
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Level of Confidence Evaluation and Its Usage for Roll-back Recovery with
Checkpointing Optimization

Nikolov, Dimitar; Ingelsson, Urban; Singh, Virendra; Larsson, Erik

Published in:
2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W)

DOI:
10.1109/DSNW.2011.5958836

2011

Link to publication

Citation for published version (APA):
Nikolov, D., Ingelsson, U., Singh, V., & Larsson, E. (2011). Level of Confidence Evaluation and Its Usage for
Roll-back Recovery with Checkpointing Optimization. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W) (pp. 59-64). IEEE - Institute of Electrical and
Electronics Engineers Inc.. https://doi.org/10.1109/DSNW.2011.5958836

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1109/DSNW.2011.5958836
https://portal.research.lu.se/en/publications/99398648-1840-4be2-b40d-2bc9bd3c96b1
https://doi.org/10.1109/DSNW.2011.5958836


Level of Confidence Evaluation and Its Usage for
Roll-back Recovery with Checkpointing

Optimization
Dimitar Nikolov† Urban Ingelsson† Virendra Singh‡ and Erik Larsson†

dimitar.nikolov@liu.se urban.ingelsson@liu.se viren@serc.iisc.ernet.in erik.larsson@liu.se
†Department of Computer Science ‡ Supercomputer Education and Research Centre,

Linköping University, Sweden Indian Institute of Science, India

A
Increasing soft error rates for semiconductor devices manu-

factured in later technologies enforces the use of fault tolerant
techniques such as Roll-back Recovery with Checkpointing
(RRC). However, RRC introduces time overhead that increases
the completion (execution) time. For non-real-time systems,
research have focused on optimizing RRC and shown that it
is possible to find the optimal number of checkpoints such
that the average execution time is minimal. While minimal
average execution time is important, it is for real-time systems
important to provide a high probability that deadlines are met.
Hence, there is a need of probabilistic guarantees that jobs
employing RRC complete before a given deadline. First, we
present a mathematical framework for the evaluation of level
of confidence, the probability that a given deadline is met,
when RRC is employed. Second, we present an optimization
method for RRC that finds the number of checkpoints that
results in the minimal completion time while the minimal com-
pletion time satisfies a given level of confidence requirement.
Third, we use the proposed framework to evaluate probabilistic
guarantees for RRC optimization in non-real-time systems.

I. I
As semiconductor technologies are increasingly susceptible

to soft errors, it is for computer systems (both real-time and
non-real-time) becoming important to employ fault-tolerant
techniques to detect and recover from soft errors. However,
fault tolerance comes at a cost and usually degrades the
performance of the system. To minimize the performance
degradation it is important to analyze and optimize the usage
of fault tolerance such that the performance degradation is
minimized. In this paper we study Roll-back Recovery with
Checkpointing (RRC).

Instead of executing the complete job and in case of errors,
re-execute the complete job, RRC makes use of checkpoints
such that if an error is detected, a job is rolled back from
the most recently saved checkpoint. Saving checkpoints, in-
troduces a time overhead that depends on the number of
checkpoints. A high number of checkpoints leads to early
error detection, and thus the penalty of re-execution from the
recently saved checkpoint becomes less expensive in time.
However, a high number of checkpoints causes more time
overhead due to checkpointing, which increases the total

execution time for the job. It is a problem to find the optimal
number of checkpoints.

RRC has been the subject of research for both non-real-time
[1], [2] [3], [4] and real-time systems [5], [6], [7], [8], [9].
While for non-real-time systems, it is important to minimize
the average execution time when RRC is applied, it is for
real-time systems important to maximize the probability that
a job meets a given deadline, [10]. When using RRC in real-
time systems, both hard and soft, it is important to provide
a reliability metric that indicates the probability of meeting
deadlines. However, to the extent of our knowledge no such
reliability metrics have been presented. The contribution of
this paper is three-fold. First, we derive for real-time systems
an expression to evaluate the probability that a job employing
RRC meets a given deadline, i.e. the level of confidence.
Second, as time overhead is to be minimized we propose an
optimization method that finds the optimal number of check-
points that results in a minimal completion time that satisfies
a given level of confidence requirement. Third, we evaluate
probabilistic guarantees for non-real-time system optimization
of RRC, using our mathematical framework.

