φt(x) for x ∈ Z, t ∈ [0, T ], and apply Lemma 2 to obtain
a contradiction. According to the assumptions of Theorem 1, the left hand side of (7) is
negative and the right hand side is non-negative. Hence, there is a contradiction and the
proof is complete. �

Remark 3 If the system satisfies the additional property that ∇ · f(x) ≤ 0, then
conditions (5)–(6) can be replaced by a less stringent condition

ρ(x0) − ρ(xu) > 0 ∀(x0, xu) ∈ X0 ×Xu.

In this case, the volume of φt(Z) is non-increasing along time, and thus when we apply
Lemma 2 the left hand side of (7) is still negative. �

Example 2 Consider again the verification problem of Example 1. Note that the system
has a stable equilibrium at the origin and saddle points at (±

√
3, 0). In this example, we

will exclude a neighborhood of (0, 0) and (
√

3, 0) from the region where the divergence
inequality needs to be satisfied. More specifically, we ask that

ρ(x) ≥ 0.1 ∀x ∈ X0,

ρ(x) ≤ −0.1 ∀x ∈ Xu,

∇ · (ρf)(x) ≥ 0 ∀x ∈ X \ Xexcl,

where Xexcl = {x : x2
1 + x2

2 ≤ 0.25} ∪ {x : (x1 − 1.5)2 + x2
2 ≤ 0.16}. To ensure that

the safety statement is valid in terms of the original set X , we also ask that ρ(x) ≥ 0.1
at the boundary of Xexcl (cf. Remark 2). A polynomial ρ(x) satisfying these conditions,
computed using sum of squares optimization, is

ρ(x) = 7.6152 − 12.1597x1 − 3.85628x2 − 18.5818x2
1 − 3.92213x1x2 − 17.2032x2

2

+ 51.0454x3
1 + 15.8062x2

1x2 + 45.3684x1x
2
2 − 32.2778x4

1 − 9.27854x3
1x2

− 28.5075x2
1x

2
2 + 1.03161x2

1x
3
2 − 3.64267x5

2 + 5.75452x6
1 − .498478x4

1x
2
2

− 1.60486x2
1x

4
2 − 6.96206x6

2 − 1.23579x7
1 + 2.33577x5

1x
2
2 − 1.86292x4

1x
3
2

+ .503928x7
1x2 + 2.19945x3

1x
5
2,
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Figure 2: The level set ρ(x) = 0 is shown by the dashed curve, for a density function
satisfying the conditions of Theorem 1 in Example 2. The existence of such a function
proves that the system is safe.

and thus the system is safe. The phase portrait of the system and the zero level set of
ρ(x) are shown in Figure 2.

In this example we have ∇ · f ≤ 0. This makes it possible to relax the conditions on
ρ (cf. Remark 3) and only ask that

ρ(x0) − ρ(xu) ≥ 0.1 ∀(x0, xu) ∈ X0 ×Xu,

∇ · (ρf)(x) ≥ 0 ∀x ∈ X .

The resulting ρ(x) is simpler:

ρ(x) = − 1.617 + 1.001x1 + .2512x2 − .4257x2
1 − .7985x1x2 − .5973x2

2 + .4203x3
1x2.

A level set of ρ(x) which separates Xu and X0 is shown in Figure 3.
�

4 Safe Control Synthesis Using Density Functions

It has been widely recognized that density functions are useful to formulate nonlinear
control synthesis in terms of convex optimization [12, 11]. However, a straightforward
attempt to use the conditions of Theorem 1 yields some unexpected difficulties. The
inequalities

∇ · [ρ(f + ug)](x) ≥ 0 for x ∈ Rn,

ρ(x) > 0 for x ∈ X0,

ρ(x) ≤ 0 for x ∈ Xu
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Figure 3: A level set separating X0 and Xu for the density function corresponding to the
simplified criterion in Example 2 is depicted by the dashed curves.

are certainly convex conditions on the pair (ρ, ρu). It is therefore natural to introduce
ψ = ρu as a search variable and use convex optimization to find a feasible pair (ρ, ψ),
then recover the control law as u(x) = ψ(x)/ρ(x). The difficulty arises because u(x)
becomes singular at points where ρ(x) = 0, unless ψ(x) also vanishes there.

