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We compare two method of moments codes using RWG elements for two-

dimensional periodicity. The test cases are common elements employed in

the design of frequency selective surfaces: crossed dipoles, tripoles, and linear

dipoles. The last case is also examined with a supporting dielectric substrate.

It is shown that the codes agree very well. One of the codes does not imple-

ment a layered Green’s function, and is therefore much slower when studying

the dielectric substrate since a lot of degrees of freedom are spent on discretiz-

ing this structure. There is also a larger difference between the codes in this

case.

1 Introduction

In satellite reflector antennas and stealth radomes, it is often necessary to employ fre-
quency selective surfaces. These are usually realized as periodic structures, where the
period is a substantial fraction of the targeted wavelength. Great ingenuity has been
demonstrated in the design of such surfaces, sometimes resulting in very complex geome-
tries. The design of such surfaces rely heavily on computational methods, and in order
to reduce the computational complexity it is common to study the model problem of an
infinite plane structure, where the calculations can be reduced to a unit cell.

Once the problem is reduced to a unit cell, any computational method which can use
periodic boundary conditions can usually be employed to solve the problem. Methods like
Finite Differences in the Time Domain (FDTD) or Finite Element Method can typically
be used, but may have to spend many degrees of freedom on representing relatively large
chunks of free space. This problem can be less problematic for Method of Moments
(MoM) approaches, since such codes typically only use degrees of freedom on the surfaces
of the geometry. However, MoM is a technically involved procedure, where the biggest
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computational effort lies in the computation of the impedance matrix. In addition, for
periodic problems it is necessary to compute a periodic Green’s function, which further
adds to the computational burden.

In spite of these shortcomings, it is very interesting to study MoM-codes for periodic
problems, due to the high accuracy that can be achieved and the possibility of using it in
hybrid methods [5]. It can also be beneficial when solving problems with many sources,
since the impedance matrix is independent of the sources and can be computed once and
for all.

In this contribution, we present comparisons between two different MoM codes, both based
on Rao-Wilton-Glisson spatial basis functions [1] and able to handle arbitrary lattices.
The two codes were developed in Sweden and Italy, and met each other through the EU
Network of Excellence “Antenna Center of Excellence”, ACE.

2 The two codes

At the heart of the problem lies the computation of the impedance matrix, where the
typical element has the form (where the Bloch wave vector k represents the phase shift
between neighboring unit cells)

Zmn(k) =

∫

Tm

∫

Tn

fm(x) ˜G(x − y,k)fn(y) dx dy (1)

with some variations depending on which matrix element is being computed. The basis
functions are taken as the Rao-Wilton-Glisson (RWG) functions [1], meaning the functions
fm(x) and fn(y) are zero except on the triangles Tm and Tn, where they are linear
functions or constants depending on which matrix element is being computed. The Bloch
wave vector k is restricted to the reciprocal unit cell U ′.

The major computation effort lies in the handling of the periodic Green’s function ˜G(x,k).
Using the Floquet-Bloch representation [2] (the multidimensional version of the Poisson
summation formula) this can be expressed as an infinite sum either in spatial domain,

˜G(x,k) =
∑

n∈Z2

e−ik·(x+xn)G(x + xn) =
∑

n∈Z2

e−ik·(x+xn)
eiκ|x+xn |

4π|x + xn|
(2)

or in spectral domain,

˜G(x,k) =
1

|U |

∑

n∈Z2

eikn ·x eikx3n |z|

−2ikx3n

, kx3n =
√

κ2 − |k + kn|2 (3)

where G(x) is the free space Green’s function and κ = ω/c is the free space wave number.
Both representations require many terms to be useful, and are therefore generally not
well suited for numerical calculations. Although something like Kummer’s transformation
(adding and subtracting asympotic behaviors of the sums [3]) can be used, most methods
instead employ a suitable combination of the two representations.

During 2004–2005, the development of a periodic method of moments code at Lund
University was financed by the project NFFP3+ (Nationellt FlygForskningsProgram).
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Figure 1: Crossed dipoles in square lattice. Two meshes, one coarse and one fine, are
considered.

Figure 2: Tripoles in triangular lattice.

This was done as an extension of the GEMS code (General ElectroMagnetic Solvers)
developed in Uppsala and KTH and recently commercialized by Efield AB. The periodicity
is introduced by extracting the Green’s function from the computation of the impedance
matrix, and replacing it with a periodic Green’s function, leaving the rest of the code
basically intact. The computation of the Green’s function is based on the Ewald approach
[4–7], and is computed on-the-fly.