II. S 
In this section we detail the Roll-back Recovery with

Checkpointing (RRC) scheme and we provide some basic
assumptions regarding the occurrence of soft errors.

The RRC scheme that we adopt assumes that a job is dupli-
cated and concurrently executed on two processors (illustrated
in Figure 1). During the execution of a job, a number of
checkpoints are taken and compared against each other. If the
checkpoints match, they are saved as a safe point from which a
job can be restarted. If the checkpoints mismatch, this indicates
that errors have occurred and therefore the job is restarted
in both processors from the most recently saved checkpoint.
In the scheme, RRC provides fault tolerance at expense of
hardware redundancy, i.e two processors execute the same job,
and time redundancy, i.e. taking and comparing checkpoints
introduces a time overhead. We define checkpointing overhead,
τ (see Figure 1), as the time required to carry out checkpoint
operations, i.e. to load/store a checkpoint and compare the
checkpoints from the two processors. We assume constant τ for
each checkpoint. We assume that RRC handles soft errors that
occur in the processors, while for errors that occur elsewhere
other fault-tolerant techniques are used.

978-1-4577-0375-1/11/$26.00 ©2011 IEEE 59



ES 1 τ ES 2 τ ES 3 τ q q q ES nc τ

ES 1 τ ES 2 τ ES 3 τ q q q ES nc τ

P1 :

P2 :

P1, P2 : processor notations
τ : checkpointing overhead
ES i : execution segment

Figure 1: Graphical presentation of RRC scheme
We define the portion of a job’s execution between two

successive checkpoints as an execution segment (see Figure 1).
We refer to an execution segment as successful execution
segment if no errors have occurred during the execution in
both processors, or erroneous execution segment otherwise.

For a job, we assume given is the processing time, T , which
is the time required for a job to complete when RRC is not
used and no errors have occurred during the execution of
the job. When RRC is employed, a number of checkpoints
are taken, nc. Having nc checkpoints, implies nc execution
segments and each segment is of length of T

nc
.

Next, we elaborate on the occurrence of soft errors. We
assume that occurrence of soft errors is an independent event.
In our work, given is the probability, PT , that no errors occur in
a processor within an interval equal to the processing time of
the job, T . Due to the fact that the occurrence of soft errors
is an independent event, we calculate Pε , the probability of
successful execution segment, with the following expression:

Pε =
nc
√

PT ·
nc
√

PT =
nc
√

PT
2 (1)

Eq. 1 takes into account that no errors occur within an interval
of length T

nc
in both processors.

III. E    

In this section we provide analysis and derive an expression
to evaluate the level of confidence that a job that employs
RRC meets a given deadline. The level of confidence, with
respect to a given deadline D, is the probability that a job
completes before D. The level of confidence is determined as
the sum of intermediate terms that represent the probability
that a job completes at a given discrete point in time. These
terms are calculated according to a probability distribution
function. Thus, to compute the level of confidence we need to
derive an expression for the probability distribution function.

To derive the probability distribution function, we start
by analyzing the expected completion time when RRC is
employed. The expected completion time can be described
by a discrete variable due to the fact that an integer number
of execution segments (each followed by a checkpointing
overhead) must be executed before a job completes. Assuming
that nc checkpoints are to be taken, a job can complete only
when nc successful execution segments have been executed.
Thus, in the best case scenario, when no errors have occurred,
a job completes after nc executions segments. Each execution
segment is of length T

nc
plus the checkpointing overhead, τ.

