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ABSTRACT

In this paper, we propose an alternative approach to
array interpolation for the sectorised array processing
of a uniform circular array. While other approaches
do not fully consider the influence of out-of-sector sig-
nals on the in-sector response, our approach explicitly
addresses this issue. By controlling the out-of-sector
response, our interpolated array demonstrates a signif-
icantly improved ability to cope with correlated signals
which appear both in-sector and out-of-sector. Our ap-
proach also allows one to trade between various operat-
ing characteristics such as mean transformation error,
in-sector error variance and out-of-sector signal sup-
pression. In this way, a degree of versatility in the
design method is provided.

1. INTRODUCTION

Because of their constant resolution coverage over
the entire azimuth, uniform circular arrays (UCAs) are
of great interest in array processing. In particular,
much has been focused on the problem of direction of
arrival (DOA) estimation in a correlated signal environ-
ment, where low complexity algorithms such as MUSIC
can fail to resolve all signals. Although spatial smooth-
ing [1] allows MUSIC to be applied successfully in a
multipath environment, this technique can only be used
on arrays, e.g. Uniform Linear Arrays (ULAs), whose
steering vectors have a Vandermonde form. Also, root-
MUSIC, which has been found to perform significantly
better for short time-window estimates of the array co-
variance matrix, is only applicable to ULAs.

A popular approach to applying the above process-
ing techniques to UCAs is to transform the UCA out-
puts so the effective steering vector has Vandermonde
form. Currently, there are two main approaches. The
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first, pioneered by Davies [2] and applied to spatial
smoothing in [3], is a modified spatial-DFT designed
specifically for UCAs. It transforms the array response
to a spatial “mode-space”, which applies over the entire
azimuth.

The second approach involves interpolating the re-
sponse of a virtual ULA from the output of the UCA.
This idea was first proposed by Bronez [4] and has been
extended to spatially smoothed MUSIC by Friedlander
and Weiss [5]. Note that, due to the significant differ-
ence between the UCA response and the ULA response
over the azimuth, this approach is realistic only over a
reduced range of angles (a sector). For 360° coverage,
it is necessary to define multiple sectors, each with an
appropriately rotated virtual array, and each processed
separately.

In [5], the transformation matrix from UCA to vir-
tual ULA is found as the least-squares solution which
best maps a finite set of in-sector UCA response vectors
to a corresponding set of ULA response vectors. How-
ever, this approach neglects the possible effects of out-
of-sector signals on the in-sector response. By treating
the out-of-sector region as a “don’t care” region (in
the least-squares sense), it is difficult to say what the
response of the interpolated array will be to an out-
of-sector signal. In fact, it can be demonstrated that
out-of-sector signals can dramatically reduce the ability
of MUSIC to resolve a correlated in-sector signal.

In this paper, we propose an alternative approach to
the interpolated array transform, maintaining as much
control as possible over the response of the interpolated
array in the entire azimuth. By including out-of-sector
suppression in the problem formulation, the technique
demonstrates an improved ability to handle correlated
signals which appear in both the in-sector and out-of-
sector regions.



2. PROBLEM FORMULATION

2.1. Array Response Vector

The response at the n** element of an N-element

UCA to a far-field, narrow-band signal, incident from
azimuth angle 6, is given by:

an (8¢) = G exp {j?r cos (04 - W) } (1)

where n € [1...N], A is the wavelength of the signal of
interest, r is the radius of the UCA, and G,, = o, +j8n
is the complex gain factor of the n'? element.

In a real array, G, may be a function of 6,. How-
ever, for simplicity, we will assume identical, omnidi-
rectional sensor elements. In the case of an M-element
ideal ULA, oriented along the y-axis with element spac-
ing d , the response at the m*" element is given by:

27
j—

b (6;) = exp { 3 (n—-1) dsinOl} (2)

2.2. System Model

The array response vector of an N-element array is
defined as:

a(0)=[ a(8) as(0) an(9) 17 (3)

For an N-element array with L incident narrow-
band, plane-wave signals, we write the output of the
array as:

x(t)=A(O)s(t) +n(t) (4)

where ® = [ 6; 6, 0, ]T is the vector of signal
DOAs, A (®) = [ a(61) a(6-) a(fr) | is the
N x L array response matrix, the signal source vector
iss(t)=[ s1(t) s2(t) st (t) ]T and the noise
vectorisn(t) = [ ni (t) na () ny (t) ]T. The
noise at the i*" sensor element, n; (t), is assumed to be
spatially and temporally uncorrelated additive white
Gaussian.

2.3. Previous Approaches

In [4], the transformation matrix (T) was calculated
on a row-by-row basis by minimising the overall re-
sponse of the interpolated array, subject to an equality
constraint which fits the interpolated response to that
of a ULA at discrete points in a sector. However, the
response of the array is minimised in the least-squares
sense, meaning other than at the constraint points, the
response is unknown.

In [5], the authors transform an N-element physical
array to an M-element ULA by matching the desired

response at S discrete points. This is best described as
the solution to the following equation:

min | TA - Bf; (5)

where T is the M x N unknown transformation ma-
trix, A is an N x S array containing physical array
response vectors and B is an M x S array containing
ULA response vectors.

By treating the out-of-sector region as an LS don’t
care region, the transform in [5] was able to achieve
very low in-sector transformation error. However, by
ignoring the out-of-sector response, it creates a situ-
ation where one is unable to say exactly how out-of-
sector signals will be handled. An interpolated array
with a known response over the entire azimuth would
not suffer from this problem.

