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Abstract

This paper develops a procedure for estimating parameters of a cross-sectional stochastic

frontier production function when the factors of production suffer from measurement

errors. Specifically, we use Fuller's (1987) reliability ratio concept to develop an
estimator for the model in Aigner et al (1977). Our Monte-Carlo simulation exercise
illustrates the direction and the severity of bias in the estimates of the elasticity
parameters and the returns to scale feature of the production function when using the
traditional maximume-likelihood estimator (MLE) in presence of measurement errors. In
contrast the reliability ratio based estimator consistently estimates these parameters even
under extreme degree of measurement errors. Additionally, estimates of firm level
technical efficiency are severely biased for traditional MLE compared to reliability ratio
estimator, rendering inter-firm efficiency comparisons infeasible. The seriousness of
measurement errors in a practical setting is demonstrated by using data for a cross-section
of publicly traded U.S. corporations.
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1. Introduction

Since the development of the stochastic frontier production function (SFPF) by Aigner et
a (1977) and Meeusen and van den Broeck (1977), evaluating the efficiency of individual firms
and industries has become popular with the increasing availability of firm-level data and growing
capacity of computers to process them'. Econometrically, the most common approach to
estimate SFPF is to specify a deterministic, parametric production function common to all
economic units and a stochastic component that consists of a two-part error term?.  The first
component of this error term is a symmetric disturbance that represents statistical noise and
follows a normal distribution. The second part is a one-sided error that represents technical
inefficiency and which typically follows a half-normal or truncated normal distribution®. This
approach implicitly assumes that the explanatory variables or factors of production are measured
without any errors. It is difficult to justify that the data collected on input use represents true
measurements of their theoretical counterparts. For example, a maor source of measurement
error in measuring flow of services from capital is the lack of information on the vintage nature
of capital stock. Additionally, the labor usage figures reported by firms can also be mismeasured
due to the non-availability of information on the skill levels of the labor force being used.
Consequently, the bias introduced by measurement errors can potentially be rather severe and

this paper devises a methodol ogy to investigate the severity of this bias.

! Both economists and policy makers have made use of this trend as the notion of frontier is consistent with the
theory of optimization in addition to identifying factors that can explain relative efficiencies of economic units. A
partial list of studies that use the SFPF approach for efficiency measurement related issues is: Kumbhakar
(1987,1988), Battese and Coelli (1992), Bauer (1992), Kumbhakar and Hjalmarsson (1995) and Dhawan and Gerdes
(1997).

2 Bauer (1990) and Greene (1993) contain detailed surveys of different econometric techniques for estimating SFPF
and technical efficiency.

3 An estimate of the technical inefficiency is then obtained from the mean or mode of the conditional distribution of
the one-sided error term given the composed error term (Jondrow et al 1982).



We utilize and extend Fuller's (1987¢iability ratio concept to investigate the
measurement bias due to errors-in-variables in cross-sectional SFPF frafeBdgfly, the
concept is as follows. HKis the true (but unobserved) value of a variablis, the measurement
error andz = x + u is the observed measurement, then the reliability ratio may be defined as the
ratio of variance ok to z This means that a variable with no measurement errox) has a
reliability ratio of one. Thus, lower the value of reliability ratio, higher is the degree of
measurement errors in the observed data. Next, given the reliability ratio consistent estimates
can be derived for the parameters of the model under consideration. As the reliability ratio may
be unknown most of the time in a practical setting, the best alternative is to deangeaf
estimates given plausible values for the reliability rati®ne can then examine the sensitivity of
the estimates to this range in the reliability ratio. For example, while estimating the SFPF model
an issue is how sensitive is the estimated firm-specific technical efficiency to the degree of
measurement errors in the input data.

The outline of the paper is as follows. In section 2, we set up the cross-sectional SFPF
with no measurement errors as developed in Aigner, Lovell and Schmidt (1977). We then define
the setup of a SFPF model when inputs (capital and labor) are measured with errors and discuss
how to estimate it. Section 3 presents a Monte-Carlo simulation study that illustrates the

superiority of the method developed to deal with measurement errors in section 2. An empirical

* The concept of reliability ratio is not new and Fuller (1987) contains a detailed exposition of how to use this
concept to derive maximum-likelihood estimate of a multiple regression equation when the reliability ratio is
known.

® The word plausible is used in the statement as not all degrees of measurement errors or reliability ratios can be
supported by the data or valid in practical setting. Thus, in this paper we also derive the expression for the upper
bound for the variance of the measurement error (lower bound for reliability ratio) that can be supported by a given
empirical data set.



example based on U.S. firm-level data is given in section 4. Section 5 concludes with a

summary of findings and directions for future research.

2. SFPF in Cross-Section
2.1 Basic set-up
Starting with Aigner et al. (1977), the cross sectional SFPF may be written as:
yi=f(x; B+ ¢&i-&i. )

where, for each firm, y; is output in logs and X; is the (actual) k x 1 vector of inputsin log terms.
& isan 1D random variable which represents the statistical noise to the production and Sisak x
1 vector of unknown parameters. Aigner et al. assume that § CN(0, o;?) so that the maximum
output firm i can produce using x; isthen f(x ; 8) + §. They aso focused on alinear moddl, i.e.
fxi ; B) = a+ x'6 that is consistent with the Cobb-Douglas type production function
assumption. Technical inefficiency is then introduced as a positive random variable &. The
most common assumption made in the literature is that & follows a truncated normal with mean
zero (the positive half), i.e. & OiidN*(0, 052) 7 Defining g = & - & as the compound residual,

equation (1) can be written as:

yi=a+xp+e. @)
The density of g iswell known (see Weinstein (1964)) and given below:
1 Ag e,2
fo(8) = erfc[ }exp[——} 3
© N2mo? V202 20°

No? 2 o’

where A = g2=""_ , 05 =——
1+ 22 £ 142

g
% 2=otea?
JE

® Other common assumptions are exponential (Meeusen and van den Brock (1977) and also in Aigner, Lovell and
Schmidt (1977)), gamma (Beckers and Hammond (1987) and truncated normal with non zero mean (Stevenson
(1980)). See Greene (1997a) for a detailed discussion regarding the merits and shortcomings of these different
distributional assumptions.

" Where the variance of &; is equal to (1-2/m) 5",



and erfc(x) is defined as 1-erf(x) where the error function erf(x) is defined as:

erf(x) = % jox etat.

Aisdirectly related to the skewness of e while & is directly related to the variance of €,
The empirical distribution of e is key to estimation of the SFPF model in equation (2) as the
variance of the technical efficiency (052) is derived from the estimated skewness of e.