We denote the case when zero erroneous execution segments
are executed with t0 and it is defined as:

t0 = nc · (
T
nc

+ τ) = T + nc · τ (2)

If errors occur, and these errors only affect one execution
segment, this segment will be re-executed. There will be nc +1
execution segments executed (one erroneous and nc successful
execution segments). We denote the case when one execution
segment is re-executed with t1 and it is defined as:

t1 = (nc + 1) · (
T
nc

+ τ) = T + nc · τ + (
T
nc

+ τ) (3)

In general, when there are k erroneous execution segments, tk
denotes the expected completion time which is defined as:

tk = T + nc · τ + k · (
T
nc

+ τ) (4)

Next, we analyze the number of cases that a job completes
exactly at time tk. First, let us study the case that a job
completes at time t0. This can happen if and only if all the
execution segments were successful, that is no errors have
occurred. This is the only possible alternative for a job to
complete at time t0. Now, let us assume that a job completes
at time t1. If a job completes at time t1, a single execution
segment has been re-executed. This can be any of the nc

different execution segments. Thus, there are nc possible cases
that a job completes at time t1. If a job completes at time t2,
two execution segments have been re-executed. It can either
be that two out of all nc different execution segments were
re-executed, or a single execution segment was re-executed
twice (an error was detected after the first re-execution). In
general, if a job completes at time tk, a total of nc +k execution
segments have been executed, that is nc successful execution
segments and k erroneous execution segments. Note that the
last execution segment among all nc + k execution segments
must have been a successful execution segments otherwise it
contradicts the assumption that the job has completed at tk.
Hence, the k erroneous execution segments are any of the
nc + k − 1 (any execution segment except for the last one).
Therefore, the number of different cases that exists such that
a job completes at time tk is the number of all the combinations
of k execution segments out of nc + k − 1 execution segments.
N(tk) denotes the number of possible cases that a job completes
at time tk, and N(tk) is defined as:

N(tk) =

(
nc + k − 1

k

)
(5)

In Figure 2(a) we illustrate N(tk) (see Eq. 5) for nc = 3 and
tk ∈ [t0, t5]. For example, N(t1) = 3 shows that there are three
cases that a job completes at t1, since any one of the three
execution segments (nc = 3) could have been re-executed.

Next, to calculate the probability that a job completes at
time tk, we need a probability metric for each case (tk). This
probability metric is closely related to the probability of suc-
cessful execution segment, Pε (Eq. 1). When a job completes at
time tk, nc +k execution segments were executed, nc successful
and k erroneous execution segments. Since Pε represents the
probability of successful execution segment, the probability of
erroneous execution segment is evaluated as (1 − Pε). Since
execution segments are independent, the probability of having
nc successful execution segments is Pnc

ε , and the probability of

60



having k erroneous execution segments is (1 − Pε)k. Combin-
ing these two probabilities, probability of nc successful and k
erroneous execution segments, results in Pnc

ε ·(1−Pε)k, which is
the probability metric per possible case when a job completes
at time tk. In Figure 2(b), we illustrate the probability metric
per possible case, Pnc

ε · (1 − Pε)k, for nc = 3, PT = 0.5 and
tk ∈ [t0, t5]. From Figure 2(b) it can be observed that the
probability metric, Pnc

ε · (1 − Pε)k, has the highest value at
t0 and it is evaluated as Pnc

ε =
(

nc
√

PT
2
)nc

= PT
2 = 0.25. The

probability metric per case, Pnc
ε · (1 − Pε)k, drops rapidly by

increasing tk.
To calculate the probability that a job completes at time tk,

we need to multiply the number of possible cases, N(tk), with
the probability metric per case. We denote the probability that
a job completes at time tk with p(tk), and it is defined as

p(tk) = N(tk) · Pnc
ε · (1− Pε)k =

(
nc + k − 1

k

)
· Pnc

ε · (1− Pε)k (6)

Eq.6 defines the probability distribution function. In Fig-
ure 2(c) we illustrate the probability distribution function for
nc = 3, PT = 0.5, and tk ∈ [t0, t5].

