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Abstract—In this paper, we perform an iterative decoding
threshold analysis of LDPC block code ensembles formed by
terminating (J,K)-regular and irregular AR4JA-based LDPC
convolutional codes. These ensembles have minimum distance
growing linearly with block length and their thresholds approach
the Shannon limit as the termination factor tends to infinity.
Results are presented for various ensembles and termination
factors, which allow a code designer to trade-off between distance
growth rate and threshold.

I. INTRODUCTION

Ensembles of asymptotically regular low-density parity-

check (LDPC) block codes can be obtained by terminating

regular LDPC convolutional (LDPCC) codes [1], [2]. The

slight irregularity resulting from the termination of the convo-

lutional codes leads to substantially better belief propagation

(BP) decoding thresholds compared to their tail-biting version

or the block codes they are constructed from. This threshold

improvement is even visible as the termination factor tends to

infinity and both the code rate and degree distribution approach

those of the corresponding block codes. More recently, it has

been proven analytically for the binary erasure channel (BEC)

that the BP decoding thresholds of some slightly modified

LDPCC code ensembles approach the optimal maximum a

posteriori probability (MAP) decoding thresholds of the cor-

responding LDPC block code ensembles [3]. At the same time,

it can be shown that the minimum distance of the terminated

ensembles grows linearly with the block length as the block

length tends to infinity, i.e., they are asymptotically good [4].

This remarkable combination of good distance properties and

BP decoding thresholds close to the Shannon limit is observed

for irregular LDPCC ensembles as well [5].

In this paper, we extend the BP decoding threshold analysis

of the ensembles in [4] and [5] to the additive white Gaus-

sian noise (AWGN) channel. Since exact density evolution

is far more complex for the AWGN channel than for the

BEC, we make use of the reciprocal channel approximation

(RCA) technique introduced in [6], which has been succesfully

applied to the analysis of protograph ensembles in [7]. With

this approach, the calculation of approximate AWGN channel

thresholds for large protographs becomes feasible with rea-

sonable accuracy. We also present some shortened tail-biting

ensembles that permit further trade-offs between the block

code ensembles and the terminated convolutional code en-

sembles in terms of rate, threshold, and asymptotic minimum

distance growth rate. Since the thresholds come closest to the

Shannon limit for large termination factors, we also present

the asymptotic thresholds of the ensembles together with the

free distance growth rates of the unterminated convolutional

code ensembles.

II. PROTOGRAPH-BASED LDPCC CODES

A. Protograph-Based LDPC Codes

The idea of structured regular LDPC codes, defined by

parity-check matrices that are composed of individual per-

mutation matrices, goes back to Gallager [8]. For such code

ensembles he proposed an algorithm to construct LDPC codes

with arbitrarily large girth, provided that the block length is

chosen to be sufficiently large. Structured irregular LDPC

codes are obtained by replacing some of the permutation

matrices by all-zero matrices [9]. The structure of such per-

mutation based LDPC code ensembles can be represented in

a compact form by means of a protograph [10] and its bi-

adjacency matrix B, called a base matrix. Figure 1 shows the

protograph and base matrix of an irregular accumulate-repeat-

jagged-accumulate (ARJA) ensemble [7] with one punctured

variable node. From a protograph with nc check nodes and

B =





1 2 0 0 0
0 3 1 1 1
0 1 2 1 2





Fig. 1. The ARJA protograph and its associated base matrix B. The
undarkened variable node is punctured.

nv variable nodes, the Nnc × Nnv parity-check matrix H

of an LDPC code can be derived by a lifting procedure that

replaces each 1 in B by an N × N permutation matrix and

each 0 by an N×N all-zero matrix1. It is an important feature

of this construction that each lifted code inherits the degree

1Integer entries larger than one, representing multiple edges between a pair
of nodes, are replaced by a sum of permutation matrices.



distribution and graph neigborhood structure of the protograph.

The ensemble of protograph-based LDPC codes with block

length n = Nnv is defined by the set of matrices H that can be

derived from a given protograph by all possible combinations

of N ×N permutation matrices.

B. Convolutional Protographs

Analogously to block codes, an ensemble of LDPCC codes

can be described by means of a convolutional protograph [1]

with base matrix

B[−∞,∞] =



















. . .
. . .

Bms
. . . B0

. . .
. . .

Bms
. . . B0

. . .
. . .



















,

where ms denotes the syndrome former memory of the con-

volutional codes and the bc×bv component base matrices Bi,

i = 0, . . . ,ms, describe the edges from the bv variable nodes

at time t to the bc check nodes at time t+ i. For example, a

(3,6)-regular LDPCC ensemble with ms = 2 can be defined

by the component base matrices

B0 =
[

1 1
]

= B1 = B2 . (1)

At time instant t the corresponding encoder creates a block

vt of Nbv symbols, resulting in the infinite code sequence

v = [. . . ,v1,v2, . . . ,vt, . . . ]. The decoding constraint length

is defined as ν = (ms + 1)Nbv .