To overcome the difficulty, we will synthesize controllers under the magnitude con-
straint |u(x)| ≤ c, where c > 0, using the conditions

∇ · [ρf + ψg](x) ≥ 0 for x ∈ X ,
|ψ(x)| ≤ cρ(x) for x ∈ X ,
ρ(x) > 0 for x ∈ X0,

ρ(x) = 0 for x ∈ Xu.

Given a solution (ρ, ψ) to the inequalities, the control law u(x) = ψ(x)/ρ(x) makes the
region ρ(x) > 0 invariant.

The new conditions maintain convexity in the pair (ρ, ψ) and do not generate singular
controllers. However, they do not allow for polynomial parameterizations of ρ and ψ since
any polynomial vanishing identically in the open region Xu must be zero everywhere.
Instead, we have in the following example implemented the search by gridding the state
space.

Example 3 We consider the problem of navigating a boat on a river. The kinematic
model of the system is given by

[

ẋ
ẏ

]

= f(x, y) + g(x, y)u,
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Figure 4: Dark region is the unsafe set Xu in Example 3, whereas the small circle near
the left edge is the initial set X0. Solid curves are some trajectories of the closed loop
system.

where the drift current profile f(x, y) is given by

[

1 + 0.125 cos(0.5x) − 0.125 sin(0.5y)
0

]

,

and g(x, y) =
[

0 1
]T

. We assume that magnitude bound |u| ≤ 1 is imposed on the
control input.

The set of states we consider is

X = {(x, y) ∈ R
2 : −0.1 ≤ x ≤ 10, 0 ≤ y ≤ 10},

while the initial and the unsafe sets are

X0 = {(x, y) ∈ X : (x− 0.5)2 + (y − 6)2 ≤ 0.09},
Xu = {(x, y) ∈ X : (2 sin x+ 6 − y)(y − 2 sin x− 4) ≤ 0 or x ≤ 0}.

See Figure 4. We use gridding with step size equal to 0.1 to solve the synthesis problem,
where centered difference approximation is used to approximate the derivatives in the
divergence inequality. The resulting linear program is solved for ρ and ψ, and then
the controller is given by u(x) = ψ(x)/ρ(x), with linear interpolation between the grid
points. Some trajectories of the closed loop system are depicted in Figure 4, and the
corresponding ρ(x) is shown in Figure 5.

�
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Figure 5: The density function obtained by gridding and convex optimization in Exam-
ple 3.
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[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 2000.

[4] M. Jirstrand. Invariant sets for a class of hybrid systems. In Proceedings IEEE

Conference on Decision and Control, 1998.

[5] H. K. Khalil. Nonlinear Systems. Prentice-Hall, Inc., Upper Saddle River, NJ,
second edition, 1996.

[6] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In
Hybrid Systems: Computation and Control, LNCS 1790, pages 203–213. Springer-
Verlag, Heidelberg, 2000.

[7] S. Prajna. Barrier certificates for nonlinear model validation. In Proceedings IEEE

Conference on Decision and Control, 2003.

[8] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In Hybrid Systems: Computation and Control, LNCS 2993, pages 477–
492. Springer-Verlag, Heidelberg, 2004.

8



[9] S. Prajna, A. Jadbabaie, and G. J. Pappas. Stochastic safety verification using
barrier certificates. In Proceedings IEEE Conference on Decision and Control, 2004.

[10] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. Introducing SOSTOOLS: A gen-
eral purpose sum of squares programming solver. In Proceedings IEEE Conference

on Decision and Control, 2002. Available at http://www.cds.caltech.edu/sostools
and http://www.aut.ee.ethz.ch/˜parrilo/sostools.

[11] S. Prajna, P. A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex
optimization. IEEE Transactions on Automatic Control, 49(2):310–314, 2004.

[12] A. Rantzer. A dual to Lyapunov’s stability theorem. Systems and Control Letters,
42(3):161–168, 2001.

9


