LUND UNIVERSITY

Decision support for test management and scope selection in a software product line
context

Engstrom, Emelie; Runeson, Per

Published in:
2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops

DOI:
10.1109/ICSTW.2011.80

2011

Link to publication

Citation for published version (APA):

Engstrom, E., & Runeson, P. (2011). Decision support for test management and scope selection in a software
product line context. In 2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICSTW.2011.80

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund

+46 46-222 00 00

https://doi.org/10.1109/ICSTW.2011.80
https://portal.research.lu.se/en/publications/5fd9fa58-613a-4333-a9e6-942b968774fe
https://doi.org/10.1109/ICSTW.2011.80

Decision Support for Test Management and Scope Selection in a Software Product
Line Context

Emelie Engstrom* and Per Runeson*
*Software Engineering Research Group
Dept. of Computer Science, Lund University, Sweden
(emelie.engstrom, per.runeson)@cs.lth.se

Abstract—In large software organizations with a product
line development approach, system test planning and scope
selection is a complex tasks for which tool support is needed.
Due to repeated testing: across different testing levels, over
time (test for regression) as well as of different variants, the
risk of double testing is large as well as the risk of overlooking
important tests, hidden by the huge amount of possible tests.
This paper discusses the need and challenges of providing
decision support for test planning and test selection in a
product line context, and highlights possible paths towards a
pragmatic implementation of context-specific decision support
of various levels of automation. With existing regression testing
approaches it is possible to provide automated decision support
in a few specific cases, while test management in general may
be supported through visualization of test execution coverage,
the testing space and the delta between the sufficiently tested
system and the system under test. A better understanding of
the real world context and how to map research results to the
same is needed.

I. INTRODUCTION

Software product line engineering is a means for organiza-
tions to customize large numbers of software products from
a common base, instead of developing one-off solutions to
each customer or end product. In large software organiza-
tions with a product line development approach, a selective
testing of product variants is necessary in order to keep pace
with the decreased development time for new products.

The number of testing combinations in such variability
intensive context are extensive. Testing is repeated across
three dimensions, see Figure 1: 1) the traditional testing at
different levels (unit, integration, system etc.) 2) regression
testing as the system evolves over time, and 3) testing over
the variation in space. This entails a high risk of costly
redundancy in the testing and also the reverse: that important
aspects of the differences between the tested artifacts are
overlooked. One of the major challenges in testing a software
product line (SPL) is the balancing of testing efforts across
these three dimensions [1]. Several questions appear in this
context:

o What is the cost vs. the benefit of extensive feature
testing? At an early stage, it is not always known how
a specific feature is going to be used: in which product
variants and customizations.

« How can the testing of different product variants be
optimized?

« How much and what do we have to test on the latest
version of the software? In the case of an agile devel-
opment process, the software is updated frequently. It
is not feasible to test everything on the latest version.

Trade-offs need to be done both on a management level
with respect to the overall distribution of test efforts, and in
each situation where a test scope is to be selected. Today
there is a lack of support in making those decisions. Decision
support may be provided with different levels of automation
and should increase the efficiency of the testing as well as the
transparency of the decisions. SPL testing literature offers
a number of proposals for improvements regarding those
issues which could be incorporated in a decision support
system [1]. However, only a few of them are are evaluated in
real projects and there is little knowledge on their practical
implementation. In order to provide decision support, the
real context need to be described and the proposed solutions
need to be put in relation to both general and specific context
descriptions.

This paper discusses the challenges in providing decision
support in a variability intensive context from the perspec-
tive of its practical implementation. Research on regression
testing and the potential use of such techniques for test scope
selection in a product line context is discussed as well as the
need for less automated support in terms of visualization.