To compute the level of confidence it is required to sum all
terms from the probability distribution function p(tk) for which
the discrete variable tk has a value which is lower or equal to
the given deadline, D. We denote the level of confidence of
meeting the deadline, D, with Λ(D), and it is computed as:

Λ(D) =

tk≤D∑
k=0

p(tk) =

tk≤D∑
k=0

(
nc + k − 1

k

)
· Pnc

ε · (1 − Pε)k (7)

IV. O 

In this section we propose an optimization method for RRC
where the optimization goal is to find an optimal number of
checkpoints for a job such that minimal completion time is
reached under the constraint that the minimal completion time
is guaranteed with a given level of confidence requirement.

We introduce the term guaranteed completion time, GTCδ,
which is a completion time that is guaranteed with a given
level of confidence, δ. For the guaranteed completion time,
the following expression holds:

Λ(GCTδ) ≥ δ (8)
GCTδ depends on the number of checkpoints, nc, and there
exists an optimal number of checkpoints, n∗c, that leads to
the minimal GCTδ. To demonstrate that there exist an n∗c, we
consider the following scenario: given is a job with processing
time T = 1000t.u.(time units), a checkpointing overhead
τ = 20t.u., a probability that no errors will occur in the
processors in interval of time equal to the processing time
PT = 0.99999 and a required level of confidence δ = 1−10−10.
In Figure 3 we plot GCTδ for different number of checkpoints
nc. For instance, when the number of checkpoints is nc = 1,
GCTδ is 3060t.u., and it includes a safe margin for two re-
executions. As can be seen from the Figure 3, increasing the
number of checkpoints, up till a certain point (nc = 10), results
in a decrease of GCTδ. However, by increasing the number of
checkpoints further, GCTδ starts to increase. Thus, it becomes

 0

 5

 10

 15

 20

 25

t5t4t3t2t1t0

N
(t

k
)

(a) Number of cases N(tk)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

t5t4t3t2t1t0

P
ε

n
c
(1

-P
ε
)k

(b) Probability metric per case Pnc
ε (1 − Pε )k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

t5t4t3t2t1t0

p
(t

k
)

(c) Probability distribution function p(tk)

Figure 2: Illustration of functions for nc = 3 and PT = 0.5

important to find the optimal number of checkpoints that leads
to the minimal GCTδ.

Next, we present how to determine the optimal number
of checkpoints, n∗c. We start from Eq. 4 that represents the
completion time. As one can observe from Eq. 4, the com-
pletion time depends on the number of checkpoints (nc) and
the number of erroneous execution segments (k). Depending
on the number of erroneous execution segments (k) a job
can complete only at discrete instances in time (tk), and the
distance between two subsequent instances depends on the
number of checkpoints (nc), i.e. tk − tk−1 = T

nc
+ τ. This is

illustrated in Figure 4, e.g. the distance between t1 and t0 for

61



 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

20151051

G
C

T
δ

Number of Checkpoints (nc)

Figure 3: GCTδ dependence on nc, for given δ = 1 − 10−10,
T = 1000t.u., τ = 20t.u. and PT = 0.99999

 1000

 1500

 2000

 2500

 3000

 3500

10987654321

T
im

e

Number of Checkpoints (nc)

t0

t1

t2

t0

t1

t2

t3

t4

t0

t1

t2

t3

t4

t5

t6

t0

t1

t2

t3

t4

t5

t6

t7

t8

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

Figure 4: Dependence of completion time(tk) on number of
checkpoints (nc) for T = 1000t.u. and τ = 20t.u.