With no measurement errors, estimation of parameters (a, 8, A and &) in equation (2) is
straightforward. OLS will give us a consistent but inefficient estimate of S and an inconsistent
estimate of a. OLS, however, would not allow us to estimate the variance of the technical
efficiency o °. An dternative is to use maximum likelihood method. The log-likelihood

function following Aigner et a. (1977) can be written as:

|(0’,ﬁ,A,0'2) = iln fe(yl _O'_Xiﬁ)
=1

_ Ayi—a-x'B) |l _<i-a-x'B> n 2
= i:len{erfc{ \/202 ]} 2 252 2In(2770 ) (4)

where the above likelihood can easily be modified for a different specification of the production

function f(x; ; B) aswell asfor different distributional assumptions on &.

2.2 Technical efficiency

The production function implicit in equation (2) when written in level termsis:

k
Y = e"[l‘l X }e‘ﬁ e
]:

8 Note that &” is not exactly the variance of e which is given by the following expression:
Var(e) = Var(¢) + Var(&) = g2 + (1—3}7?
T

° But OL S does a good job of testing whether the error term is skewed or not. Another alternative would be to use
Corrected OL S which gives consistent but inefficient estimates of the regression parameters (see Greene (1997)).

4



where the output Y; and input X; arein levels. Thus, the technical efficiency of firm i
can be defined as ¢ = exp(-&)*° and it may be interpreted as the percentage of maximum
possible output achieved when the residua & is zero. This involves the technical inefficiency
effect & , which is an unobservable random variable. Even if the true value of the parameter
vector 3 in the stochastic frontier model (2) was known, only the difference, e = & - &, could be
observed. If g is the compound residual for firm i then the best predictor of firm-specific
technical efficiency is the random variable (¢ | €). The expected value of (¢ | €), with g
replaced by the residual &, is our best prediction of technical efficiency for firm i given the
residua & =y, —a-x' ﬁ Jondrow et a. (1982) compute E(& | &) as the predicted technical
inefficiency. Thisis based on the approximation that & = -Ing=1 - ¢. We prefer to avoid this
approximation and calculate directly the conditional expected value of ¢ as suggested by Battese

and Coelli (1988). This after some tedious algebrais™:

A 2\ -2 N 2 1 . 1
Elexp(-8) | &] =exp{%} H;[M] {1_(1,[%}} 5

g g

The mean or average technical efficiency of firmsis straightforward to derive as:

E[exp(-&)] = E(#) = 2exp(0¢/2)[ 1-®(07)] (6)

2.3 SFPF with errors-in-variables
Let X denote the actual (unobserved) k x 1 vector of inputs in log terms for firmi. We

also observe an equal number of variables z which are related to x; in the following manner:

zZ =%+ (7

% gince & = 0, the technical efficiency will always be between zero and one. A firm is defined as fully efficient or
located on the frontier if & = 0in which case the technical efficiency measure is equal to one.

' Note that this expression converges to exp( €& ) as ;> — 0 which is what we should expect since € in this case
estimates - &.



where u; denotes the k x 1 vector of measurement errors (also in logs) and E(u; | ) = 0.
This is the error model approach®, which implies that the measurement errors are multiplicative
in nature™. In addition this model is non-calibrated in the sense that z is not specified to be
related to x; in a systematic manner **. The non-calibrated model is more suitable as we have no
reason, a priori, to believe that there is a systematic bias in the measurements of inputs. Given
the production function specification in equation (2), and assuming normal distributions for the
measurement errors and the unobserved explanatory variables, we get the following model
specification:

Yi=a+xB+&-¢

z =% + U, where E(u [ x) =0, 8

& ON(O, g), & OiidN*(0, o), x ON(1,Z,) and u; ON(O, Z).

This specification implies that x and u are independent and that z [IN(y, 2,) with 2, = 3
+ %, Finaly, we assume that the true factors (x;), the measurement errors (u;), the stochastic

frontier error term (&) and the technical inefficiency (&) are all independent random variables for

ali.

12 The other approach to modeling errors is the Berkson model where x; = z + v; , and v; are the measurement errors.

Here, E(v; | z) = 0 which implies that the expectation conditional on observed z is zero as opposed to the error

models where the expectation conditional on actual x; is zero. In addition, in the error model, the observed value is
correlated with the measurement error while the actual value is correlated with the measurement error in the Berkson

model. Which approach to use depends on what one believes is independent of the measurement errors: the true

values of inputs or the observed values. In our view it is natural to assume that the true values are independent of

the measurement errors and thus we follow the error model approach.

3 They are multiplicative in the sense that that exp(z) = exp(x) - exp(1) where expx) is the actual observations an

(not in logs) and similarly fox andu.

¥ An error model would be calibrated if it was specified thaty + yix; + U;.

5 pal, Neogi and Ghosh (1998) have analyzed a similar setup with nonstochastic explanatory variables (both
observed and unobserve@ndx). Although this approach has some advantages, in the sense that the the estimated
coefficients do not depend on the distributional assumption madeafudz and the likelihood function is easier to
derive, it is an unconventional assumption in the errors-in-variable literature (see for example Fuller (1987) and
Greene(1997b)). It is hard to motivate the errors-in-variables assumptio; that, + u; assuming that the
measurement errors are stochastic without assuming émalz are stochastic too.



At this point it is clear that the model (8) is unidentifiable as we only observe z while x;
and u; are unobserved. Thisimplies that =, and 2 cannot be identified separately which means
that one needs additional information such as instrumental variables. As appropriate instruments
for labor and capital are hard to justify, one can then try to identify the “consistent bounds” for
parameteys as advocated by Klepper and Leamer (1984). In Klepper and Leamer approach ones
identifies all s that imply positive estimates for the variance of g = & - & and positive semi-
definite estimates of £, and =,.*° For the specification in equation (8) we cannot use this
approach as OL S does not provide estimates for 052 which is needed to calculate the conditional
as well as unconditiona technical efficiency estimates. Instead, we will follow (and extend)
Fuller'sreliability ratio approach which, although computationally more expensive, allows us to
use maximum-likelihood method to consistently estimate all the parameters of the model as well
as the technical efficiencies.

The relevant reliability ratios are defined as following:
m=Var)/Var(z) i =1,...K (9a)
1 = Covf, X)/Cov(z, 7) = Covi, ¥)/[Cov(x, X) + Cov(l, uy)]

i=1,...k andj=1,...k i £k (9b)

where 7 is the (traditional) reliability ratio associated with variable< 77< 1 andsis equal to

one if there are no measurement errors for variable i. Typically, one specifies the covariance
matrix of the measurement errarso be diagonal (see for example Klepper and Leamer (1984)).

