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Abstract—Background: Development of complex, software in-
tensive systems generates large amounts of information. Sev-
eral researchers have developed tools implementing information
retrieval (IR) approaches to suggest traceability links among
artifacts. Aim: We explore the consequences of the fact that
a majority of the evaluations of such tools have been focused
on benchmarking of mere tool output. Method: To illustrate this
issue, we have adapted a framework of general IR evaluations to a
context taxonomy specifically for IR-based traceability recovery.
Furthermore, we evaluate a previously proposed experimental
framework by conducting a study using two publicly available
tools on two datasets originating from development of embedded
software systems. Results: Our study shows that even though both
datasets contain software artifacts from embedded development,
the characteristics of the two datasets differ considerably, and
consequently the traceability outcomes. Conclusions: To enable
replications and secondary studies, we suggest that datasets
should be thoroughly characterized in future studies on traceabil-
ity recovery, especially when they can not be disclosed. Also, while
we conclude that the experimental framework provides useful
support, we argue that our proposed context taxonomy is a useful
complement. Finally, we discuss how empirical evidence of the
feasibility of IR-based traceability recovery can be strengthened
in future research.

I. INTRODUCTION

Large-scale software development generates large amounts
of information. Enabling software engineers to efficiently
navigate the document space of the development project is
crucial. One typical way to structure the information within
the software engineering industry is to maintain traceability,
defined as “the ability to describe and follow the life of a
requirement, in both a forward and backward direction” [18].
This is widely recognized as an important factor for efficient
software engineering as it supports activities such as verifi-
cation, change impact analysis, program comprehension, and
software reuse [2].

Several researchers have proposed using information re-
trieval (IR) techniques to support maintenance of traceability
information [28], [29], [23], [10]. Traceability can be main-
tained between any software artifacts, i.e., any piece of infor-
mation produced and maintained during software development.
Textual content in natural language (NL) is the common form
of information representation in software engineering [31].
Tools implementing IR-based traceability recovery suggest
traceability links based on textual similarities, for example
between requirements and test cases. However, about 50% of

the evaluations have been conducted using one of the four
datasets available at the Center of Excellence for Software
Traceability (COEST)1[5]. Consequently, especially the CM-1
and EasyClinic datasets have turned into de-facto benchmarks
of IR-based traceability recovery, further amplified by “trace-
ability challenges” issued by the Traceability in Emerging
Forms of Software Engineering (TEFSE) workshop series.

Developing a repository of benchmarks for traceability
research is a central part of COEST’s vision, and thus has
been discussed in several publications [12], [13], [7], [6].
As another contribution supporting benchmarking efforts and
evaluations in general, Huffman Hayes et al. proposed an
experimental framework for requirements tracing [21]. It is
known that benchmarks can advance tool and technology
development, which for instance has been the case for the Text
REtrieval Conference (TREC), driving large-scale evaluations
of IR methodologies [42]. On the other hand, benchmarking
introduces a risk of over-engineering IR techniques on specific
datasets. TREC enables generalizability by providing very
large amounts of texts, but is still limited to certain domains
such as news articles. Whether it is possible for the research
community on traceability in software engineering to collect
and distribute a similarly large dataset is an open question.
Runeson et al. have discussed the meaning of benchmarks,
however in relation to software testing [39]. They stress
that researchers should first consider what the goal of the
benchmarking is, and that a benchmark is a selected case that
should be analyzed in its specific context. Consequently, as a
benchmark is not an “average situation”, they advocate that
benchmarks should be studied with a qualitative focus rather
than with the intention to reach statistical generalizability.

To enable categorization of evaluations of IR-based trace-
ability recovery, including benchmarking studies, we adapted
Ingwersen and Järvelins framework of IR evaluation con-
texts [24] into a taxonomy of IR-based traceability recovery
evaluations. Within this context taxonomy, described in detail
in Section II, typical benchmarking studies belong to the in-
nermost context. In the opposite end of the context taxonomy,
the outermost evaluation context, industrial case studies reside.
Furthermore, we add a dimension of study environment to the
context taxonomy, to better reflect the external validity of the

1COEST, http://www.coest.org/



studied project, and its software artifacts.
To illustrate the context taxonomy with an example, and

to evaluate the experimental framework proposed by Huffman
Hayes et al. [21], we have conducted a quasi-experiment using
the tools RETRO [23] and ReqSimile [35], using two sets
of proprietary software artifacts as input. This constitutes a
replication of earlier evaluations of RETRO [44], [14], as
well as an extension considering both tools and input data.
Also, we describe how it would be possible to extend this
study beyond the innermost level of the context taxonomy,
i.e., moving beyond technology-oriented evaluation contexts.
Finally, we discuss concrete ways to strengthen the empirical
evidence of IR-based traceability tools in relation to findings
and suggestions by Falessi et al. [16], Runeson et al. [39], and
Borg et al. [4], [5].