'E‘ Coverage ltems
o Expectations, Quality requirements
@
z Test cases Functional requirements, Design
2 Acceptance test Interfaces, Implementation
bl System test
2 Integration test
E Unit test
2
@ o
s S
g ,;'\0‘\\ i
'.\"\Q Repetitive tests
(\‘,,“ acrossversions Redundancy?
o2 acrossvariants
Ry
acrosslevels
Versions (evolutionin time)
Figure 1. Testing is repeated across three dimensions: testing at different

levels, testing of regressions, testing of multiple variants

Domain

Domain Domain Domain
Req. Eng Design Testing

J 4 J J

]

Application Application
Reg. Eng Design Testing

! 4 4 4

[Annlication Artifacts (Annlication n)
| Application Artifacts (Application 1)

Realization

Domain Artifacts

Demain
Engineering Process

Application

Application }

Realization

Application
Engineering Processes

Figure 2. Product line processes modeled by Pohl et al. [2]

II. DECISION SUPPORT IN A COMPLEX ENVIRONMENT

SPL engineering offers a systematic approach for handling
variability and for parallel development of several product
variants derived from a common base, see Figure 2. Con-
sequently, many proposed SPL testing strategies are based
on the existence of models, describing the system and the
variability space. According to a recent systematic review
[1], the major focus of SPL testing research is on model-
based test case design and systematic test case derivation.
The review also summarizes the research on test manage-
ment in software product line engineering, which contains
of several proposals, possibly useful in some contexts, and
a few evaluations in small and controlled environments.

However in industry there is a need for test planning
support even in less idealistic cases of product line like
development, where SPL concepts are not strictly followed.
Variants may be added in a less controlled manner than
suggested by research literature (e.g. by Pohl et al [2]) and
clearly specified variability models may not exist. In such
contexts, model-based techniques are hard to apply. Further-
more, test management is a part of a large management sys-
tem, including release planning, requirements management,
configuration management, development management, test
management, and more, which makes it difficult to enroll
major changes from any of those single perspectives. A
decision support system must support the complex context,
as well as its own incremental evolution within this context.

There is a need for pragmatic techniques guiding not
only derivation of test cases, but also planning and selection
of test cases, i.e. the test scope. While model-based test
case design spans the testing space, the actual selection of
the test scope needs to be supported by a tool. This must
account for constraints in the environment, for example,
cost and lead times for testing, varying importance of
product variants, incremental evolution, distribution of the
development organization, and even psychological factors. In
a large organization, a test manager also needs to deal with
lack of trust between different parts of an organization and
people’s propensity to perform work sloppy, whose results
are not directly visible.

A typical scenario is the lack of holistic strategies. Dif-
ferent testing units develop their own testing strategies, for
handling the huge amount of possible tests, independently
of each other, e.g. low level testers may test only one
configuration despite the requirement to deliver support
for several variants, while at the same level, another unit
distribute a test suite randomly over the possible variants.
At product level a common practice is to fully test the
most important (or first) variant, leaving the subsequent
product variants more or less untested. A decision support
system should predict the indirect consequences of the direct
choices.

III. AUTOMATED DECISION SUPPORT

A tool for decision support seeks to automate the manage-
ment parts of the testing chain, i.e. planning and analysis,
in contrast to other test automation activities with a focus
on the mechanic parts, i.e. generation and execution of
test cases. There may be a difference in goals between
the two. While the goal of automation of mechanization
often is to replace humans performing repetitive and simple
tasks, e.g. executing test scripts, the goal of automating the
management in this case is to accomplish tasks beyond our
capabilities, e.g. collecting and synthesizing huge amount
of information (originating in the huge amount of possible
tests and complex relationships between internal factors
such as variation points at different levels and external
factors such as the development process, the development
organization and market demands) and further predicting the
effects of different decisions, and select the best one. A tool
may give support at many different levels. A high level of
automation refers to systems with minimal user interaction,
e.g. system collects and analyses data, provides a decision
suggestion and in some cases even acts. A lower level of
automation refers to support through visualization of relevant
information based on synthesis of collected data, leaving the
decision and action to the user.

IV. HIGH LEVEL DECISION SUPPORT

A common proposal for testing in a variability intensive
context is to apply regression testing approaches not only to
regressions but also to variants [1]. Regression testing (RT)
literature offers a number of techniques, all on a rather high
automation level; e.g. providing decision proposals regarding
which test cases to rerun, based on information about
changes and dependencies. RT techniques could roughly be
divided into three categories [3]:

1) Test selection techniques guide test suite selection
based on changes (delta) by focusing testing on
changes and possible side effects.