If this is the case, the reliability ratm's are all we need for identifying the model. However, we
would like to allow for covariances between the different measurement grsonvhich then

warrants the introduction ofj. 7 is the ratio of the true (unobserved) covariance between two

'8 The consistent bounds are found by running k + 1 regressions and if all these regressions are in the same orthant,
then the set of maximum likelihood estimates will be the convex hull of these estimates.



variables to the observed covariance and will be called the covariance reliability ratio. Note that
if one assumes that the measurement errors of different variables are uncorrelated, then all the

mi's are equal to orfé™. Sincex andu; are independent, it follows that:

Var(u) = (1 -mVar(@z)i=1,...kK (10a)
Cov(u, u) = (1 -m)Cov(z,z) i=1,..k andj =1,...k i 2k (10b)
It is possible to collect all the reliability ratios into one malfttixhere:
n oy
n= :
g T

With this notation, we may writ&,x = N.*2, and 2, = (1 - IM).*XZ, where the notation “ .* “
means element by element multiplication and wHeig ak x k matrix of ones. Becausgis
observed, it is possible to estimate the variance mafrixn order to identify the model we have

specified so far we must also know either onél p¥, or =,*°.

2.4 Maximum likelihood estimation

Our goal is to estimate the parameter, g/, g¢, or equivalentlyg, 8, > andA, in model (8)
given different values for reliability ratibl. However, the joint distribution of the observations
ony; andz will involve all the parameters. Given the matrix of reliability ratidsthese
parameters are given lay = (i/, vech,)’, a, , A, 6. We will use a two-step procedure also
known as the method of limited information maximum likelihood (LIML) to maximize the

likelihood functiorf®. In the first step of this procedure we use the sample momermtgoof

¥ Also, unless the measurement errors are negatively correlated, the 75's will be less than one.

8 If the variablesx, and x are uncorrelated, we let; be equal to zero, irrespective of the fact whether the
measurement errors are correlated or uncorreleated.

% Now, even if the reliability ratio is unknown for the particular variables under study one can then investigate the
sensitivity of the estimates to the changes in the reliability ratio.

% Estimating these parameters using full information maximum likelihood (FIML) could not be done as the
likelihood function was too flat, mostly due to the elements,jtto allow us to find the maximum.

8



estimate ¢ and Z,. Substituting these estimates into the full likelihood will, under weak assump-
tions, lead to consistent estimates of (a, 3, A, d°). This second stage likelihood function is much
easier to maximize than the full likelihood, but the estimated covariance matex 8t @, o)
at this stage will no longer be consistent. However, by using the results of Murphy and Topel
(1985), we will show how the estimated covariance matrixapf(, A, 0°) can be adjusted to
yield consistent results.

Now, if we assume that and therefore, is weakly exogenous with respect tp ', A,

0°) we can then write the log-likelihood of the parameters as:

w)y=Y Inf(y,zlw)= Inf(z|lw)+) Inf,(V|z,0,w (11)
D Inf(y.z|@)=5 Infi(zlw)+ 5 Inf(y|z,w,0,)
whereay” = (i/, vechg,)) andwy” = (a, 3, A, &).
In LIML procedure we first maximize the first part of the likelihood expression in (11)
t(w,) = z In fl(zi|wl) (12)
1=1
over . This will give us an estimaté; (z), which is then used to maximize the remaining

portion of the likelihood:

(L (@, w,) = Z Inf,(y| z,,(2), w,) (13)
overap This gives us an estimaie, (y,z). The exact expression for the first-step likelihood is:

¢, = constant = $In[Z,| - 3trSZ; = 5(Z- ) =, (Z - 1) (14)
whereS, = %zi (z —2)(z —2)'. Itis well known thaZ andS; are the ML estimates @f andZ,,
and that they are independently distributed Nigu,+%,) and (:%)Wishart(+2,,n-1). The
sample moments thus consistently estimate the population moments.

These results enable us to calculate an estimai, die asymptotic covariance matrix
of &, = (j/',vech(%,)") = (z',vech(S))"). Although we are not directly interested in an estimate of

Vi, it is needed later to obtain a consistent estimaté, afhich is the asymptotic covariance



matrix of é&,(y,z). The asymptotic covariance matrix Vi is of dimension S k(k +3) and can be

written as following:

Vi V
v, = (Vl”" V”‘”).

lou loo

If wedefine § =(z —Z)(z —z) then we can write following Edgerton and Jochumzen (1999) the

elements of V; as:

Vi, =S,
o = 43T vech(S)(vech(S))") - vech(S )(vech(S)) |
Vig, =515 (3 - 2)(vech(S))'|

>

iy

Note that if z isnormal, the estimate of V14,will be zero.
To calculate the second-step likelihood we need to find the conditional distribution of y
given z Let v be the random variable X 5. Then by considering the joint density of y and v we

have:
M2 = | fyue(y MDAV = | fyp (V1,2 fy (2)dv (15)

Because we are conditioning on z and X', we have:
fy|v,z(y|V1 Z) = fe|v,z(y —a- VlV, Z)

(16)
= f(y-a-vV) = f,(y-a-v)
The last equality follows because e is independent of z and X 5. By substituting (16) into (15) we

get:
f.(M2)= jva|z(\/| 2)f(y-a-v)dv (17)

where the integral is a single one over al possible values of X£. Since x and z are normal, v | z
will also be normal. Straightforward application of the results for conditional density of a

multivariate normal gives us the expected value and variance of X3 |z %

2 Since E(x'f) = B and Cov(x'B, z) = =,/ we have
(xiﬁ) DNK# ﬁ) (ﬁ B B ZH
Z )L B %,

10



E(v|2) = pB+(z- ;' N*5p (183)
and
Var(v|2) = B'(N*%,-N*N*2)p=L'MN*2, 096 (18b)

whereM=1-.

Thus, the density f,;, can be written as:

'B- 1 B-(z- )=, N*s Bl
(. (4= 1 ) KB HE 2N 2 ] 19)
278 (N*2,5N°)B 2p(N*z,*N°)B
Therefore, the conditional density of y; given z is:
1 Aly, —a -V
(ylz)= |—— fc{ b —a )}x
"2m|o*B (N>, *N°)B 20
(20)
(v,—a-v)? [v-uB-(z -uy=;N>z,6]
expl — 5 - - dv
20 2 (N*z,*N°)B
and the second step likelihood function 7, is given by
(G, w,) = Z In fz(yi| Zi7a)l(z)’w2) =
1=1
ZI 1 i erfc{)'(y‘ —crz—v)}><
=i V2n\/02ﬁ(ﬂ.*zz.*ﬂ°),8 20
(21)

(i ma-vy |v-EB--yEinss gl

d
207 2B(N*z,*N°)B '

exp

The LIML estimates are found by substituting the first-step estimates of pand %, (z and
S) into (21) which is then maximized. It is possible to show that this integral will not simplify
unless every reliability ratio in I is equal to one in which case the density above will converge to

the density of e in section 2. However, it is possible to evaluate the likelihood function

Then using the formula for the conditional distribution of x'B given z we get x'8|z ON[/8 + (z - 1)'Z; =8, B(Zx -
>3, *2)A. Thisusing Z,=M.*%, could then be written as N[£/B+ (z- 1)’ T1.*Z,6, BN .*Z,*(1- M)] 4.