The paper is organized as follows. Section II gives a short
overview of related work on IR-based traceability recovery in
software engineering, while Section III describes our context
taxonomy. Section IV presents the research methodology,
and the frameworks our experimentation follows. Section V
presents the results from the experiments. In Section VI we
discuss the implications of our results, the validity threats of
our study, and evaluations of IR-based traceability recovery in
general. Finally, Section VII presents conclusions and suggests
directions of future research.

II. BACKGROUND AND RELATED WORK

During the last decade, several researchers proposed ex-
pressing traceability recovery as an IR problem. Proposed tools
aim to support software engineers by presenting candidate
traceability links ranked by textual similarities. The query is
typically the textual content of a software artifact you want to
link to other artifacts. Items in the search result can be either
relevant or irrelevant, i.e., correct or incorrect traceability links
are suggested.

In 2000, Antoniol et al. did pioneering work on traceability
recovery when they used the standard Vector Space Model
(VSM) [40] and the binary independence model [37] to sug-
gest links between source code and documentation in natural
language [1]. Marcus and Maletic introduced Latent Semantic
Indexing (LSI) [11] to recover traceability in 2003 [31].
Common to those papers is that they have a technical focus
and do not go beyond reporting precision-recall graphs.

Other studies reported evaluations of traceability recovery
tools using humans. Huffman Hayes et al. developed a
traceability recovery tool named RETRO and evaluated it
using 30 student subjects [23]. The students were divided
into two groups, one working with RETRO and the other
working manually. Students working with the tool finished
a requirements tracing task faster and with a higher recall
than the manual group, the precision however was lower.
Natt och Dag et al. developed the IR-based tool ReqSimile to
support market-driven requirements engineering and evaluated
it in a controlled experiment with 23 student subjects [35].
They reported that subjects supported by ReqSimile completed
traceability related tasks faster than subjects working without

any tool support. De Lucia et al. conducted a controlled ex-
periment with 32 students on the usefulness of tool-supported
traceability recovery [9] and also observed 150 students in
17 software development projects [10]. In line with previous
findings, they found that subjects using their tool completed
a task, related to tracing various software artifacts, faster
and more accurately than subjects working manually. They
concluded that letting students use IR-based tool support is
helpful when maintenance of traceability information is a
process requirement.

Several previous publications have contributed to advan-
cing the research on IR-based traceability recovery, either
by providing methodological advice, or by mapping previous
research. Huffman Hayes and Dekhtyar published a framework
intended to advance reporting and conducting of empirical
experiments on traceability recovery [21]. However, the frame-
work has unfortunately not been applied frequently in previous
evaluations, and the quality of reporting varies [5]. Another
publication that offers structure to IR-based traceability reco-
very, also by Huffman Hayes et al., distinguishes between
studies of methods (are the tools capable of providing accurate
results fast?) and studies of human analysts (how do humans
use the tool output?) [22]. These categories are in line with
experimental guidelines by Wohlin et al. [48], where the types
of experiments in software engineering are referred to as either
technology-oriented or human-oriented. Moreover, Huffman
Hayes et al. propose assessing the accuracy of tool output,
wrt. precision and recall, according to quality intervals named
Acceptable, Good, and Excellent, based on the first author’s
practical experience of requirements tracing. Also discussing
evaluation methodology, a recent publication by Falessi et al.
proposes seven empirical principles for evaluating the perfor-
mance of IR techniques [16]. Their work covers study design,
statistical guidelines, and interpretation of results. Also, they
present implementation strategies for the seven principles, and
exemplify them in a study on industrial software artifacts
originating from an Italian company.

Going beyond the simplistic measures of precision and
recall is necessary to evolve IR tools [27], thus measures
such as Mean Average Precision (MAP) [30], and Discounted
Cumulative Gain (DCG) [26] have been proposed. To address
this matter in the specific domain of IR-based traceability, a
number of so called secondary measures have been proposed.
Sundaram et al. developed DiffAR, DiffMR, Lag, and Selectiv-
ity [45] to assess the quality of generated candidate links.