C. Obtaining LDPCC Ensembles from Block Protographs

It follows from the definition of B[−∞,∞] that the case

ms = 0 results in disconnected protographs corresponding to

a block code ensemble with base matrix B = B0. Conversely,

starting from the base matrix B of a block code ensemble,

one can construct LDPCC ensembles that maintain the degree

distribution and structure of the original ensemble. This is

achieved by an edge spreading procedure that divides the

edges from variable nodes at time t among equivalent check

nodes at times t + i, i = 0, . . . ,ms. Such an edge-spreading

has to satisfy the condition2

ms
∑

i=0

Bi = B , (2)

where the component base matrices Bi are of size bc × bv =
nc × nv . This procedure preserves the node degrees of the

original protograph, since the entries of B are divided among

the matrices Bi in such a way that the sums over the columns

and rows of B[−∞,∞] are equal to those of B.

The component base matrices in (1) correspond to a valid

edge spreading of the base matrix B =
[

3 3
]

. In general

there may exist many valid edge-spreadings for a given B,

2Up to a reordering of columns and rows, the edge spreading can be
interpreted as a special lifting with infinite permutation matrices that ensures
a convolutional structure.

and even more degrees of freedom are possible by starting

from a pre-lifted protograph with a larger base matrix B. For

example, a possible pre-lifting of the matrix
[

3 3
]

, which

removes the multiple edges, is the 3 × 6 all-one matrix. We

note, however, that although the 3×6 component base matrices

B0 =





1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1



 ,B1 =





1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



 ,

define a (3, 6)-regular ensemble with ms = 1, they do not

form a valid edge-spreading of this matrix. This example

shows that not all degree-preserving divisions of edges

satisfy condition (2) for a given base matrix. The component

submatrices B0 and B1 do, however, form a valid edge-

spreading of the base matrix B = B0 +B1, which defines an

ensemble of block codes with a structure that can be obtained

from the [3 3] ensemble by a different pre-lifting. As these

examples show, choosing block base matrices of larger size

allows some trade-offs between bv , N , and ms, whereas the

potential strength of the corresponding convolutional codes

scales with the constraint length ν = (ms + 1)Nbv . All valid

edge-spreadings ensure that the computation trees of the

infinite convolutional code ensemble are equal to those of the

original block code ensemble defined by B, from which it

follows that the BP thresholds are the same.

III. TERMINATED LDPCC CODES

Assume now that we start encoding of the convolutional

codes with base matrix B[−∞,∞] at time t = 0 and terminate

them after L time instants. As a result we obtain a protograph

representation with finite-length base matrix

B[0,L−1] =

















B0

...
. . .

Bms
B0

. . .
...

Bms

















(L+ms)bc×Lbv

. (3)

The matrix B[0,L−1] can be considered as the base matrix

of a terminated protograph-based LDPCC code ensemble.

Termination in this fashion results in a rate loss. Without

puncturing, and assuming that all nodes in the protograph are

connected to at least one edge, the design rate RL of the

terminated code ensemble is equal to

RL = 1−

(

L+ms

L

)

bc
bv

= 1−

(

L+ms

L

)

(1−R) ,

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of

the unterminated convolutional code ensemble. Note that, as

the termination factor L increases, the rate increases and

approaches the rate of the unterminated convolutional code

ensemble. In the remainder of this paper, in addition to several

(J,K)-regular ensembles, we also consider some irregular

ensembles based on the AR4JA codes introduced in [7].

The terminated convolutional protograph of an ARJA-based

ensemble with ms = 1 is shown in Fig. 2 for different



L=2 =3L =4L

Fig. 2. The terminated ARJA-based convolutional protograph defined with
termination markings for increasing L.

Regular TAR4JA

(J,K) L RL δ
(L)
min

e L RL δ
(L)
min

(4, 6) 3 1/9 0.260 0 2 1/4 0.094
(4, 6) 4 1/6 0.195 0 3 1/3 0.046
(4, 6) 5 1/5 0.156 0 4 3/8 0.030
(4, 6) 10 4/15 0.078 0 10 9/20 0.011
(3, 6) 3 1/6 0.141 1 2 1/2 0.026
(3, 6) 4 1/4 0.081 1 3 5/9 0.014
(3, 6) 5 3/10 0.057 1 4 7/12 0.010
(3, 6) 10 2/5 0.025 1 10 19/30 0.004
(3, 9) 3 4/9 0.025 2 2 5/8 0.012
(3, 9) 4 1/2 0.015 2 3 2/3 0.007
(3, 9) 5 8/15 0.011 2 4 11/16 0.005
(3, 9) 10 3/5 0.005 2 10 29/40 0.002