11



numerically for any matrix M. Note that the likelihood function will simplify further if al the

reliability ratios are equal to one common value say 71. Conditional on this reliability ratio 77, we

have:
Ex'Blz)=pB'1u+ nB'(z- 1) (229)
Var(x'8|z) = n(1-n)B'%B (220)
and asimpler form for the conditional density of y given zis:
1 Ay, —a —vV)
f z) = fo 4 — 2 | x
(vilz) jv Y, er c|: — }

(23)

expl - =~V V- HB- Tz ) B |y
20° 2nl-mpPz,B

The adjusted asymptotic covariance matrix of the second-step estimates «» (V,) has to be

calculated as following:
V, =V, +V,(CV,C- RV,C-CV,R)V, (24)
where V, is the unadjusted second-step covariance matrix. Also, C and R, following Murphy and

Topel (1985) who establish consistency of LIML under the usua regularity conditions, are

defined as following®:

c=d(2 2]
el 2] 24|

2.5 Bounds on reliability ratio

Not all IM-matrices are possible as some N-matrices will give rise to negative estimates of

the variance of . Thereasoningisasfollowing. Combining equations (2) and (7) one gets:

Vi=a+z'B+&g-u'B-§ (29)

2 \We need to evaluate n integrals each time we calculate the value of the likelihood function which is not a problem
for afast computer.
% The gradient vectors are difficult to calculate analytically so we used numerical derivatives to calculate C and R.

12



where the error term is now composed of three parts. Since u;5 is normal, the skewness
of the data will determine the relative share of the variance between & — U5 on one hand ang
on the other in equation (25). Given this division, the data will determine varianee—of 3
(sﬁ_uﬁ:af + B%,8), but not hovvsg_uﬁ is shared between the two termandu;5. With no
measurement errors, all tlsé_uﬁ variance can be attributed to the variance of the res&luak
the variance ofi increases, more of theﬁ_uﬁ variance will be due to the varianceu. In the
extreme casell the variance ofg —u3is due to measurement errors. In this aaée= 0 and
sﬁ_uﬁz BZ.,[. Attempting to increase the variance above this limit will result in negative
estimate ofg/”. This in turn determines the lower limit for the reliability ratios. In practice, the
estimated variance &f decreases when we decrease the reliability ratios and the lower limit of
the reliability ratios will be found where the estimated variancegafes to zero.

If we definebn as the estimated value @f given the reliability ratio matrixX1, the
restriction that the estimate of = 0 is equivalent tbn 'Z.bn =bp '(111.*Z)bn < sﬁ_uﬁ which
is the restriction for determining feasible value$lof Additional bounds on the reliability ratios
may be found if some other simplifying assumptions are made. This will be discussed in detail

in when doing the simulation exercise in section 3.

2.6 Technical efficiency with errors-in-variables

Our aim is now to estimate the unconditional technical efficiency and the conditional
technical efficiency for each firm again for different values of the reliability rftio The
expression for the expected value of the mean technical efficiency, Efx&-the same as in
equation (6) even with measurement errors since the distributigniotinaffected. However,
the expression for the technical efficiency for fiinrequires a slight modification. With

measurement errors, the compound residual will be gives bys - u'B- & (see equation (25))

13



instead of g = & - & asin the case of no measurement errors. Since u;’8is normal, the expression
we derived for E[exp(-&) | €] in equation (5) will be vaid if we replace & by & - u’8 and
redefine o* and A asfollowing;

g
ol=gl+ BB+ ofand he=——L (26)

Jo2+ BB

Consequently, the expression for conditional technical efficiency under errors will then be:
Elexp(-&)|&+]=

» {(2@; +02+ B3,B)0% Hl_ q{(é 02 + BE ) ]} {1_ q)[e A }}1 o

202 O.

3. Simulation Study
3.1 Simulation set-up

This section compares the new estimator for the cross-sectional SFPF developed in the
previous section (henceforth called the EIV estimator) with the traditiona ML estimator on
simulated data. The aim is to investigate the bias introduced by measurement errors in
estimating the production function parameters and the resulting technical efficiency estimates.
The model that we choose to simulate is a Cobb-Douglas production function with two inputs,
capital and labor. The choice of only two inputs was motivated by the desire to be as similar to
our empirical example presented in section 4 where the data allows for identification of only two
broadly defined category of inputs: total capital and total labor. In addition, the basic parameters
for simulation are chosen so as to closely mimic the actual data analyzed in section 4. The

starting point of the ssmulation is the following model specification:
In(Y) = a+ BcIn(Ki) + A In(Li) + & - & (284)
where In(K;) = In(K;) + In(Uk;) and In(L;) = In(L;) + In(Uy;) (28b, 28c)
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where K; and L; are actual but unobserved amount of capital and labor of firmi and K; and L; are
the measured counterparts. U, £ and & are as defined in section 2 and let ox? denote the variance
of In(K;), a.? the variance of In(L;) and ok, the covariance between In(K;) and In(L;).

Now, a dight modification of the model in (28) by writing it in per-capita terms is
preferred. Thisis achieved by subtracting In(L;) from both sides of (28a) and subtracting (28c)
from (28b). There are three advantages of doing this. First, it is easier to find the maximum of
the likelihood function when regressing In(Y/L) on In(K/L) and In(L) instead of regressing In(Y)
on In(K) and In(L). Second, the parameter of In(L) will directly estimate the degree of departure
from the constant returns to scale. Third, the per-capita specification allows us to find bounds on
the feasible reliability ratios as we discuss later in the next sub-section. Thus, after the

transformation the model in equations (28a,b,c) can be written as:

In(Yi/ L) = @+ BeIn(Ki/ L) + (B.+ B = 1)) +& - €. (292)

In(Ki /L) = In(K; / Li) + In(Uki / Uy), In(Li) = In(L;) + In(Uy) (29b, 29c)
or equivalently as:

Yi=a+xy+&-é. (30a)

Z =% + Ui (30Db)
wherey; = In(Y; / L), x = [In(Ki / L), In(L)], z = [In(Ki / Li), In(Ly)], ui = [In(Uki / ULi), In(ULi)]
andy= [B«, (B. + B« — 1)P*. We simulatex, X», u; andu, from normal distributions such thet
ON(0, 2n), uy ON(0, 2(1-1)) with 71 being the common reliability ratio. Then by addintg u,
we getz with the desired properties. Oncandu are simulated we then simulagefrom a N(O,

o) and & from a truncated N0, o) with Var(g) = 0.2 and Var§) = 0.8 which implies that

0 =1 andA = 2. Finally, we creatg by selectingy = 1.7, 4 = 0.6 andys = 0.1. This implies

* Note that x; and u; are independent since In(K; / L) and In(Uk; / U,;) are independent.
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increasing returns to scale with coefficients S« = 0.6 and 8. = 0.5. This is the model structure

that we will use for our simulation study.