In the general field of IR research, Ingwersen and Järvelin
argue that IR is always evaluated in a context [24]. Their
work extends the standard methodology of IR evaluation, the
Laboratory Model of IR Evaluation developed in the Cranfield
tests in the 60s [8], challenged for its unrealistic lack of
user involvement [27]. Ingwersen and Järvelin proposed a
framework, The Integrated Cognitive Research Framework,
consisting of four integrated evaluation contexts, as presented
in Figure 1. The innermost IR context, referred to by Ingwersen
and Järvelin as “the cave of IR evaluation”, is the most fre-
quently studied level, but also constitutes the most simplified



Fig. 1. The Integrated Cognitive Research Framework by Ingwersen and
Järvelin [24], a framework for IR evaluations in context.

context. The seeking context, “drifting outside the cave”, is
used to study how users find relevant information among the
information that is actually retrieved. The third context, the
work task context introduces evaluations where the information
seeking is part of a bigger work task. Finally, in the outermost
realm, the socio-organizational & cultural context, Ingwersen
and Järvelin argue that socio-cognitive factors are introduced,
that should be studied in natural field experiments or studies,
i.e., in-vivo evaluations are required. Moreover, they propose
measures for the different evaluation contexts [24]. However,
as those measures and the evaluation framework in itself are
general and not tailored for neither software engineering nor
traceability recovery, we present an adaptation in Section III.

III. DERIVATION OF CONTEXT TAXONOMY

Based on Ingwersen and Järvelin’s framework [24], we in-
troduce a four-level context taxonomy in which evaluations of
IR-based traceability recovery can be conducted, see Table I.
Also, we extend it by a dimension of evaluation environments
motivated by our previous study [5], i.e., proprietary, open
source, or university, as depicted in Figure 2. The figure also
shows how the empirical evaluations presented in Section II
map to the taxonomy. Note that several previous empirical
evaluations of IR-based traceability recovery have used soft-
ware artifacts from the open source domain, however, none of
them were mentioned in Section II.

We refer to the four integrated contexts as the retrieval
context (Level 1), the seeking context (Level 2), the work
task context (Level 3), and the project context (Level 4).
Typical benchmarking experiments [1], [31], [16], similar to
what is conducted within TREC, reside in the innermost
retrieval context. Accuracy of tool output is measured by the
standard IR-measures precision, recall, and F-score (defined in
Section IV-B2. In order to enable benchmarks in the seeking
context, user studies or secondary measures are required [22],
[45]. In both the two innermost contexts, traceability reco-
very evaluations are dominated by quantitative analysis. On
the other hand, to study the findability offered by IR tools
in the seeking context, defined as “the degree to which a
system or environment supports navigation and retrieval” [34],
researchers must introduce human subjects in the evaluations.

Regarding evaluations in the work task context, human
subjects are necessary. Typically, IR-based traceability reco-
very in this context has been evaluated using controlled
experiments with student subjects [35], [23], [9]. To assess the
usefulness of tool support in work tasks involving traceability

Fig. 2. Contexts and environments in evaluations of IR-based traceability
recovery. The numbers refer to references. Note that the publication by
Sundaram et al. [45] contains both an evaluation in an industrial environment,
as well as an evaluation in the university environment.

recovery, realistic tasks such as requirements tracing, change
impact analysis, and test case selection should be studied in
a controlled, in-vitro environment. Finally, in the outermost
project context, the effect of deploying IR-based traceability
recovery tools should be studied in-vivo in software deve-
lopment projects. Due to the typically low level of control in
such study environments, a suitable evaluation methodology is
a case study. An alternative to industrial in-vivo evaluations is
to study student development projects, as De Lucia et al. [10]
have done. In the work task context both quantitative and
qualitative studies are possible, but in the project context quali-
tative analysis dominates. As applied researchers we value
technology-oriented evaluations in the retrieval and seeking
contexts, however, our end goal is to study IR tools in the full
complexity of an industrial environment.

IV. METHOD

We base discussions on the context taxonomy in Section VI
on a concrete study of traceability recovery. This section
describes the definition, design and settings of the experi-
mentation, organized into the four phases definition, planning,
realization and interpretation as specified in the experimental
framework by Huffman Hayes and Dekhtyar [21]. Also, our
work followed the general experimental guidelines by Wohlin
et al. [48]. According to the proposed context taxonomy in
Figure 2, our experiment is an evaluation conducted in the
retrieval context, i.e., in the cave, using datasets from two
industrial contexts.

A. Phase I: Definition

The definition phase presents the scope of the experimen-
tation and describes the context. We entitle the study a quasi-
experiment since there is no randomization in the selection of
data sets nor IR tools.