2) Prioritization techniques order test cases in a test
suite based on some criteria e.g. risk, coverage or test
execution history.

3) Reduction techniques optimize a test suite with respect
to redundancy.

Selection techniques may be useful for the specific selec-
tion situation, e.g. analyzing the delta between the software
under test and previously tested software, suggesting a test
suite covering the differences, and parts that may be affected
by the differences. Reduction techniques may support the
more general test planning, optimizing the total test pool
with respect to coverage of the testing space and minimizing
redundancy. Prioritization techniques could be used for both
purposes, e.g. prioritize the total test pool with respect to risk
and use the prioritization as a basis for test scope selection
in the specific case or for the more general test planning.
Different criteria for prioritization may be useful in different
situations depending on the testing goals.

However, most of these techniques are very context de-
pendent [4], and in many cases only applicable for small
parts of the system and at the lowest level of test. While
there may exist techniques useful in a very specific selection
situation, there is none applicable to a high level, supporting
the general test planning and scoping. Many test situations
tend to be too complex to benefit from a regression test
selection technique alone, even though it still could offer
useful guidance in a semi-automated decision support system
[5]. It is difficult for a practitioner to identify situations
where those techniques are useful and select a suitable
technique. In order to enable guidance for practitioners,
existing knowledge need to be reported in a more systematic
way. Important context variables need to be classified and
accordingly mapped to important techniques [4][6]. A deci-
sion support system combines knowledge and technologies
in a way that serves the specific purpose and has to adapt to
and evolve within the complex and changing context where
the purpose is to be served.

V. LOW LEVEL DECISION SUPPORT

A more pragmatic way of supporting test scope selec-
tion with a lower level of automation (i.e. more human
interaction) is through visualization. A tool may collect and
synthesize information from different sources of information
(e.g. configuration management system or test management
system), report it in an effective way and leave decisions
and actions to the user. A key to efficient management is to
handle and report relevant information with a proper level of
details. An example visualization support tool from another
domain is the feature visualization tool by Wnuk et al [7]
shown in Figure 3. This tool helps management see how
decisions on the project scope impact on project as a whole.

For the specific test selection situation, relevant informa-
tion is, for example, test execution coverage, and the delta
between the system under test and the aggregation of previ-
ously passed tests. The suitable level of detail depends on the
manager’s scope of responsibility. Coverage should not be
restricted to measure structural coverage but also comprise

high level goals, requirements, and quality attributes. The
units of measurement is the coverage items (CI:s) which
are defined by the test design strategy. For the general test
planning task, the execution coverage information should
be visualized together with the variability space at each
level of testing, and highlight the important variants across
testing levels. Examples of questions for which this kind of
information would offer support are:

« To what extent has this functionality been tested previ-
ously on lower levels, in previous versions, and other
variants?

o What is the difference between the software currently
under test and the software previously tested?

« How important is this test for the future? How can the
testing be optimized with respect to possible customiza-
tions?

Redundancy may be defined in different ways (which is

illustrated with an example in Figure 4):

1) It may refer to the execution of test cases; a test
is redundant if the same test case is executed twice
on the same software, even if it could not possibly
have another verdict than last time. This is a common
definition used in optimizing regression test selection
techniques [4]

2) It may also refer to the design of test cases; a test case
is redundant if it covers coverage items (including both
the covered part of the artifact and the purpose of a
test), covered by other test cases, which are often the
starting point for regression test reduction,

3) or a combination; a test is redundant if the same CI
is executed by tests several times.

The latter definition includes more perspectives than the
other two and would be of more value for decision support.
Identifying redundancy based only on the execution of the
same test cases will not capture the major part of double
testing, since it will miss double testing across organizational
units (with different testing strategies) or double testing due

|

‘

|HI1N

Figure 3. Visualization of which features (y-axis) are introduced and
removed over the duration of the project (x-axis).