3.2 Restrictions on thereliability ratios

In contrast to the generalized bounds discussed in section 2.5, we will derive simplified bounds

when simulating independent series for x; and x,. The independence assumption implies that the

covariance between actual In(K; / L;) and In(L;) is zero. Obviously, we do not know what this

covariance is in reality but we can estimate the covariance between observed In(K; / L;) and

In(L;). In the actual data that we have examined in section 4, this covariance is amost zero®.

Since Cov(z, z) = Cov(xy, X2) + Cov(us, Up), and unless there is a reason to believe that the

covariance between the measurement errors of In(K; / L;) and In(L;) is far from zero, it seems

reasonabl e to assume that Cov(xy, Xo) is close to zero as well. The implications of setting these

covariances to zero are as following:

1. oq=a’. ®

2. Tk = 71 where again 7%, is the “covariance reliability ratio” cov[lK(), In(Li)] / cov[In(K)),
In(L)]*’. This simplification is very useful since it decreases the number of unknown
parameters from three to two when we do the simulations.

3. Var(z) = Var[ InKi/L) ] = ok® - a.%, Var(z) = ai°.

4. Var(xy) = Var[ In(Ki/Ly) | = ok’ - mal?, Var(x) = 1o’

5. Var(uy) = Var[ InUxi/Uu) ] = A-7R)o® - A1-78) o,  Var(w) = (1-7%) 6>

% The actual correlation between In(K; / L)) and In(L;) in the empirical data of section 4 was -0.03.

% Since Cov(z, 2,) = Cov[ In(Ki/L}), In(L)) ] = Cov[ In(K;), In(L;) ] — Var[ In(L) ] = dk. - 6> =0, it follows.

%’ Since Covy, X,) = Cov[ In(i/L;), In(L;) ] = Cov[ InKy), In(L;) ] — Var[ In(L;) ] = 7&.-CoVv[ InK)), In(L}) ] - 77-Var]
In(L;) ]=0 and Cov][ InK)), In(L;) ] = Var[ In(L;) ] from (1), this follows.
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6. The rdiability ratio of the variable In(Ki/L;) expressed in terms of the reliability ratios of
Capital and Labor is Var[In(Ki/L;) ] / Var[ In(Ki/L)) ] = (7kok? - maid)l(ok® - ai?) by (4) and
(5). Note that if the reliability ratio of Capital and Labor are equal (to say 727), then the
reliability ratio of In(Ki/L;) is 71 itself.

By noting that the reliability ratio of In(Ki/L;) must itself be between zero and one we can

find feasible bounds on the reliability ratios for capital and labor. These bounds are®:

2 2 2 _ 2
o ot ogx-0

T —5 <M s —5+ K5k (31)
Ok Ok Ok

This expression evaluates to 0.84577 < 7& < 0.84577 + 0.155 using ok’ = 8.15 and ¢;* = 6.17 as
observed in the empirica data analyzed in section 4. These are powerful restrictions that
together with the condition that the estimate of o, be positive will limit the set of possible
reliability ratios that we can consider during the simulations. Table Al in the appendix shows
feasible values for 7% given the values of 71. For each ssimulation round, we start by setting 7z
and 7k in such away that they are within the bounds defined in equation (31). In practical terms
thisimplies setting 77 = 7% as the bounds expression do allow 77 to be equal to 7& %°. Thus, what

matters during the simulations is whether 71 and 7% are large (close to one) or small.

3.3 Simulation results: parameter estimates
Each simulation round consisted of 500 observations to estimate the parameters and this
was repeated 100 times. Table 1 presents the averages and the standard deviations of the

estimated parameters for the MLE method and the EIV estimator under different levels of

%8 The bounds are calculated by equating the expression (7xoi? - 1 a.9)/(ok’ - 6.%) equal to 0 and 1, respectively.

2 |f we assume that the covariance between x; and x; is less than 0.05 in absolute terms, then -0.00727 + 1.005877 <
7% < 0.00727 + 1.005877 is the equation that defines the bounds. Then if 77 = 1, 7%, must be between 0.9985 and
1.013 and if 7 = 0.9, 7%, must be between 0.8979 and 0.9124. Thus, setting 7%, = 77 seems to be the most
reasonable choice.
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reliability ratios. In the table estimates of o and o, are derived from the estimates of ¢® and A
using expressions defined in equation (3). The most striking result of the simulation study is the
severe downward bias in the MLE estimate of )4 and )5 as the common reliability ratio falls.
Thisimplies that (where 4 = B« and )5 = B + B« — 1) weunderestimate the elasticity of capital
while we overestimate that of labor when there are measurement errors. For example, in the
simulated data the elasticity of capital was 0.6 while that of the labor was 0.5. With 80%
reliability in the data, the capital elasticity is underestimated by 20%, and for 70% reliability
ratio the estimates are completely reversed: 0.4175 for capital and 0.6499 for labor. Thus, the
biases are quite severe and clearly show the need for a procedure that consistently estimates the
elasticity parameters under even reasonable degree of measurement errors.

Table 1 results also imply that MLE tends to underestimate the return to scale parameter
)5 . Therefore, if one wants to test for increasing returns, the MLE does a poor job whereas the
EIV estimator will pick out true increasing returns even for a 70% reliability ratio. Table 1 also
shows that the MLE basedl estimate is biased downward aofl is biased upwards. The
combined effect of these two on the estimate for the variance of technical effiaigf)dg that
it seems to be estimated consistently whereas the variance of the resfjusldiased upwards.
This is not surprising as the measurement errors being normally distributed, will be captured in
the g/ term, thus biasing it upwards, leaving #é estimate to be unaffected. Thus, there will
be an upward bias in estimatetiand a downward bias in estimatédnder MLE. From table 1
it is clear that botlo® andA are consistently estimated by the EIV estimator. To sum, even with
extreme measurement errors, the EIV estimator succeeds in estimating the elasticity parameters,

returns to scale and the relevant variance estimates consistently.
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3.4 Simulation results. technical efficiency

Table 2, column 2 presents the mean technical efficiency estimates for different
reliability ratios where the true expected value of the unconditional technical efficiency using
equation (6) and 052 = 0.8 is 0.5536. Column 3 and 4 respectively have estimates of the
expected value of the technical efficiency based on MLE and EIV estimates from table 1. Here
the MLE estimator does as well asthe EIV estimator when it comes to estimating the mean value
of the technical efficiency. This happens because both MLE and EIV produce estimates of 052
that are identical to the third decimal, and that is the only parameter that determines the average
technical efficiency. Hence, if you are only interested in mean technical efficiencies, you may
just aswell use the traditional MLE estimator, even if the data suffers from measurement errors,
aslong as these are normally distributed.