1) Experiment Definition: The goal of the quasi-experiment
is to evaluate traceability recovery tools in the context of
embedded development, with the purpose of reporting results
using proprietary software artifacts. The quality focus is to



Evaluation Context Description Evaluation methodology Example measures
Level 4: Evaluations in a socio-organizational context. The IR tool is studied Case studies Project metrics,

Project context when used by engineers within the full complexity of an in-vivo setting. tool usage
Level 3: Humans complete real work tasks, but in an in-vitro setting. Goal of eva- Controlled experiments, Work task results,

Work task context luation is to assess the casual effect of an IR tool when completing a task. case studies time spent
Level 2: A seeking context with a focus on how the human finds relevant Technology-oriented Usability, MAP, DCG,

Seeking context information among what was retrieved by the system. experiments DiffAR, Lag
Level 1: A strict retrieval context, performance is evaluated Benchmarks Precision, recall,

Retrieval context wrt. the accuracy of a set of search results. F-measure

TABLE I
FOUR INTEGRATED LEVELS OF CONTEXT IN IR-BASED TRACEABILITY RECOVERY EVALUATIONS.

evaluate precision and recall of tools from the perspective of
a researcher who wants to evaluate how existing approaches to
traceability recovery perform in a specific industrial context.

2) Industrial Context: The software artifacts in the indus-
trial dataset are collected from a large multinational company
active in the power and automation sector. The context of
the specific development organization within the company
is safety critical embedded development in the domain of
industrial control systems. The number of developers is in
the magnitude of hundreds; a project has typically a length
of 12-18 months and follows an iterative stage-gate project
management model. The software is certified to a Safety
Integrity Level (SIL) of 2 as defined by IEC 61508 [25], cor-
responding to a risk reduction factor of 1,000,000-10,000,000
for continuous operation. There are process requirements on
maintenance of traceability information, especially between
requirements and test cases. The software developers regularly
perform tasks requiring traceability information, for instance
when performing change impact analysis. Requirements and
tests are predominantly specified in English NL text.

3) Characterization of Datasets: The first dataset used in
our experiment originates from a project in the NASA Metrics
Data Program, publicly available at COEST as the CM-1
dataset. The dataset specifies parts of a data processing unit
and consists of 235 high-level requirements and 220 corre-
sponding low-level requirements specifying detailed design.
361 traceability links between the requirement abstraction
levels have been manually verified, out of 51 700 possible
links. Items in the dataset have links to zero, one or many
other items. This dataset is a de-facto benchmark of IR-based
traceability recovery [5], thus we conduct a replication of
previous evaluations.

The second dataset, referred to as the industrial data, con-
sists of 225 requirements describing detailed design. These
requirements are verified by 220 corresponding test case
descriptions. The golden standard of 225 links was provided by
the company, containing one link per requirement to a specific
test case description. Thus, the link structure is different to the
NASA data. The total number of combinatorial links is 49 500.

Both the NASA and the industrial datasets are bipartite, i.e.,
there exist only links between two subsets of software artifacts.
Descriptive statistics of the datasets, calculated using the
Advanced Text Analyzer at UsingEnglish.com2, are presented

2http://www.usingenglish.com/members/text-analysis/

Number of traceability links: 225
Characteristic Requirements Test Case Descriptions
Items 224 218
Words 4 813 6 961
Words/Item 21.5 31.9
Avg. word length 6.5 7.0
Unique words 817 850
Gunning Fog Index 10.7 14.2
Flesch Reading Ease 33.7 14.8

TABLE II
DESCRIPTIVE STATISTICS OF THE INDUSTRIAL DATA

Number of traceability links: 361
Characteristic High-level Reqs. Low-level Reqs.
Items 235 220
Words 5 343 17 448
Words/Items 22.7 79.3
Avg. word length 5.2 5.1
Unique words 1 056 2 314
Gunning Fog Index 7.5 10.9
Flesch Reading Ease 67.3 59.6

TABLE III
DESCRIPTIVE STATISTICS OF THE NASA DATA

in Tables II and III. Calculating Gunning Fog Index [19]
as a complexity metric for requirement specifications written
in English has been proposed by Farbey [17]. The second
complexity metric reported in Tables II and III is the Flesch
Reading Ease. Wilson et al. have previously calculated and
reported it for requirement specifications from NASA [47].
Both datasets are considered large according to the framework
of Huffman Hayes and Dekhtyar [21], even though we would
prefer to label them very small.

B. Phase II: Planning

This section describes the traceability recovery tools and the
experimental design.

1) Description of Tools: We selected two IR-based trace-
ability recovery tools for our experiment. Requirements Trac-
ing on Target (RETRO) was downloaded from the library of
Open Source Software from NASA’s Goddard Space Flight
Center3, however only binaries were available. Source code
and binaries of ReqSimile was downloaded from the source
code repository SourceForge4.

3http://opensource.gsfc.nasa.gov/projects/RETRO/
4http://reqsimile.sourceforge.net/



RETRO, developed by Huffman Hayes et al., is a tool
that supports software development by tracing textual soft-
ware engineering artifacts [23]. The tool we used implements
VSM with features having term frequency-inverse document
frequency weights. Similarities are calculated as the cosine of
the angle between feature vectors [3]. RETRO also implements
a probabilistic retrieval model. Furthermore, the tool supports
relevance feedback from users using the Standard Rochio
feedback. Stemming is done as a preprocessing step and stop
word removal is optional according to the settings in the
tool. Later versions of RETRO also implement LSI, but were
not available for our experiments. We used RETRO version
V.BETA, Release Date February 23, 2006.