The Politecnico di Torino and the University of Siena have developed a code where the
periodic Green’s function is expressed as a combined sum of spectral terms and spatial
terms. This representation is obtained by applying the Poisson summation formula to
the asympotic behavior of the spectral representation of the periodic Green’s function [8].
This is then evaluated in a set of points and then interpolated in MoM code to generated
the MoM matrix for the unit cell.

3 Comparison cases

In a first step, we have compared simple structures such as dipoles, crossed dipoles, and
tripoles, in rectangular and skew lattices. More specifically, the test cases are:

1. Crossed dipoles in a quadratic lattice, see Figure 1 for geometry and mesh. This
case has been validated against two other codes, MESTIS and Ansoft Designer, for
normal incidence.
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Figure 3: Dipoles in triangular lattice. The mesh for the dipole is in the middle, the
mesh for the dielectric substrate in the unit cell on the right (which is shrunk in scale
compared to the mesh for the dipole, the dipole fits in the rectangular hole). When using
the substrate the number of triangles increase from 36 for the dipole alone, to 1212.

2. Tripoles in a triangular lattice, see Figure 2 for geometry and mesh. This case is
taken from [9, p. 269] and has been validated against the results therein.

3. Dipoles in a triangular lattice, see Figure 3 for geometry and mesh. This case is
from [9, p. 50], and also covers the inclusion of a thin dielectric substrate supporting
the dipoles (ǫr = 3.0 and thickness 0.1 mm).

At this stage, none of the geometries extend across the boundary of the unit cell. This
will be addressed in further test cases. The parameter of choice for studying these cases
was chosen to be the reflection coefficient, due to the common use of these structures as
frequency selective reflector surfaces.

In all cases except for the dipoles on the dielectric substrate, the mesh is exactly the
same in both codes. For this last case however, the codes are fundamentally different: the
Lund code does not implement a layered Green’s function, and must therefore mesh the
entire dielectric substrate. This costs a lot of degrees of freedom (almost a factor of 100
more than the single dipole), and makes this simulation much slower than the other for
the Lund code. Therefore, this case was calculated on the Lund University Linux cluster
Lunarc (http://www.lunarc.lu.se), whereas the other cases were done on a simple desktop
computer.

4 Results

In this section we present the results of the test cases. We do not present all the data
available, but have instead picked a few data sets providing some insight to the similarities
and differences between the two different codes.

All the figures are composed in the same way: to the left are the values from the two
codes (red for Lund, blue for Torino) for amplitude and phase, and to the right is the
relative error in dB-scale using the mean value as reference. In some of the figures, the
results agree so well that it is difficult to distinguish the two curves in the figures on the
left. Both codes are typically run on a standard desktop computer.
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Figure 4: Results for crossed dipoles, coarse mesh.
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Figure 5: Results for crossed dipoles, fine mesh.

4.1 Crossed dipoles

The results for test case 1 are given in Figures 4 and 5. It can be seen that the methods
agree very well, and seem to agree even better when the mesh is refined. Typically, the
codes agree within −40 dB for the coarse mesh, and −50 dB for the fine mesh.

4.2 Tripoles

For test case 2, the tripoles, we give the results in Figures 6 and 7 for TE and TM
polarization and 45◦ incidence. Typically, the codes agree within −40 dB.

4.3 Dipoles

The results for dipoles without a substrate are given in Figure 8. It is seen that the results
agree within −40 dB except for high frequencies, where the difference is more pronounced.

For oblique incidence on dipoles on a substrate, the results are given in Figures 10 and
11. We see that even though the codes agree reasonably well, the differences are much
larger in these cases than in test cases 1 and 2. The errors seem to be in the same range
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Figure 6: Results for tripoles, TE polarization, 45◦ incidence.
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Figure 7: Results for tripoles, TM polarization, 45◦ incidence.
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Figure 8: Results for dipoles, normal incidence.
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Figure 9: Results for dipoles on substrate, normal incidence.
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Figure 10: Results for dipoles on substrate, TE polarization, 45◦ incidence.
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Figure 11: Results for dipoles on substrate, TM polarization, 45◦ incidence.
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when comparing with a commercial code such as Ansoft Designer, which makes it difficult
to say that one code is better than another. The larger difference between the codes for
the substrate case is probably due to the fact that the Lund code has to discretize the
substrate according to the right part of Figure 3, not only at one surface but at two
surfaces, which are very close to each other (only 0.1 mm).

5 Conclusions

Two different MoM codes for periodic problems have been compared. They implement
the periodic boundary conditions in similar but still different ways, and it is seen that
the results agree very well. The Lund code is fast for small problems, but is slowed down
severely when used for thin dielectric sheets.
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