Coverage items
(diff x01/ x02)

Y

_/ la [1b | 1c!
Test cases 2a | 2b! |2c
T1:1a, 1b, 1c 3a |3b |3c
T2:2a, 2b
T3: 1b, 2a, 2b, 3b ‘? .)
S est executions

X01:T1,T2, T3, T4

X02:T2,T3, T4

e ™

Figure 4. Example case illustrating the different perspectives on redun-
dancy. Test cases are stored in a test pool. Each test case is designed to
cover one or more coverage items. Coverage items affected by differences
between the artifacts tested in x01 and x02 are marked with an exclamation
mark. The execution of T4 in x02 is redundant with respect to the re-
execution of non-affected test cases while T2 is redundant in both x01 and
x02 with respect to re-execution of coverage items. If the two perspectives
are combined T2 is redundant in x01, T4 in x02 and either of T2 or T3 in
x02.

to non-systematic reuse of test cases (e.g. copy, paste and
adapt). On the other hand if test coverage is based on test
case design only, the link between test case execution and
the CIL:s are missing and it is not possible to identify which
tests are redundant or where the testing gaps are but only a
measure of the extent of test coverage.

VI. CONCLUSION

System test planning and scope selection in a variability
intensive context is a complex task for which tool support
is needed. Tool support should improve the decisions (i.e.
increase efficiency of testing) and increase the transparency
of the decisions. SPL testing literature proposes a number
of strategies for improving test efficiency, but lacks real
life evaluations. Research on regression testing, which ad-
dress similar problems, offers some empirically evaluated
approaches. With existing regression testing approaches it
is possible to provide automated decision support in a few
specific cases. In order to support the application of proposed
approaches there is a need for a better understanding of
the real world context and a clearer reporting of how and
when to apply the approaches. Thus we encourage the
community to explore the real world context, model general
and typical cases of variability intensive testing, evaluate
improvement proposals in industry and report research result
in relation to real cases. This would support development and
incremental evolution of decision support systems within the
organizations.

A first step towards automated decision support is the
automated collection and synthesis of data. Through visu-
alization of relevant information at a proper level of detail,

test management in general may be supported. Information
to be visualized is:

« the aggregated test execution coverage
o the testing space defined in coverage items (CL:s)
comprising three dimensions of test variation:

— Varying test levels
— Evolution in time
— Variation in space

« the delta between the sufficiently tested system, derived
from the execution coverage of the testing space, and
the system (or subsystem) under test.

The core elements for analyzing test coverage and re-
dundancy are the CI:s, the test cases and the links between
the two. The definition and granularity of CI:s depend on
the context and may include structural units as well as
quality goals and functional requirements. By separating the
definition of coverage items from the decision algorithm
in a test selection strategy the generalization of decision
algorithms between contexts is enabled. In order to enable
analysis and reuse of test results across levels, versions
and variants, the relation between different Cl:s within the
organization need to be identified.

REFERENCES

[1] E. Engstrom and P. Runeson, “Software product line testing
- a systematic mapping study,” Information and Software
Technology, vol. 53, no. 1, pp. 2 — 13, 2011.

[2] K. Pohl, G. Bockle, and F. J. Linden, Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[3] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Software Testing,
Verification and Reliability, pp. n/a—n/a, 2010. [Online].
Available: http://dx.doi.org/10.1002/stvr.430

[4] E. Engstrom, P. Runeson, and M. Skoglund, “A systematic
review on regression test selection techniques,” Information
and Software Technology, vol. 52, no. 1, pp. 14-30, 2010.

[5] E. Engstrom, P. Runeson, and A. Ljung, “Improving regression
testing transparency and efficiency with history based priori-
tization - an industrial case study,” in Proceedings of the 4th
International Conference on Software Testing Verification and
Validation. 1EEE Computer Society, 2011.

[6] P. Runeson, M. Skoglund, and E. Engstrom, “Test benchmarks
— what is the question?” in Software Testing Verification and
Validation Workshop, 2008. ICSTW ’08. IEEE International
Conference on, 2008, pp. 368 -371.

[7] K. Wnuk, B. Regnell, and L. Karlsson, “What happened to
our features? visualization and understanding of scope change
dynamics in a large-scale industrial setting,” in Proceedings
17th IEEE International Requirements Engineering Confer-
ence. IEEE Computer Society, 2009.