ReqSimile, developed by Natt och Dag et al., is a tool
with the primary purpose to provide semi-automatic support
to requirements management activities that rely on finding
semantically similar artifacts [35]. Examples of such activities
are traceability recovery and duplicate detection. The tool
was intended to support the dynamic nature of market-driven
requirements engineering. ReqSimile also implements VSM
and cosine similarities. An important difference to RETRO is
the feature weighting; terms are weighted as 1 + log2(freq)
and no inverse document frequencies are considered. Stop
word removal and stemming is done as preprocessing steps.
In our experimentation, we used version 1.2 of ReqSimile.

To get yet another benchmark for comparisons, a tool was
implemented using a naı̈ve tracing approach as suggested by
Menzies et al. [32]. The Naı̈ve tool calculates the number of
terms shared by different artifacts, and produces ranked lists
of candidate links accordingly. This process was done without
any stop word removal or stemming.

2) Experimental Design: The quasi-experiment has two
independent variables: the IR-based traceability recovery tool
used and the input dataset. The first one has three factors:
RETRO, ReqSimile and Naı̈ve as explained in Section IV-B1.
The second independent variable has two factors: Industrial
and NASA as described in Section IV-A3. Consequently, six
test runs were required to get a full factorial design.

IR-based traceability recovery tools are in the innermost
evaluation context evaluated by verifying how many suggested
links above a certain similarity threshold are correct, compared
to a hand-crafted gold standard of correct links. Then, as
presented in Figure 2, the laboratory model of IR evaluation
is applied, thus recall and precision constitute our dependent
variables. Recall and precision measure both the percentage
of correct links recovered by a tool, and the amount of false
positives. The aggregate measure F-score was also calculated,
defined as the harmonic mean of precision and recall [3]:

F = 2 ∗ precision ∗ recall
precision + recall

Our null hypotheses, guiding the data analysis, are stated
below. Performance is considered wrt. recall and precision.

NH1 The two tools implementing the vector space model,
RETRO and ReqSimile, show equivalent perfor-
mance.

NH2 Performance differences between the tools show
equivalent patterns on the NASA and Industrial
datasets.

NH3 RETRO and ReqSimile do not perform better than
the Naı̈ve tool.

C. Phase III: Realization

This section describes how the data was converted to valid
input formats, and the actual tool usage.

1) Preprocessing of Datasets: Preprocessing the datasets
was required since RETRO and ReqSimile use different input
formats. The NASA dataset was available in a clean textual
format and could easily be converted. The industrial data was
collected as structured Microsoft Word documents including
references, diagrams, revision history etc. We manually ex-
tracted the textual content and removed all formatting.

2) Experimental Procedure: Conducting the experiment
consisted of six test runs combining all tools and datasets. In
RETRO, two separate projects were created and the tool was
run using default settings. We did not have access to neither a
domain specific thesaurus nor a list of stop words. Relevance
feedback using the standard Rochio method was not used. The
Trace All command was given to calculate all candidate links,
no filtering was done in the tool.

ReqSimile does not offer any configuration of the underly-
ing IR models. The two input datasets were separated in two
projects. After configuring the drivers of the database con-
nections, the commands Fetch requirements and Preprocess
requirements were given and the lists of candidate links were
presented in the Candidate requirements tab.

The Naı̈ve tool uses the same input format as RETRO. The
tool does not have a graphical user interface, and was executed
from a command-line interface.

V. RESULTS AND INTERPRETATION

This section presents the results from our six test runs.

A. Phase IV: Interpretation

Huffman Hayes and Dekhtyar define the interpretation con-
text as “the environment/circumstances that must be consid-
ered when interpreting the results of an experiment” [21]. We
conduct our evaluation in the retrieval context as described in
Section III. Due to the small number of datasets studied, our
hypotheses are not studied in a strict statistical context.

The precision-recall graphs and the plotted F-scores are used
as the basis for our comparisons. All hypotheses do to some
extent concern the concept of equivalence, which we study
qualitatively in the resulting graphs. However, presenting more
search results than a user would normally consider adds no
value to a tool. We focus on the top ten search results, in
line with recommendations from previous research [33], [46],
[43], and common practise in web search engines. The stars
in Figures 3 and 4 indicate candidate link lists of length 10.