nc = 1 is larger than the distance between t1 and t0 for nc = 10.
Also illustrated in Figure 4, is that when the completion time
does not include execution of erroneous execution segments,
i.e. k = 0, the completion time is increasing linearly with the
number of checkpoints nc (observe t0 at different number of
checkpoints in Figure 4). When the completion time includes
at least one execution of erroneous execution segment, i.e.
k ≥ 1, the completion time decreases by increasing the number
of checkpoints up till a certain point. However, increasing the
number of checkpoints further results in an increase in the
completion time. This is also presented in Figure 4. If we
focus on the values of t1 in Figure 4, we observe that t1 has
the highest value (2040t.u.) at nc = 1, but t1 decreases as
the number of checkpoints is increased up to nc = 7 where
the value for t1 is 1302t.u. Increasing nc above 7, results
in a higher value for t1, e.g. the value for t1 at nc = 10 is
1320t.u. From Eq. 4, one can observe that for a given nc, the
completion time depends linearly on the number of erroneous
execution segments (k), and thus obtaining a low completion
time requires a low value for k. On the other hand, for a given
number of erroneous execution segments (k), there exists an
optimal number of checkpoints for which the completion time
is minimal. To find the optimal number of checkpoints, we
take the first derivative of Eq. 4 and set it to be equal to zero,
hence we have:

∂tk
∂nc

= 0⇒ nc =

√
k ·

T
τ

(9)

As can be observed from Eq. 9, the optimal number of
checkpoints depends on k. Since each erroneous execution
segment requires a re-execution, we define k as the number
of re-executions to be included in the completion time. This
parameter k is tightly related to the given level of confidence
requirement, δ. To satisfy δ, GCTδ must include a safe margin
allowing a number of re-executions k. To find the minimal
GCTδ, requires finding the lowest value of k and the optimal
number of checkpoints. Note that a higher value of k would
also meet the required level of confidence, δ, but then GCTδ
would be unnecessarily high.

The optimization method works as follow. We first set k = 1,
and then compute the number of checkpoints nc using Eq. 9.
Next, the level of confidence is calculated by summing the
terms of the probability distribution function for k = 0 and
k = 1, while using the recently calculated value for nc (see
Eq.7 for evaluation of level of confidence). If the computed
level of confidence is higher than the given level of confidence
requirement, δ, the calculated nc is reported to be the optimal
number of checkpoints, otherwise a new iteration follows. In
each iteration k is incremented, the value of nc is updated
(Eq. 9), and the level of confidence is computed for the new
values of k and nc. The iteration terminates when the required
level of confidence is reached. Then the recent calculated nc is
reported to be the optimal number of checkpoints, n∗c, which
leads to the minimal GCT ∗δ = T + n∗cτ + k( T

n∗c
+ τ).

Next, we demonstrate the method for the example in-
troduced earlier in this section. Setting k = 1, leads to
nc =

√
k · T

τ
= 7. Hence, we compute the level of confidence

for nc = 7 by summing the first two terms from the probability
distribution function (for k = 0 and k = 1). This results
in a level of confidence value, Λ(t1), that is lower than the
given level of confidence requirement, δ, so we continue
with another iteration. In this iteration, k is incremented,
(k = 2), which implies nc = 10. Next, we compute the level
of confidence for nc = 10 by summing the terms from the
probability distribution function for 0 ≤ k ≤ 2. The obtained
result satisfies the given requirement δ, and therefore we report
the optimal number of checkpoints to be n∗c = 10, which leads
to minimal GCT ∗δ = 1000 + 10 · 20 + 2 · ( 1000

10 + 20) = 1440t.u.

V. R

In this section we present results for these three problems:
• P1: evaluation of the level of confidence with respect to

a given deadline D;
• P2: finding an optimal number of checkpoints, n∗c, that

minimizes the guaranteed completion time, GCTδ, for a
given level of confidence requirement δ, and

• P3: evaluation of probabilistic guarantees for RRC opti-
mization for non-real-time systems.

For each problem we use two input scenarios, Scenario A and
Scenario B, (Table I). For each scenario, the following inputs
are given:T , τ, and PT .

For P1, we assume given is a deadline D = 1500t.u. The
results in Table II and Table III show the computed level of

62



Scenario A Scenario B
T = 1000t.u. T = 1000t.u.
τ = 20t.u. τ = 20t.u.

