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CROSS SECTIONAL ANALYSIS OF THE SWEDISH

STOCK MARKET*

Hossein Asgharian†  and Björn Hansson††

Abstract

This paper analyses the ability of beta and other factors, like firm size and book-to-market, to

explain cross-sectional variation in average stock returns on the Swedish stock market for the

period 1980-1990. We correct for errors in variables problem of the estimated market beta.

Since this method takes into account the measurement error we do not have to form portfolios

and thereby losing information. We use both separate cross-sectional regressions and a pooled

regression model to estimate the risk premiums of the different factors. An Extreme Bounds

Analysis is utilised for testing the sensitivity of the estimated coefficients to changes in the set

of the included explanatory variables. Since the tests are carried out on realised returns, which

presumably are quite noisy approximations of expected returns, we study if beta can

systematically explain cross-sectional differences among realised stock returns conditional on

the sign of the realised market excess return. Our results show that the coefficient for beta is

never significantly different from zero, but the estimates differ across the methods mentioned

above. However, we find that beta is priced differently in periods with positive versus periods

with negative realised market return. In the Extreme Bounds Analysis, the coefficient for the

size variable is always significantly negative.
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1 Introduction

 Some years ago Fama and French (1992) published an empirical investigation from the U.S.

stock market which suggested that if firm size and book-to-market were included as

explanatory variables then beta made no marginal contribution for explaining cross sectional

differences among average stock returns. These findings go against the empirical prediction

of the Capital Asset Pricing Model, CAPM, where factors besides market beta,

“idiosyncratic” factors from a CAPM perspective, should have no power in explaining the

cross-section of average returns. As expected, this article has spurred a vivid debate among

financial economists discussing the pros and cons of Fama and French’s result, some of the

more well known contributions have come from Kothari et al (1995), Lakonishok et al (1994)

and Jagannathan and Wang (1996).

 

 Particular to Fama and French’s methodology is the use of a two-pass estimation method,

which was already implemented by Fama and MacBeth (1973). In the first-pass regression

one has to estimate market beta for each asset from time-series data, since the true betas are

unobservable. In a second-pass regression cross-sectional stock returns are regressed on these

betas and other explanatory variables in order to estimate the risk premiums of the different

factors. In this regression beta is measured with an error, which generally results in an

underestimation of the risk premium of beta and an overestimation of the coefficients for the

idiosyncratic factors, and this effect increases with the correlation between the estimated

betas and the idiosyncratic variables. This is an errors in variables problem and to diminish its

effect Fama and MacBeth (1973) constructed portfolios on the basis of historical betas, and

since then this method has been commonly used in most investigations. A different method to

tackle this problem is presented by Litzenberger and Ramaswamy (1979), where they derive

consistent methods within the two-pass test methodology. Their correction method is N-
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consistent, i.e. consistent when the size of time-series sample, T, is fixed and the number of

assets N is allowed to increase without bound. Thus, there is an advantage in using individual

stocks in the tests and it is not necessary to form portfolios.

 

 Most other studies following Fama and MacBeth (1973) use the means and standard errors of

the time series of the estimated coefficients to compute t-statistics. Therefore, when

performing the significance test they ignore the standard errors of the coefficients estimated

by the cross-sectional regressions. This approach implicitly assumes that coefficient variances

are constant over time, which is not necessarily true. As a remedy we follow the procedure in

Litzenberger and Ramaswamy (1979) where the coefficients from the cross sectional model

are weighted by their variances.

 

 CAPM is a one-period model expressed in terms of expected returns while several tests are

performed on realised values over several periods. The common explanation is to rely,

explicitly or implicitly, on a period by period rational expectation equilibrium and thereby

presuming that expectations are on average correct. Therefore, for positive stock betas cross-

sectional relations between realised stock returns should on average conform to a positive

linear relation between stock returns and market portfolio return. It is obvious that this

average may appear to be quite weak if the sample contains a substantial number of

observations with negative excess market return, and excess return is generally considered to

be a very noisy approximation of expected return (see Merton 1980). From this perspective it

is interesting to analyse separately the role of beta in situations where the excess market

return is negative and vice versa. To reach a testable hypothesis one can start from a one-

factor asset pricing model where the riskiness of a stock is directly related to its covariance

with market, which means that high risk stocks have large outcomes in states where market
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wealth is high and vice versa. In this model agents try to smooth consumption and the only

source of risk is variation in aggregate wealth. Since CAPM can be deduced from this more

general model it seems reasonable that by analogy a similar relation may be valid for CAPM:

high beta stocks have large outcomes in states where the value of the market portfolio is high

and vice versa and the states are approximated by realised excess market return. This idea can

be tested via the following hypothesis: there is a positive relation between realised stock

return and beta conditional on excess market return being positive and a negative relation for

negative excess market return (see Pettengill et al (1995), Chan and Lakonishok (1993),

Isakov (1997)). This is not an equilibrium model that estimate the risk premium for beta, but

an analysis of the factors driving returns in bad and good states respectively. Such an analysis

is of course important for an individual investor who changes her prior subjective beliefs for

good and bad states. For example, if she thinks that a bear market is more imminent she

increases the weights of low-beta stocks.