The first null hypothesis stated that the two tools implement-
ing the VSM show equivalent performance. Figures 3 and 5
show that RETRO and ReqSimile produce candidate links



of equivalent quality, the stars are even partly overlapping.
However, Figures 4 and 6 show that RETRO outperforms
ReqSimile on the NASA dataset. As a result, the first hy-
pothesis is rejected; the two IR-based traceability recovery
tools RETRO and ReqSimile, both implementing VSM, do not
perform equivalently.

The second null hypothesis stated that performance diffe-
rences between the tools show equivalent patterns on the both
datasets. The first ten datapoints of the precision-recall graphs,
representing search hits of candidate links with lengths from 1
to 10, show linear quality decreases for both datasets. Graphs
for the industrial data starts with higher recall values for short
candidate lists, but drops faster to precision values of 5%
compared to the NASA data. The Naı̈ve tool performs better
on the industrial data than on the NASA data, and the recall
values increase at a higher pace, passing 50% at candidate
link lists of length 10. The second hypothesis is rejected; the
tools show different patterns on the industrial dataset and the
NASA dataset.

The third null hypothesis, RETRO and ReqSimile do not
perform better than the Naı̈ve tool, is also rejected. Our results
show that the Naı̈ve tool, just comparing terms without any
preprocessing, does not reach the recall and precision of the
traceability recovery tools implementing VSM. RETRO and
ReqSimile perform better than the Naı̈ve tool.

VI. DISCUSSION

In this section, the results from the quasi-experiment and
related threats to validity are discussed. Furthermore, we
discuss how we could conduct evaluations in outer contextual
levels based on this study, and we discuss how to advance
evaluations of IR-based traceability recovery in general.

A. Implication of Results

The IR-based traceability recovery tools RETRO and Req-
Simile perform equivalently on the industrial dataset and
similarly on the NASA data. From reading documentation and
code of RETRO and ReqSimile, it was found that the tools
construct different feature vectors. RETRO, but not ReqSimile,
takes the inverse document frequency of terms into account
when calculating feature weights. Consequently, terms overly
frequent in the document set are not down-weighted as much
in ReqSimile as in RETRO. This might be a major reason
why RETRO generally performs better than ReqSimile in our
quasi-experiment, even without the use of optional stop word
removal. This shows that the construction of feature vectors
is important to report when classifying traceability recovery
tools, an aspect that often is omitted when reporting overviews
of the field.

Our experimentation was conducted on two bipartite
datasets of different nature. The NASA data has a higher
density of traceability links and also a more complex link
structure. RETRO and ReqSimile both perform better on the
industrial dataset. The average amount of words of this dataset
is fewer than in the NASA dataset, the reason for better
IR performance is rather the less complex link structure.

Not surprisingly, the performance of the traceability recovery
is heavily dependant on the dataset used as input. Before
there is a general large-scale dataset available for bench-
marking, traceability recovery research would benefit from
understanding various types of software artifacts. Especially
for proprietary datasets used in experiments, characterization
of both industrial context and the dataset itself must be given
proper attention.

As mentioned in Section I, our quasi-experiment is partly
a replication of studies conducted by Sundaram et al. [44],
and Dekhtyar et al. [14]. Our results of using RETRO on the
NASA dataset are similar, but not identical. Most likely, we
have not applied the same version of the tool. Implementation
of IR solutions forces developers to make numerous minor
design decisions, i.e., details of the preprocessing steps, order
of computations, numerical precision etc. Such minor varia-
tions can cause the differences in tool output we observe, thus
version control of tools is important and should be reported.

B. Validity Threats

This section contains a discussion on validity threats to help
define the creditability of the conclusions [48]. We focus on
construct, internal and external validity.

Threats to construct validity concern the relationship bet-
ween theory and observation. Tracing errors include both
errors of inclusion and errors of exclusion. By measuring both
recall and precision, the retrieval performance of a tool is
well measured. However, the simplifications of the laboratory
model of IR evaluation has been challenged [27]. There is a
threat that recall and precision are not efficient measures of the
overall usefulness of traceability tools. The question remains
whether the performance differences, when put in a context
with a user and a task, will have any practical significance.
However, we have conducted a pilot study on RETRO and
ReqSimile on a subset of the NASA dataset to explore this
matter, and the results suggest that subjects supported by a
slightly better tool also produce slightly better output [4].

Threats to internal validity can affect the independent
variable without the researcher’s knowledge and threat the
conclusion about causal relationships between treatment and
outcome. The first major threat comes from the manual
preprocessing of data, which might introduce errors. Another
threat is that the downloaded traceability recovery tools were
incorrectly used. This threat was addressed by reading asso-
ciated user documentation and running pilot runs on smaller
dataset previously used in our department.

External validity concerns the ability to generalize from
the findings. The bipartite datasets are not comparable to a
full-size industrial documentation space and the scalability of
the approach is not fully explored. However, a documentation
space might be divided into smaller parts by filtering artifacts
by system module, type, development team etc., thus also
smaller datasets are interesting to study.