PT = 0.99999 PT = 0.9

Table I: Input Scenarios

confidence, Λ(D), at different number of checkpoints, nc. For
each nc, we first calculate K, the number of re-executions that
can be accommodated within the interval [t0,D], and then
we sum all terms from the probability distribution function
(Eq. 6) for tk ∈ [t0, tK]. As can be seen from Table II and
Table III, the level of confidence, Λ(D), for meeting a given
deadline, D, depends on the number of checkpoints, nc. When
the number of checkpoints is low, the level of confidence is
also low. The level of confidence increases as the number
of checkpoints increases. However, at a certain number of
checkpoints, increasing the number of checkpoints further
results in decreased level of confidence or even leads to a zero
level of confidence. The reason is that when the number of
checkpoints is low, the execution segments are longer, which
means that it is difficult to accommodate many re-executions
while meeting the deadline. This implies that only a small
number of terms from the probability distribution function
(Eq. 6) will be summed and therefore the level of confidence
(Eq. 7) is low. Increasing the number of checkpoints, decreases
the length of the execution segments and thus allows more re-
executions to be accommodated before the deadline on one
hand, but increases the total checkpointing overhead on the
other hand. Having a high number of checkpoints may result
in a zero level of confidence. As t0, the case when zero
erroneous execution segments are executed, depends on the
number of checkpoints, nc, (Eq. 2), having a high number
of checkpoints may result in that t0 violates the deadline
D, i.e. t0 > D. For example, for the given input scenarios
when nc = 26, t0 = 1000 + 26 · 20 = 1520 and the level of
confidence Λ(D) = 0, (see Table II and Table III). With
the results obtained from solving P1, we want to point out
that it is useful to have a framework to calculate the level
of confidence because it makes it possible to optimize the
RRC scheme such that an optimal number of checkpoints that
results in the highest level of confidence can be obtained.
From the presented results in Table II and Table III, we note
that the number of checkpoints that provides the highest level
of confidence Λ(D) is nc = 17 for both Scenario A and
Scenario B. However, Λ(D) for Scenario A is much higher
than Λ(D) for Scenario B due to the different PT values.

For P2, we assume given is a level of confidence require-
ment δ = 1 − 10−10. We compute the guaranteed completion
time, GCTδ, for different number of checkpoints, nc. The
results are presented in Table IV and Table V. For each nc, we
initialize k = 1, and check the following inequality Λ(t1) ≥ δ.
If the inequality is not satisfied, then k is incremented until
Λ(tk) ≥ δ. This implies that for the last value of k, we get a tk
that is a guaranteed completion time (GCTδ) for the given nc.
In Table IV and Table V for each nc we present the values for
GCTδ and the number of re-executions, k, that are included in
GCTδ. As can be seen from Table IV and Table V, having a

D = 1500
nc Λ(D) nc Λ(D)
1 0.999980000100000000 14 0.999999999999998367
2 0.999980000100000000 15 0.999999999999998388
3 0.999999999733334814 16 0.999999999999998406
4 0.999999999750001250 17 0.999999999999998422
5 0.999999999760001120 18 0.999999999788889670
6 0.999999999999997925 19 0.999999999789474459
7 0.999999999999998040 20 0.999999999790000770
8 0.999999999999998125 21 0.999999999790476955
9 0.999999999999998189 22 0.999980000100000000

10 0.999999999999998240 23 0.999980000100000000
11 0.999999999999998280 24 0.999980000100000000
12 0.999999999999998314 25 0.999980000100000000
13 0.999999999999998343 26 0

Table II: Level of confidence, Λ(D), for Scenario A, at
various number of checkpoints, nc

D = 1500
nc Λ(D) nc Λ(D)
1 0.810000000000000000 14 0.998386333221060871
2 0.810000000000000000 15 0.998405709197021325
3 0.974827503159636872 16 0.998422589149847735
4 0.976266114316335439 17 0.998437425722750770
5 0.977137362167560214 18 0.979688847172390437
6 0.997980204415657095 19 0.979741032210778210
7 0.998085015474654920 20 0.979788017059326005
8 0.998162202793752259 21 0.979830542116846522
9 0.998221387037794418 22 0.810000000000000000