 

 The purpose of this paper is to analyse the ability of beta and other factors, like firm size and

book-to-market, to explain cross-sectional variation in average stock returns on the Swedish

stock market for the period 1980-1990. To correct for errors in variables problem of the

estimated market beta we use the method of Litzenberger and Ramaswamy (1979). Since this

method takes into account the measurement error we do not have to form portfolios and

thereby losing information. Besides, this has a great advantage in our study since most of the

time we have less than one hundred stocks and could therefore only form a few portfolios. To

do justice to the fact that the tests are carried out on realised returns, which presumably are

quite noisy approximations of expected returns; we will study if beta can systematically

explain cross-sectional differences among realised stock returns conditional on the sign of

realised market excess return. In this study we also use Extreme Bounds Analysis (EBA), see
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Leamer (1983), for analysing the sensitivity of the estimated coefficients to changes in the set

of the included explanatory variables. The EBA analysis is used on an estimated pooled

model of the time-series and cross-section model that is more efficient than the estimator in

Fama and MacBeth (1973) (see Amihud et al (1992)).

 

 The contribution of this paper is the first in-depth study of the capacity of market beta and

other relevant factors to capture the cross-section of expected return on the Swedish stock

market. Other studies like for example Heston et al (1977) only use beta together with size as

the relevant explanatory variables. Our study is robust to errors in variables and applies a

pooled regression for the estimation of the coefficients of the factors generating returns.

 

 The outline of the paper is as follows: section 2 discusses the methods used in our analysis,

section 3 presents the data, section 4 analyses the empirical results and there is finally a

conclusion in section 5.

2 Method

 The CAPM, when there exists a risk free asset, implies the following cross-sectional

relationship between ex ante risk premiums and β’s:

 [ ] [ ] [ ] [ ]( ))()( mzcmimmzci RERERERE −+= β (1)

 
)var(

),cov(

m

mi
im R

RR
=β

 where Ri and is the return on security i in excess of the risk free rate, Rm is the excess return

on the market portfolio, Rzc(m) is the excess return on the frontier portfolio having a zero

covariance with respect to the market portfolio and βim is the amount of market risk of asset i.

 If borrowing and lending are unconstrained at a constant riskless interest rate, the CAPM

implies that the expected return on zc(m) is equal to the riskless rate. Thus the expected
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excess return on zc(m), Rzc(m), is zero and the expected risk premiums on asset i is proportional

to its beta. In this case, we have

 [ ] 0)( =mzcRE and [ ] 0>mRE (2)

 If borrowing is constrained CAPM implies

 [ ] 0)( ≥mzcRE and [ ] [ ] 0)( >− mzcm RERE . (3)

 An approach to test CAPM is to estimate a series of cross-sectional regressions of realised

excess return on betas. The model, allowing the beta to differ through time, is1

      ttittitR εβγγ ++= ,10

 tmzct R ),(0 =γ (4)

 tmzcmtt RR ),(1 −=γ

 Fama and MacBeth (1973), assuming stationary distributions for γ0t and γ1t, tested the

hypotheses

 0
ˆ0

=
∑

T
t

tγ
and 0

ˆ1

>
∑

T
t

tγ
(5)

 The cross-sectional model applied in this study is an improvement of the two-pass

methodology of Fama and MacBeth (1973), which was also used by Fama and French (1992).

We introduce the following improvements: GLS is used to take into consideration that the

error term in the cross-sectional regression is heteroskedastic; beta is corrected for errors in

variables; the inference for the risk price, see (5), relaxes the stationarity assumption for γ0t

and γ1t ; finally we use a pooled regression model.

 

 Our version of the extended model looks as follows

 Rt = IN γ0t + βt γ1t +  Xt-1 Γ2t + εt, (6)
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 where Rt = (R1t,…. RNt)' is the vector of return in excess of the risk free rate for N assets,

βt  = (β1t,…. βNt)' is the true market beta vector; Xt-1 is a N×K matrix which includes K

explanatory variables like size etc.; εt  = (ε1t,…. εNt)' is a vector of idiosyncratic errors with

mean vector 0 and an intertemporally homoskedastic covariance matrix Vt. CAPM implies

that the price of beta risk, γ1t, should be positive and significantly different from zero, while

the other coefficients, γ0t and Γ2t, should not be significantly different from zero. We estimate

the risk premiums for each month starting in July 1980 and repeated each year up to 1990.