On the other hand, there is a risk that the industrial dataset
we collected is a very special case, and that the impact of
datasets on the performance of traceability recovery tools



Fig. 3. Precision-recall graph for the Industrial dataset. The stars show candidate link lists of length 10.

Fig. 4. Precision-recall graph for the NASA dataset. The stars show candidate link lists of length 10.

Fig. 5. F-Score for the Industrial dataset. The X-axis shows the length of candidate link lists considered.

Fig. 6. F-Score for the NASA dataset. The X-axis shows the length of candidate link lists considered.



normally is much less. The specific dataset was selected in
discussion with the company, to be representative and match
our requirements on size and understandability. It could also be
the case that the NASA dataset is not representative to compare
RETRO and ReqSimile. The NASA data has been used in
controlled experiments of RETRO before, and the tool might
be fine-tuned to this specific dataset. Consequently, RETRO
and ReqSimile must be compared on more datasets to enable
firm conclusions.

C. Advancing to outer levels

The evaluation we have conducted resides in the innermost
retrieval context of the taxonomy described in Section III.
Thus, by following the experimental framework by Huffman
Hayes et al. [21], and by using proprietary software artifacts
as input, our contribution of empirical evidence can be clas-
sified as a Level 1 evaluation in an industrial environment,
as presented in Figure 7. By adhering to the experimental
framework, we provided enough level of detail in the reporting
to enable future secondary studies to utilize our results.

Building upon our experiences from the quasi-experiment,
we outline a possible research agenda to move the empirical
evaluations in a more industry relevant direction. Based on
our conducted Level 1 study, we could advance to outer
levels of the context taxonomy. Primarily, we need to go
beyond precision-recall graphs, i.e., step out of “the cave of
IR evaluation”. For example, we could introduce DCG as a
secondary measure to analyze how the traceability recovery
tools support finding relevant information among retrieved
candidate links, repositioning our study as path A shows in
the Figure 7.

However, our intention is to study how software engineers
interact with the output from IR-based traceability recovery
tools, in line with what we initially have explored in a pilot
study [4]. Based on our experimental experiences, a future
controlled experiment should be conducted with more subjects,
and preferably not only students. An option would be to
construct a realistic work task, using the industrial dataset as
input, and run the experiment in a classroom setting. Such a
research design could move a study as indicated by path B in
Figure 7. Finally, to reach the outermost evaluation context as
path C shows, we would need to study a real project with
real engineers, or possibly settle for a student project. An
option would be to study the information seeking involved
in the state-of-practice change impact analysis process at the
company from where the industrial dataset originates. The
impact analysis work task involves traceability recovery, but
currently the software engineers have to complete it without
dedicated tool support.

D. Advancing traceability recovery evaluations in general

Our experiences from applying the experimental frame-
work proposed by Huffman Hayes and Dekhtyar [21] are
positive. The framework provided structure to the experiment
design activity, and also it encouraged detailed reporting.
As a result, it supports comparisons between experimental

results, replications of reported experiments, and it supports
secondary studies to aggregate empirical evidence. However,
as requirements tracing constitutes an IR problem (for a given
artifact, relations to others are to be identified), it must be
evaluated according to the context of the user as argued by
Ingwersen and Järvelin [24]. The experimental framework
includes “interpretation context”, but it does not cover this
aspect of IR evaluation. Consequently, we claim that our
context taxonomy fills a purpose, as a complement to the more
practical experimental guidelines offered by Huffman Hayes
and Dekhtyar’s framework [21].

While real-life proprietary artifacts are advantageous for
the relevance of the research, the disadvantage is the lack
of accessibility for validation and replication purposes. Open
source artifacts offer in that sense a better option for advancing
the research. However, there are two important aspects to
consider. Firstly, open source development models tend to be
different compared to proprietary development. For example,
wikis and change request databases are more important than
requirements documents or databases [41]. Secondly, there
are large variations within open source software contexts,
as there is within proprietary contexts. Hence, it is critical
that research matches pairs of open source and proprietary
software, as proposed by Robinson and Francis [38], based on
several characteristics, and not only their being open source
or proprietary. This also holds for generalization from studies
from one domain to the other, as depicted in Figure 7.