TABLE I
ASYMPTOTIC MINIMUM DISTANCE GROWTH RATES δ

(L)
min FOR SEVERAL

FAMILIES OF LDPCC CODES WITH DIFFERENT TERMINATION FACTORS L.

termination factors L. It is obtained from the ensemble defined

in Fig. 1 by splitting B into component submatrices B0 and

B1 of size bc × bv = 3× 5 as follows:

B0 =





1 2 0 0 0
0 1 1 1 0
0 0 1 0 2



 and B1 =





0 0 0 0 0
0 2 0 0 1
0 1 1 1 0



,

where we note that B0 +B1 = B.

As a result of the all-zero row in B1, the terminated proto-

graph associated with B[0,L−1] has nc = (L +ms)bc − 1 =
3L+2 check nodes and nv = Lbv = 5L variable nodes. After

puncturing, the design rate is

RL =
nv − nc

u
=

5L− (3L+ 2)

4L
=

L− 1

2L
,

where R = L/(2L) = 1/2 is the rate of the unterminated

ensemble and u represents the number of unpunctured variable

nodes.

While the infinite convolutional ensembles described in Sec-

tion III retain the BP decoding thresholds of the corresponding

block ensembles, the lower check node degrees at the ends

of the terminated protographs can dramatically improve the

performance of the iterative decoder. The approximate AWGN

channel BP thresholds, computed by the RCA method [6],

are shown in Fig. 3 for various asymptotically regular and

terminated AR4JA-based (TAR4JA) ensembles3. In general,

it can be seen in Fig. 3(a) that the threshold (in terms of

the noise standard derivation σ) worsens monotonically with

3Here e = 0 corresponds to the TARJA ensemble of Fig. 2 and e = 1, 2
represent higher rate TAR4JA ensembles with an additional 2e variable nodes
of degree 4. See [4] and [5], respectively, for details of the constructions.
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Fig. 3. RCA thresholds for the AWGN channel in terms of (a) standard
deviation σ and (b) signal-to-noise ratio Eb/N0 [dB] for several families of
LDPCC codes with different termination factors L.

increasing rate, whereas the gap to the corresponding Shannon

limit decreases. For the (3, 6)-regular codes defined by (1),

the RCA threshold values are equal to σ∗ = 1.446 for L = 3
and σ∗ = 0.9638 for L = 10. When L is further increased

and the rate approaches R∞ = 1/2, the threshold eventually

converges to a constant value σ∗ = 0.948, which is much

closer to the Shannon limit σsh = 0.979 than the threshold

σ∗ = 0.881 of the (3, 6)-regular block code ensemble. This

principle behavior, which can be observed for all of the regular

and irregular ensembles considered, is similar to corresponding

results for the BEC, presented in [4], [5].

The same thresholds are depicted in Fig. 3(b) in terms of

the signal-to-noise ratio Eb/N0. In this scale, which takes into

account the code rate overhead, the ensembles with lower rate

have a larger noise variance, and the monotonic behavior of

the thresholds noted in Fig. 3(a) is no longer visible. In both

scales, however, we see that the gap to the Shannon limit

decreases with increasing L.

The asymptotic minimum distance growth rates δ
(L)
min of the
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Fig. 4. AWGN channel RCA thresholds and asymptotic minimum distance growth rates for some regular LDPCC codes with shortened tail-biting.

ensembles, resulting from a weight enumerator analysis [4],

[5], are given in Table I. Since these values decrease with

increasing L, there exists a trade-off between distance growth

rate and threshold for the ensembles.

IV. SHORTENED TAIL-BITING ENSEMBLES

As we have seen in the previous section, the termination of

convolutional codes results in a reduction of the code rate. A

well-known approach to avoid such a rate-loss when deriving

block codes from convolutional codes is tail-biting. In order to

obtain the base matrix of a tail-biting protograph with nv =
λbv variable nodes and nc = λbc check nodes, we first cut

the last msbc rows of the terminated base matrix B[0,λ−1] as

defined in (3). Then we add these rows to the initial rows

of the remaining matrix, resulting in a tail-biting base matrix

B
tb
λ with a block-circular structure. For ms = 2 this matrix is

given by

B
tb
λ =



















B0 B2 B1

B1 B0 B2

B2 B1 B0

. . .
. . .

. . .

B2 B1 B0

B2 B1 B0



















λbc×λbv

. (4)

Unlike the terminated protograph, all check node degrees from

the convolutional protograph are preserved in the tail-biting

protograph for any parameter λ. As a consequence, the BP

thresholds of tail-biting ensembles are identical to those of the

underlying convolutional ensembles and their corresponding

block code counterparts.