10 0.998268194669895683 23 0.810000000000000000
11 0.998306132813719019 24 0.810000000000000000
12 0.998337499909652013 25 0.810000000000000000
13 0.998363864473716882 26 0

Table III: Level of confidence, Λ(D), for Scenario B, at
various number of checkpoints, nc

δ = 1 − 10−10

nc k GCTδ nc k GCTδ
1 2 3060 11 2 1442
2 2 2080 12 2 1447
3 2 1767 13 2 1454
4 2 1620 14 2 1463
5 2 1540 15 2 1474
6 2 1494 16 2 1485
7 2 1466 17 2 1498
8 2 1450 18 2 1512
9 2 1443 19 2 1526

10 2 1440 20 2 1540

Table IV: GCTδ and the number of re-executions, k,
included in GCTδ for Scenario A, at various nc

δ = 1 − 10−10

nc k GCTδ nc k GCTδ
1 13 14280 12 8 2066
2 11 6760 13 8 2036
3 10 4594 14 8 2012
4 9 3510 15 8 1994
5 9 3080 16 8 1980
6 9 2800 17 8 1971
7 8 2443 18 8 1965
8 8 2320 19 8 1962
9 8 2229 20 8 1960

10 8 2160 21 8 1961
11 8 2108 22 8 1964

Table V: GCTδ and number of re-executions, k,
included in GCTδ for Scenario B, at various nc

63



low number of checkpoints leads to high GCTδ. Increasing the
number of checkpoints up till a certain point, decreases GCTδ.
However, by increasing the number of checkpoints further
we observe an increase in the guaranteed completion time.
We explain this behavior with the following reasoning. To
satisfy the given level of confidence requirement, GCTδ must
include some safe margin, i.e. some number of re-executions
should be allowed. When the number of checkpoints is low, the
execution segments are large and therefore the re-executions
are more expensive in time, which leads to high GCTδ. By
increasing the number of checkpoints, the execution segments
become shorter and this leads to a decrease in GCTδ. However,
when the number of checkpoints becomes sufficiently high, the
checkpointing overhead becomes the dominant part of GCTδ
and it is the checkpointing overhead that is responsible for
the observed increase in GCTδ. From Table IV we observe
that the minimal GCTδ is 1440t.u. and it is achieved when
nc = 10 for Scenario A, which adheres to the results that we
obtained from the proposed optimization method presented
in Section IV. In Table V we observe that for Scenario B,
the minimal GCTδ is 1960t.u. with nc = 20. The same result
is obtained when the presented optimization method is used.
The results presented in Table IV and Table V are acquired
by running all combinations of values for nc and k, while
the results from the optimization method only require two
iterations for Scenario A, and eight iterations for Scenario B
(observe the number of re-executions, k, in Table IV and Table
V for nc = 10 and nc = 20 respectively).

For P3, we consider an RRC optimization approach for
a non-real-time system that provides an optimal number of
checkpoints, n∗c, that leads to minimal average execution time
(AET ), [4]. For Scenario A, the approach, [4], computes n∗c = 1
and a minimal AET = 1020t.u., while for Scenario B, the ap-
proach computes n∗c = 3 and a minimal AET = 1138t.u. There
are two interesting problems when evaluating probabilistic
guarantees for RRC optimization for non-real-time systems,
and thus we divide P3 into two subproblems:

• P3A: evaluation of the level of confidence with respect
to the minimal AET ,

• P3B: evaluation of the level of confidence with respect to
a given deadline D, when nc is optimized towards AET

For P3A, i.e. evaluation of Λ(AET ), we present the level of
confidence that a job completes within an interval that is equal
to the minimal average AET , while assuming that optimal
number of checkpoints (n∗c) are used. By computing the level
of confidence for the calculated minimal AET , we observe
that Λ(1020) = 0.99998 for Scenario A, and Λ(1138) = 0.81
for Scenario B, which may be acceptable for non-real-time
system, but not for a real-time system where a high level of
confidence is required.