Despite the context being critical, also evaluations in the
innermost evaluation context can advance IR-based traceability
recovery research, in line with the benchmarking discussions
by Runeson et al. [39] and suggestions by members of the
COEST [12], [13], [7]. Runeson et al. refer to the automotive
industry, and argue that even though benchmarks of crash
resistance are not representative to all types of accidents,
there is no doubt that such tests have been a driving force in
making cars safer. The same is true for the TREC conferences
as mentioned in Section I. Thus, the traceability community
should focus on finding a series of meaningful benchmarks,
including contextual information, rather than striving to col-
lect a single large set of software artifacts to “rule them
all”. Regarding size however, such benchmarks should be
considerably larger that the de-facto benchmarks used today.
The same benchmark discussion is active within the research
community on enterprise search, where it has been proposed
to extract documents from companies that no longer exist, e.g.,
Enron [20], an option that might be possible also in software
engineering.

Runeson et al. argue that a benchmark should not aim at
statistical generalization, but a qualitative method of analytical
generalization. Falessi et al. on the other hand, bring attention
to the value of statistical hypothesis testing of tool output [16].
They reported a technology-oriented experiment in the seeking
context (including secondary measures), and presented exper-
imental guidelines in the form of seven empirical principles.
However, the principles they proposed focus on the innermost
contexts of the taxonomy in Figure 2, i.e., evaluations with-



Fig. 7. Our quasi-experiment, represented by a square, mapped to the
taxonomy. Paths A-C show options to advance towards outer evaluation
contexts, while the dashed arrow represents the possibility to generalize
between environments as discussed by Robinson and Francis [38].

out human subjects. Also, since the independence between
datapoints on a precision-recall curve for a specific dataset is
questionable, we argue that the result from each dataset instead
should be treated as a single datapoint, rather than applying
the cross-validation approach proposed by Falessi et al. As
we see it, statistical analysis turns meaningful in the innermost
evaluation contexts when we have access to sufficient numbers
of independent datasets. On the other hand, when conducting
studies on human subjects, stochastic variables are inevitably
introduced, making statistical methods necessary tools.

Research on traceability recovery has the last decade, with a
number of exceptions, focused more on tool improvements and
less on sound empirical evaluations [5]. Since several studies
suggest that further modifications of IR-based traceability
recovery tools will only result in minor improvements [36],
[45], [15], the vital next step is instead to assess the applica-
bility of the IR approach in an industrial setting. The strongest
empirical evidence on the usefulness of IR-based traceability
recovery tools comes from a series of controlled experiments
in the work task context, dominated by studies using student
subjects [35], [23], [9], [4]. Consequently, to strengthen em-
pirical evaluations of IR-based traceability recovery, we argue
that contributions must be made along two fronts. Primarily,
in-vivo evaluations should be conducted, i.e., industrial case
studies in a project context. In-vivo studies on the general
feasibility of the IR-based approach are conspicuously absent
despite more than a decade of research. Thenceforth, meaning-
ful benchmarks to advance evaluations in the two innermost
evaluation contexts should be collected by the traceability
community.

VII. CONCLUSIONS AND FUTURE WORK

We propose a context taxonomy for evaluations of IR-based
traceability recovery, consisting of four integrated levels of
evaluation contexts (retrieval, seeking, work task, and project
context), and an orthogonal dimension of study environ-
ments (university, open source, proprietary environment). To
illustrate our taxonomy, we conducted an evaluation of the
framework for requirements tracing experiments by Huffman
Hayes and Dekhtyar [21].

Adhering to the framework, we conducted a quasi-
experiment with two tools implementing VSM, RETRO and
ReqSimile, on proprietary software artifacts from two embed-
ded development projects. The results from the experiment
show that the tools performed equivalently on the dataset with
a low density of traceability links. However, on the dataset
with a more complex link structure, RETRO outperformed
ReqSimile. An important difference between the tools is that
RETRO takes the inverse document frequency of terms into
account when representing artifacts as feature vectors. We
suggest that information about feature vectors should get more
attention when classifying IR-based traceability recovery tools
in the future, as well as version control of the tools. Fur-
thermore, our research confirms that input software artifacts
is an important factor in traceability experiments. Research
on traceability recovery should focus on exploring different
industrial contexts and characterize the data in detail, since
replications of experiments on closed data are unlikely.

Following the experimental framework supported our study
by providing structure and practical guidelines. However, it
lacks a discussion on the evaluation contexts highlighted by
our context taxonomy. On the other hand, when combined,
the experimental framework and the context taxonomy offer
a valuable platform, both for conducting and discussing,
evaluations of IR-based traceability recovery.

As identified by other researchers, the widely used measures
recall and precision are not enough to compare the results
from tracing experiments [22]. The laboratory model of IR
evaluation has been questioned for its lack of realism, based
on progress in research on the concept of relevance and
information seeking [27]. Critics claim that real human users
of IR systems introduce non-binary, subjective and dynamic
relevance, which affect the overall IR process. Our hope is
that our proposed context taxonomy can be used to direct
studies beyond “the cave” of IR evaluation, and motivate more
industrial case studies in the future.
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