Suppose now that we shorten the tail-biting ensemble by

removing the last ns = msbv columns of B
tb
λ . A comparison

with (3) shows that the shortened λbc × (λbv − ns) base

matrix is then identical to the terminated base matrix with

L = λ−ms. Equivalently, due to the block-circular structure

of Btb
λ , we can remove the first ns columns without changing

the structure of the shortened protograph4. This observation

suggests that we can exploit the trade-off between rate loss

and threshold improvement in a more flexible way. In order to

achieve this, we generate shortened tail-biting ensembles by

removing the first ns columns of Btb
λ for an arbitrary number

ns ∈ {0, . . . ,msbv}, resulting in code rates between those of

the tail-biting and terminated ensembles.

Figure 4 shows the RCA thresholds and asymptotic mini-

mum distance growth rates for shortened tail-biting ensembles

with different ns, defined by the component base matrices

(1) of a (3, 6)-regular convolutional protograph. Note that the

values ns = 0 and ns = 4 correspond to the tail-biting and

terminated ensembles, respectively, and for λ = 3 the standard

regular block ensembles are obtained. For small λ and R, the

thresholds improve with a smaller number ns of shortened

columns, whereas the opposite is observed for large λ, where

full termination is best5. The distance growth rates, on the

other hand, which grow with decreasing λ and R, improve

with smaller ns throughout the entire range of supported

rates. The distance growth rates can further be improved by

increasing the density of the ensembles, which is demonstrated

by the terminated (4, 8)-regular and (5, 10)-regular ensembles

that are also shown in Fig. 4, but a threshold improvement is

only observed for large λ in these cases.

V. FREE DISTANCE GROWTH RATES AND THRESHOLDS

FOR AN INFINITE TERMINATION FACTOR

In the previous sections we have seen that the thresholds

tend toward the Shannon limit with increasing termination

factor L, while the minimum distance growth rates tend

4The shortened tail-biting ensemble is similar to the circular ensemble
considered in [3].

5An exception is the tail-biting case ns = 0, for which rate and threshold
are constant and equal to the values of the block code ensemble.



Regular Rate (Eb/N0)
∗ (Eb/N0)sh Gap

(4, 6) 1/3 −0.338 −0.495 0.157
(3, 6) 1/2 0.457 0.187 0.270
(4, 8) 1/2 0.237 0.187 0.050
(5, 10) 1/2 0.189 0.187 0.002
(3, 9) 2/3 1.359 1.059 0.300

AR4JA Rate (Eb/N0)
∗ (Eb/N0)sh Gap

e = 0 1/2 0.129 0.187 0.058
e = 1 2/3 1.061 1.059 0.002
e = 2 3/4 1.637 1.626 0.011

TABLE II
RCA THRESHOLDS (Eb/N0)∗ [dB] of some terminated regular and

AR4JA-based LDPCC ensembles as L → ∞.

to zero as L → ∞. The asymptotic values of the RCA

thresholds (Eb/N0)
∗ as L → ∞ are summarized in Table II.

In a practical code design, for a given finite block length

n = NbvL, a careful choice of the parameters N and L
becomes necessary to achieve the best performance. From

the convolutional code structure it is clear that the potential

strength of the ensembles for large L scales with the constraint

length ν = Nbv(ms + 1), which increases with N but is

independent of the termination factor L. From this it follows

that the minimum distance dmin of the terminated ensembles is

independent of L and that δmin tends to zero as L → ∞. The

minimum free distance dfree of the convolutional codes, on

the other hand, can be shown to grow linearly with encoding

constraint length νe = (1−R)/R ν [11]. The asymptotic free

distance growth rates δfree, which lower bound the normalized

free distance dfree/νe ≥ δfree of a typical code in the ensemble,

are depicted in Fig. 5. The minimum distance growth rates

of the corresponding block ensembles are also shown for

comparison.

In order to fully exploit the properties of the convolutional

ensembles in terms of distance growth rates and threshold, a

continuous decoder becomes an attractive alternative to block

coded transmission. Such a decoder can operate on a finite

length sliding window that scales with the constraint length ν
but is independent of the termination factor L [12].

VI. CONCLUSION

The results of the threshold analysis demonstrate that

the dramatic threshold improvement obtained by terminating

LDPCC codes, which has been previously observed and re-

cently proven analytically for the BEC, also occurs for the

AWGN channel. A comparison of (J,K)-regular ensembles

with AR4JA ensembles of equal rate shows that carefully

designed irregular ensembles can further improve the perfor-

mance in terms of both asymptotic minimum distance growth

rate and iterative decoding threshold.
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