Next, we analyze technical efficiency of firm i once we have estimated the residual for
that firm. For each simulation round we compare the true technical efficiencies to the estimated
technical efficiencies calculated using the MLE and EIV techniques. This comparison was done
by calculating the average absolute deviation between the true technical efficiency and the MLE
and EIV estimates of it. This then results in two numbers for each simulation round. The means
and standard deviations of these 100 simulation rounds are presented in table 3. It is clear from
the table that EIV is much more successful at estimating technical efficiency of individual firm.
The average absolute deviation between the true value and the MLE estimate rises as the severity
of the measurement errors increases, unlike for the EIV estimator where the absolute deviation
stays about the same. In the last column of table 3 we report another test that proves the
superiority of EIV over MLE based firm-specific efficiency estimates. This test is for what

percentage of the 500 observations the EIV technique results in an estimate closer to the true
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value in comparison to the MLE. Based on thistest EIV estimator based test outperforms MLE
very convincingly.

To summarize, the MLE estimator is seriously biased when it comes to estimating the
elasticity of labor and capital under measurement errors. MLE is also a poor choice if you want
to estimate the technical efficiency for a particular firm. However, both MLE and EIV estimator
estimate the mean technical efficiency level very well. Thus, in the presence of measurement

errorsin the input data the EIV estimator developed in section 2 is the preferred choice.

4. Empirical Example
4.1 Data

In this section we examine the impact of measurement errors on SFPF estimates of a
production structure in actual data. We draw a cross-section of firms from the COMPUSTAT
industrial data files maintained by Standard and Poor. These files consist of al the publicly traded
firms on the U.S. stock exchanges for the period 1970-1989. The files provide information on
balance sheet components, cash flow and income statements and other relevant financia
information. The frequency of reporting is annual. We chose the year 1988 for our anaysis as it
provided the most number of firms with relevant information®™. The number of employees (Li) it
employs measures Labor use by a firm. Standard practice is to define labor in terms of hours
worked but this information is not availablein COMPUSTAT. Aswe don't know the proportion of
skilled versus unskilled workers as well as their quality level, thisimparts a source of measurement

error to our labor use variable. To calculate the output of a firm or the value added Y;, the cost of

% We could have chosen the year 1989 which is the terminal year of the database. Because of non-reporting of
relevant information by quite a number of firms, the highest number of firms with usable information was present in
1988. Another reason for choosing 1988 was the fact that this year was characterized by a stable economic
environment, especialy the inflation situation and financial market volatility.
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goods was subtracted from the sales figure®’. To complete the value added calculations, total
inventories were added to the above measure. The measure of capital K; is the book value of tota
assets of a firm®. Thus, we have full information to estimate the production structure, and

accompanying level of technical efficiency for 484 firms.

4.2 Production structure

The model that we estimate is identical to the one considered in the simulation study (see
(30)). Tables 4a, 4b and 4c provide the necessary summary statistics for the data variables. In
particular note that the covariance between z and z, is amost zero. As before, 7% = Var(In(K)) /
Var(In(K)) and 771 = Var(In(L)) / Var(In(L)) are the reliability ratios of capital and labor
respectively, while 7%_ is the *“covariance reliability” ratio equal to Cov#)( In(L)) /
Cov(InK), In(L)). As explained in the simulation section, it is reasonable taget 7 if
CoV(z, 2) is close to zero which is the case here. Also, we will only consider casesmylere
7r = 1. Based on the summary statistics in table 4c, we can derive consistent estimates of the
expected value and the variancezof Given a particular reliability ratiaz, we can then find
consistent estimates of the expected value and variancasofvell as of the variance ofand

these are:

%! Because the reporting procedure for the cost of goods component contains labor expenses, a component of the value
added by afirm, the labor expense component was added to the above calculation. Since not every firm reportsthisitem
as an expense separate from cost of goods, this correction dropped the number of firms that could ultimately be used in
the analysis.

% Using total assets as a proxy for productive, physical capital requires qualifications. First, this measure of assets
includes the current investment component of afirm. Second, this measure includes cash and other short term liquid
investments which may not be appropriate measures of physical capital. A justification for using this measure is the
theoretical models and empirical evidence that extend the notion of production structure by incorporating the effects
of liquidity and borrowing constraints [for e.g. see Gertler and Hubbard (1988), Dhawan (1997) etc.].

% Given avalue of 77 , 7k may deviate according to table (A1) in the appendix but we found that the estimated
coefficients were not affected by setting it apart from 71 .
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Thus, given this information and the discussion regarding reliability ratio bounds in section 3.2,
the lowest possible value for the reliability ratio is 0.86. Any value lower than that is not feasible

given that data characteristics.

4.3 Parameter estimates

Table 5 presents the estimates of the parameters in equations (30a) and (30b) using three
techniques. OLS, the traditional MLE and the EIV estimator developed in this paper. The first
row presents the estimates when simple OLS technique is used which can be characterized as
estimating an average production function. Asiswell known, with no measurement errors, OLS
will provide us with consistent but inefficient estimates of y; an inconsistent estimate of a and no
estimates for g, and 052. With measurement errors even the OLS estimate for the parameter y
Is inconsistent. In the second row the MLE based estimates are presented. Rows 3 to 9 display
the estimates using the EIV technique based on likelihood function from equation (23). Each
row provides a set of estimates for a particular common reliability ratio. These results should be
interpreted as following: If the reliability ratio of labor and capital is 0.94 (say for example), then
the consistently estimated coefficients are in this row. Based on these estimates for a, 3, ¢ and
A, we can then derive estimates for the elasticity of capital and labor (8« and £.) as well as the
variances of £and & (0 and o) presented in table 6.

A number of interesting but not surprising results, given our simulation experience, are
apparent from Tables 5 and 6. First, MLE underestimates the elasticity of capital. According to
MLE, the return to capital is 0.6261 while it is as much as 0.7280 using the EIV technique and

for the reliability ratio is 0.86. We also find that MLE estimates return to scale very well which

22



then implies that it is over estimating the elasticity of labor. Second, as the reliability ratio
decreases the estimated A increases while estimated o, goes to zero. This happens because as
the reliability ratio decreases, the variance of ugincreases. Sinceit is the same data set, this will
happen at the expense of a decline in the variance of &, and as it goes to zero A which is equal to
os . will increase®. Third, we find that MLE estimates, o, the variance of & very well. This
has important implications for the estimates of the technical efficiencies as discussed later in the
next sub-section. MLE also overestimates the variance in &, which is natural, since it assumes
no measurement errors. Finally, the estimate of the intercept using MLE is significantly higher
than the OLS estimates. This comes as no surprise since OLS ignores the ¢ term and as the

expected value of £ispositive, this explains the difference.