2.4. Proposed Approach

In this paper, we propose a least-squares problem
which attempts to fit the transformed UCA response
vector to a “target response”, continuously, over the
entire azimuth (rather than in-sector and at discrete
points):

min / ITa.(6) — g (6)b (9)| 06 (6)

where T is the array transformation matrix, a (6) is
the UCA response vector, b () is the ideal ULA re-
sponse, and g () is a real function which “shapes” the
magnitude of the target response over §. The shaping
function used depends on the operating requirements
and thus falls to the designer’s discretion. In this pa-
per we propose a shaping function based (somewhat
arbitrarily) on a Gaussian pulse:

exp{—a 6 - 0,,)2} 6> 6,
g(0) = 1 0, <O<6 (7)
exp{—a G —oa)z} 6 <6,

where 6, and 6, are the clockwise and anti-clockwise
edges of the optimisation sector, respectively, and « is
a rolloff factor which defines the transition width of the
shaping function.

The optimum solution to Problem (6) can be found
by taking the derivative of the integrand with respect
to T and equating it to O.
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Figure 1: Interpolated array response shaping function.
The solid line is @ = oo, the dashed line is a = 8, the
dot-dahsed is @ = 4 and the dotted line is & = 2

3. DESIGN OF THE TARGET RESPONSE

3.1. The Response Shaping Function

There are two main issues to address when design-
ing the shaping function. The first is to keep the trans-
formation error as low as possible. A window func-
tion which equals 1 in-sector and 0 out-of-sector may
seem ideal, but the sharp discontinuity from full to null
response can cause the transformation error to peak
significantly at the sector boundaries (Figure 3). The
peaks in the error curve can be reduced by smoothing
the transition from in-sector to out-of-sector response.

The second issue is concerned with the operating
and optimisation sectors. The virtual ULA loses the
ability to resolve closely spaced signals as they deviate
from broadside. This places a bound on the largest ac-
ceptable operating sector width. The optimisation sec-
tor width (defines where g (§) = 1) and the rolloff factor
must then be tailored to the desired operating sector
width. While a wider transition region will generally
reduce the maximum interpolation error, we also need
to suppress sufficiently signals incident in the image of
the operating sector (the image sector on the “back” of
the ULA). Figure 1 shows the Gaussian shaping func-
tion (7) for different values of « using an optimisation
sector width of 90°.

Note the value of the shaping function for a particu-
lar 8 does not directly translate into an actual suppres-
sion value. That is, an operating sector width of 70°
using an optimisation sector width of 90° and a = 2
will not equate to a minimum image sector suppression
of 100dB as Figure 1 may suggest. The actual suppres-
sion depends on the optimisation problem, which finds
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Figure 2: Log of condition number of T for our tech-
nique (solid line) and the method of [5] (dashed line) as
a function of number of elements in the virtual array.

the best transformation in the least-squares sense.

3.2. Virtual Array Size

We define the aperture ratio r, as the ratio of the
broadside aperture of the virtual ULA to the aperture
of the UCA. r, > 1 means the virtual ULA is larger
than the UCA, suggesting a better resolution (signal
separation) than the UCA. However, we would expect
such a result to increase the transformation error. In
general, an r, of 1 was found to be satisfactory.

In [6] it is stated that T must be full rank and
should be well conditioned, otherwise, subspace meth-
ods such as MUSIC can become numerically unsta-
ble and fail under certain signal scenarios. In general,
transforming from a UCA to a ULA with equal aper-
tures and equal numbers of elements may introduce
redundancy, that is, some rows of T may be linear com-
binations of other rows. This is because we are inter-
polating spatial samples which are more closely spaced
than our original samples. As a guideline, the elements
in the virtual array should be spaced similarly to the
elements in the UCA. Since we want the same aperture
for both virtual ULA and UCA, this means a reduction
in the number of elements in the virtual array.

4. NUMERICAL EXAMPLES

Consider a 30-element UCA with d = 0.4\, and
aperture ratio r, = 1. Figure 2 shows how the condi-
tion number of T for both our approach and that of [5]

INote: the inter-element spacing referred to in this paper is
the spacing between adjacent elements in the UCA and is related
to the physical radius by r = m
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Figure 3: Error function power for a — oo (Solid),
a =4 (dashed) and a = 2 (dotted)

varies with M. We selected M = 13 for further anal-
ysis as this gives comparable condition numbers of T
for both approaches. Note, in applying the approach of
[5], we fitted 8192 points within a sector width of 30°.

We define the transformation error function as the
integrand of the LS problem (6):

e(9) = |Ta (@) —g ()b (O)[* (8)

Figure 3 plots the transformation error function vs.
azimuth angle () for different values of o and an op-
timisation sector of 90° (The 30° operating sector is
indicated on figures with solid vertical lines). Ideally
we want the error function to be as low as possible in
order to reduce the bias in the estimated DOAs.

Figure 4 shows a possible indoor multipath environ-
ment with four fully correlated signals incident on the
UCA: two in-sector at -8° and 8° and two out-of-sector
at 45° and -165° (which is in the image sector). We
performed forward/backward spatial smoothing using
3 sub-arrays so the closely spaced correlated signals
could be resolved successfully. In this situation, our
technique can be seen to provide sharper peaks with
less DOA estimation error than the technique of [5].
The smoother rolloff (smaller «) is also shown to im-
prove the peaks.

5. CONCLUSIONS

In this paper, we presented an alternative approach
to deriving an interpolated array transform for sec-
torised array processing. By controlling the out-of-
sector response, the approach demonstrates a signifi-
cantly improved ability to cope with correlated signals
which appear in both the in-sector and out-of-sector
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Figure 4: Spatially smoothed MUSIC spectrum using
our technique with @ = 2 (solid line) and @ — oo
(dotted line) and the technique of [5] (dashed line).

regions. Also, by controlling the shaping function, one
may trade between relevant factors such as mean trans-
formation error, in-sector error variance and out-of-
sector suppression.
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