For P3B, i.e. evaluation of Λ(D) when nc is optimized
towards AET , we assume given is a deadline D = 1500t.u.
As shown earlier, the optimization approach, [4], computed
n∗c = 1, for Scenario A, and n∗c = 3, for Scenario B. Relying
on this optimization implies the following results:

• for Scenario A, Λ(D) = 0.99998 (see Table II for nc = 1)
• for Scenario B, Λ(D) ≤ 0.975 (see Table III for nc = 3).

However, we observed earlier (see Table II and Table III) that
the highest level of confidence that can be achieved is:
• for Scenario A, Λ(D) ≥ 0.999999999999998 for nc = 17
• for Scenario B, Λ(D) ≥ 0.99843 for nc = 17.

From presented results for P3 (P3A and P3B), we conclude
that relying on RRC optimization for non-real-time systems
results in poor probabilistic guarantees.

VI. C

In this paper we have focused on analyzing RRC in the
real-time system scenario. There are three main contributions
that we have presented in the paper.

First, we presented a mathematical framework to evaluate
the level of confidence that a job employing RRC meets a
given deadline. This mathematical framework is important not
only for computing the level of confidence and thus getting
a reliability metric, but also it is useful to acquire knowledge
on how to adjust the RRC scheme, i.e. adjust the number of
checkpoints such that the level of confidence is maximized.

Second, we presented an optimization method where the op-
timization goal was to find the optimal number of checkpoints
that minimizes the completion time, while with a given level
of confidence requirement we can guarantee that the job will
complete within this minimal completion time.

Third, by using the proposed mathematical framework,
we evaluated probabilistic guarantees for non-real-time RRC
optimization.We have shown that having the minimal AET is
not a sufficient guarantee and as such is not very useful in the
real-time scenario. Further, we demonstrated that relying on
RRC optimization for non-real-time systems can significantly
reduce the level of confidence for meeting a given deadline.

R

[1] D. Nikolov, U. Ingelsson, V. Singh, and E. Larsson, “Estimating Error-
probability and its Application for Optimizing Roll-back Recovery with
Checkpointing”, delta, pp.281-285, 2010 Fifth IEEE International Sym-
posium on Electronic Design, Test & Applications, 2010.

[2] A. Ziv and J. Bruck, “Analysis of Checkpointing Schemes with Task
Duplication”, IEEE Trans. on computers, vol. 47, no.2, February 1998.

[3] A. Ziv and J. Bruck, “An On-Line Algorithm for Checkpoint Placement”,
IEEE Trans. on computers, vol. 46, no.9, September 1997.

[4] M. Väyrynen, V. Singh, and E. Larsson, “ Fault-Tolerant Average Exe-
cution Time Optimization for General-Purpose Multi-Processor System-
on-Chips”, Design Automation and Test in Europe (DATE 2009), Nice,
France, April, 2009.

[5] S. Punnekkat, A. Burns, and R. Davis “Analysis of Checkpointing for
Real-Time Systems”,The International Journal of Time-Critical Comput-
ing Systems,20, pp.83-102, 2001.

[6] Y. Zhang and K. Chakrabarty, “Fault Recovery Based on Checkpointing
for Hard Real-Time Embedded Systems”, IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems (DFT’03), 2003.

[7] K. G. Shin, T. Lin, and Y. Lee, “Optimal Checkpointing of Real-Time
Tasks”, IEEE Trans. on computers, vol. C-36, no.11, November 1987.

[8] V. Grassi, L. Donatiello and S. Tucci, “On the Optimal Checkpointing
of Critical Tasks and Transaction-Oriented Systems”, IEEE Trans. on
software engineering, vol. 18, no.1, January 1992.

[9] S. W. Kwak, B. J. Choi, and B. K. Kim Ling, “An Optimal Checkpointing-
Strategy for Real-Time Control Systems Under Transient Faults”, IEEE
Trans. on reliability, vol. 50, no.3, September 2001.

[10] I. Koren and C.M. Krishna, “ Fault-Tolerant Systems”, Morgan Kauf-
man, 1979

64