4.4 Estimates of Technical Efficiencies

Given that we have 486 firms, it is not possible to present the estimates of technical
efficiency for each firm. We begin first by considering the mean average technica efficiency
under varying degree of measurement errors presented in table 7. It isinteresting to note that the
average level of firm efficiency is almost independent of the assumption on measurement errors.
The EIV estimates are also close to the MLE estimate of the expected value of the unconditional
technical efficiency. This happens because the only parameter that determines the distribution of
the technical efficiencies, o, is amost identical for MLE as well as for EIV technique
regardiess of the degree of measurement errors. At first, this may suggest that measurement

errors are not an issue when it comes to technical efficiencies. However, as we know from the

% Asamatter of fact, 71 = 0.86 is a lower bound for the reliability ratios. There simply is not enough variation in
the data to support more measurement errors than this. With 71 = 0.86, the only disturbance to the model, except for
the technical inefficiencies, are measurement errors as € vanishesin this case.
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results of the simulation section, the EIV estimator outperforms the MLE estimator for firm-
specific efficiency quite well.

To get an idea of the bias caused by measurement problems, we present technical
efficiency estimates of the first ten firms in table 9. From this table, we note that one cannot
predict the direction of the bias as the changes seems to be random. To explore this more, and to
get an idea about how severe the problem could be, we ranked all the firms in the sample by their
MLE based technical efficiency estimates. Then, as the reliability ratio was decreased, it was
found that the relative ranking of the firms changed. For the reliability ratio 0.98 the maximum
rank change was 23 on the upper side and 19 on the lower side. In addition, 50 percent of
changes in ranks were between plus 2 to minus 2. For the lowest feasible reliability ratio of 0.86,
50% of the rank changes were within plus 15 and minus 16. For this particular reliability ratio
the maximum rank change was 132 on the upper side and 131 on the lower side! In percentage
terms the maximal change in firm level efficiency was 22% on the up side and 14% on the down
side. This is an important outcome since the technical efficiency estimate tells us what
percentage of “frontier output” the firm is delivering. This precludes the researcher, using MLE
method under measurement errors, from establishing a comparative efficiency rankings of the

firms in the sample as evident from the EIV estirfrate

% In fact, we tested whether the changes in rankings was predictable (non-random) or not by running an AR(1)
regression on a given firm’s efficiency estimates for different reliability ratio assumption. It was observed that 90%
of the auto-regressive coefficients were above 0.95, with at least 50% of them being at or above 1, making the rank
changes to be very much a random outcome. A proper unit root test on these coefficients, although desirable could
not be conducted as only 8 observations exist for each firm, which is not enough to test for presence of unit root.
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5. Summary and Conclusions

This paper investigates the impact measurement errors in inputs have on estimates of
production function parameters and firm-specific technical efficiency estimates in a cross-
sectional SFPF setting. We first develop the methodology for estimating the standard cross
sectional SFPF with measurement errors by using Fuller’'s reliability ratio concept. Next, our
numerical simulation results show that the estimates (elasticity parameters) of the deterministic
frontier, the distribution of the stochastic part of the frontier and the distribution of the technical
inefficiency are very sensitive to the degree of measurement error. Our simulation results
indicate that MLE will bias the elasticity coefficient estimates, and consequently the returns to
scale feature. These biases are quite severe and clearly demonstrate the need for a method that
consistently estimates the production function parameters for even small degree of measurement
errors. The simulation exercise also shows that while MLE overestimates the variance of the
composite error term, it underestimates the skewness parameter with the result that the variance
of the technical efficiency parameter is consistently estimated. Although the mean level of
technical efficiency or average sample efficiency is unaffected by the presence of measurement
errors, the firm-specific estimate of technical efficiency will be seriously biased as it depends
upon the estimated skewness parameter. Additionally, we also develop theoretical bounds
regarding the possible values for the reliability ratios given the data summary statistics. These
bounds are extremely useful for a researcher in a practical setting when he/she is analyzing the
sensitivity of parameter estimates to the varying degree of belief regarding measurement errors.

Next, a practical applicability of the reliability ratio estimator developed in this paper is
demonstrated by applying it to actual firm level data from the U.S. industrial sector. For this

data set issues regarding returns to scale feature, elasticity coefficients and firm-specific
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technical efficiency are explored in detail. Here we demonstrate how the relative ranking of the
firms by their technical efficiency estimates changes when the degree of measurement errors is
increased. Most importantly this change in ranking appears to be random and not related to the
change in the degree of measurement error. In addition the percent change in the firm-specific
technical efficiency levels from its MLE estimate is quite severe when the degree of
measurement error increases. This exercise has implication for economic researchers who are
engaged in inter-firm or inter-industry comparisons as ignoring measurement errors and relying
solely on simple MLE estimates will most likely lead to erroneous efficiency comparisons.

The analysis in this paper has been undertaken for cross-sectiona SFPF model with
Cobb-Douglas production structure that in many respects is very simplistic. Consequently,
practical issues such as analyzing technical change over time and evolution of a firm’s efficiency
levels that requires a more general production structure (say Translog) in a panel setting are a

subject matter of future research.
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Appendix

Possible valuesfor thereliability ratio of capital given that of labor

TableAl

T 1.00|{ 0.98 | 0.96|0.94 092|090 0.88|0.86|0.84|0.82 080|078 |0.76 | 0.74

Min. x | 084/ 0.83|081|0.79|0.78 | 0.76 | 0.74 | 0.73 | 0.71 | 0.69 | 0.66 | 0.66 | 0.64 | 0.62

Max. 7% | 1.00 | 097|097 |095/093 /092090088 |0.86|0.85|0.83|0.81|0.80 | 0.78
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Table1. Traditional Maximum Likelihood Estimates of SFPF for Smulated Data

2

2

2

a Y1 Y2 o A O¢ O¢
True Vauer 1.700 0.6000 0.1000 1.000 2.000 0.8000 0.2000
Traditional Maximum Likelihood Estimates

71=1.00 1.711 0.5998 0.1030 1.013 2132 0.8242 0.1883
(0.07) (0.02) (0.02) (0.13) (0.39) (0.15) (0.04)

71=0.90 1.691 05376 0.09289 1.055 1.757 0.7903 0.2644
(0.08) (0.02) (0.02) (0.14) (0.36) (0.18) (0.05)

71=0.80 1.685 04778 0.08143 1.100 1606 0.7848 0.3154
(0.09) (0.02) (0.03) (0.14) (0.35) (0.19) (0.06)

71=0.70 1.676 04175 0.06741 1121 1494 0.7641 0.3568
(0.12) (0.02) (0.03) (0.16) (0.39) (0.22) (0.07)

ElV Method Maximum Likelihood Estimates

71=1.00 1.711 0.5998 0.1030 1.013 2132 0.8242 0.1883
(0.07) (0.02) (0.02) (0.13) (0.39) (0.15) (0.04)

71=0.90 1.691 05973 01032 09890 2.058 0.7903 0.1987
(0.08) (0.03) (0.02) (0.14) (0.49) (0.18) (0.05)

71=0.80 1.685 05972 01018 09833 2.095 0.7848 0.1985
(0.09) (0.03) (0.03) (0.14) (0.62) (0.19) (0.06)

71=0.70 1.676 05964 0.0963 09681 2116 0.7641 0.2040
(0.12) (0.03) (0.04) (0.17) (0.85) (0.22) (0.08)

* The data was simulated from the model y; = a + xiy + € - & withz, = x; + u. x ON(O, 271), u; ON(O, 2(1-71))
where 71 is the common reliability ratio of log of labor, log of capital (and thus of log capital by labor). 7iis varied

inthetableand £ON(0, 0.2) and £ ON'(0, 0.8) . The standard errors are reported in parentheses.

Table2. Mean Technical Efficiency And Reliability Ratio

Reliability ratio  Actual TE Value Estimated TE Estimated TE
(MLE Estimate) (EIV Estimate)

1.00 0.5536 0.5496 0.5496

0.90 0.5536 0.5553 0.5553

0.80 0.5536 0.5562 0.5562

0.70 0.5536 0.5598 0.5598




Table3. Comparing Firm-Specific Technical Efficiency Estimates

Average absolute Average absolute Percentage won by

Reliability ratio deviation between deviation between EIV
EIV and true value MLE and true value
1.00* N/A N/A N/A
0.90 0.0542 0.0755 94.47%
(1.8x107) (1.9x10%) (1.0%)
0.80 0.0463 0.125 99.27%
(1.6x107) (3.1x10°%) (0.4%)
0.70 0.0406 0.161 99.72%
(1.4x107%) (2.5x10?) (0.2%)

* For ardliability ratio of 1, MLE and EIV will produce exactly the same estimates and the formulas for expected
value of the conditional technical efficiencies will coincide. N/A implies not applicable here. The standard errors
are reported in parentheses.

Table4a. Transformed and Non-Transformed Data Variable M eans

In(Y) In(K) InL)  Y=In(Y/L) Zi=In(KIL) Z»=In(L)

Mean: 5.55 6.08 1.15 4.40 4.93 1.15

Table4b. Untransformed Data Variance and Covariance Matrix

In(Y) In(K) In(L)
Ln(Y) 8.23 7.17 6.86
Ln(K) 7.17 8.14 6.86
Ln(L) 6.86 6.86 6.90

Table4c. Transformed Data Variance and Covariance Matrix

Y=In(Y/L) Z,=In(K/L) Z,=In(L)
Y 0.78 0.76 0.26

z 0.76 1.31 -0.03

Z, 0.26 -0.03 6.90
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Table5. SFPF Parameter Estimates; OLS, MLE And EIV”

OLS

MLE

EIV
71=0.98
EIV
71=0.96
EIV
71=0.94
EIV
71=0.92
EIV
71=0.90
EIV
71=0.88
EIV
71=0.86

2

a Y2 (0] A
1.5036 0.5781 0.04132 N/A N/A
(0.33) (0.07) (0.03)

1.9195 0.6261 0.00071 0.7146 2.7072
(0.10) (0.02) (0.01) (0.07) (0.37)
1.8565 0.6389 0.00073 0.7041 2.8904
(0.10) (0.02) (0.01) (0.07) (0.46)
1.7910 0.6522 0.00074 0.6931 3.1270
(0.10) (0.02) (0.01) (0.07) (0.54)
1.7226 0.6661 0.00076 0.6817 3.4486
(0.11) (0.02) (0.01) (0.06) (0.68)
1.6512 0.6806 0.00078 0.6698 3.9188
(0.11) (0.02) (0.01) (0.06) (0.99)
1.5767 0.6957 0.00079 0.6573 4.6979
(0.11) (0.02) (0.01) (0.06) (1.66)
1.499 0.7115 0.00081 0.6443 6.376
(0.12) (0.03) (0.01) (0.07) (4.19)
1.417 0.7280 0.00083 0.6307 18.51
(0.14) (0.03) (0.01) (0.07) (169)

" The standard errors are in parentheses and N/A means not applicable.

Table 6. Basic Production Structure Estimates

OLS

MLE

EIV 7:=0.98
EIV 71=0.96
EIV 71=0.94
ElIV 71=0.92
EIV 71=0.90
ElV 7:=0.88
EIV 71=0.86

2

2

Bk B O¢ O¢
05781 04351 N/A N/A
0.6261 0.3746 0.6288 0.0858
0.6389 0.3618 0.6288 0.0753
0.6522 0.3485 0.6288 0.0643
0.6661 0.3347 0.6288 0.0529
0.6806 0.3203 0.6289 0.0409
0.6957 0.3051 0.6288 0.0285
0.7115 0.2893 0.6288 0.0155
0.7280 0.2728 0.6289 0.00184
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Table7. Average Technical Efficiency For the Sample

MLE (7=1) 7=098 7=0.96 71=094 7=0.92 7=090 7:=0.88 71=0.86
Mean 0.6008 0.6008 0.6008 0.6008 0.6008 0.6012 0.6068 0.6180

Table8. Predicted Firm Efficiency of the First 10 Firms

MLE(7:=1) =098 71=096 7=094 7=0.92 7=090 7=0.88 71=0.86

Firm 1 0.753 0.759 0.765 0.771 0.777 0.783 0.788 0.793
Firm 2 0.487 0.487 0.487 0.487 0.488 0.489 0.489 0.492
Firm 3 0.885 0.886 0.888 0.890 0.891 0.891 0.891 0.891
Firm4 0.933 0.933 0.932 0.931 0.930 0.928 0.926 0.923
Firm5 0.810 0.814 0.818 0.822 0.826 0.829 0.832 0.834
Firm 6 0.827 0.829 0.832 0.834 0.836 0.838 0.839 0.840
Firm7 0.281 0.275 0.271 0.266 0.262 0.258 0.250 0.250
Firm 8 0.615 0.623 0.630 0.638 0.647 0.655 0.664 0.673
Firm9 0.714 0..712 0.710 0.707 0.704 0.701 0.697 0.694
Firm10 0.596 0.595 0.594 0.593 0.592 0.592 0.591 0.591
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