 

 Since the variances of the returns at time t may differ across assets and the returns may also

be correlated, the disturbance terms of the monthly cross-sectional model may be both

heteroskedastic and correlated. Therefore, the OLS estimator of the parameters of the cross-

sectional regression may be inefficient. A possible solution to this problem is to apply the

GLS method. The GLS estimator of the cross-sectional regression model is

 ( ) ttttttGLSt RVHHVH 111
)( ''ˆ −−−=Γ , (7)

 where
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H

 is the ))2(( +× kN matrix of all the explanatory variables of the model. The matrix Vt is

unknown and must be estimated. To simplify this estimation Litzenberger and Ramaswamy

(1979), assumed the single index model as the return generating process. With this model the

process that generates returns at the beginning of period t is assumed to be

 Rit = αit + βi,t Rmt + eit, i = 1, 2,…., Nt, (8)

                                                                                                                                                        
 1 For simplicity, we use the notation βi instead of βim.
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 With this specification the covariances among asset returns are
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 Litzenberger and Ramaswamy, using a portfolio approach, show that under the assumption of

the single index model the estimation of the matrix Vt may be simplified to a diagonal matrix

tΩ , where

 

t

i

t

Nji
jis

jiji

.,.........2,1,
for 

for 0),(
2

=
==

≠=Ω

(10)

 Therefore, the GLS estimator is equivalent to the WLS estimator and can be obtained by

deflating all the variables in equation (6) by the standard deviations of the residuals from the

single index model for each firm and then estimating the transformed model with OLS.2

 

 Another empirical problem in estimating equation (6) is the fact that the true βt is

unobservable and the estimated market beta, tβ̂ , from historical data must be used as a proxy.

The market beta vector, tβ̂ , is the OLS estimate from the single index model for a period of at

least 30 months and up to 36 months prior to t

 Riτ = αit + βit Rmτ + eiτ, τ = t-Pi,…., t-1. (11)

 where Pi is an information set for return observations used to estimate itβ̂ , Rmτ is the return of

the market portfolio at times τ <t. The notation Pi shows that the set of return observations

may differ across assets. itβ̂  is an unbiased estimator of βit. However, because of

measurement error in itβ̂ , the estimated coefficients of the equation (6), due to error in
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variables problem, will be inconsistent. Note, that the other explanatory variables are assumed

to be measured without error.

 

 The estimated itβ̂  is assumed to be equal to the true βit plus a measurement error, uit

 itβ̂  = βit + uit (12)

 and

 var(uit) = var( itβ̂ ). (13)

 From the single index model, the OLS estimation of the sampling variance of the itβ̂  is
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τβ , (14)

 where mR  is the sample mean of Rmτ. Therefore, the measurement error variance, var(uit), is

proportional to si, and we can deflate all the variables by  )var( itu instead of si in our WLS

estimation. By deflating all the variables in Ht by  )var( itu the variance of the deflated

measurement error will be equal to one and the consistent estimator of the coefficients is

given by

 ( ) **1**
corrected)EIV( ''ˆ

ttttt RHMHH −

− −=Γ (15)
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 2 See also Huang and Litzenberger “Foundation for Financial Economics”, page 320-324.
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 and M is a )2()2( +×+ kk with N in the element M2,2 and zero in all the other cells. Note that

the cell M2,2 corresponds to the cell 2,2 of matrix ** ' tt HH , which is the cross product of the

elements in the vector of deflated itβ̂ . The variance covariance matrix of the coefficients are

given by

 ( ) ( )[ ]1****1**2
)corrected(EIV,1

2
*corrected)EIV( ''')ˆ()ˆvar( −−

−− −−+= MHHHHMHH tttttttt γσ εΓ (16)

 where 2
*εσ  is the residual variance from the weighted regression model estimated by using the

EIV-corrected estimated coefficients.

 

 The time-series of the monthly estimated coefficients are used to test for significance of the

risk premiums over all periods. We compute the following t-statistics to test whether the risk

premiums are significantly different from zero

 ( )Γ
Γ
ˆ

ˆ

σ
=t (17)

 Γ̂ and ( )Γ̂σ  are estimated by two alternative methods:

 Alternative 1. We estimate the average of the risk premiums over all periods T as the final

estimates of risk premiums and ( )Γ̂σ  as the standard deviation of the sample mean of the risk

premiums

 
T

t t∑ Γ
=Γ

ˆ
ˆ and  ( ) ( )

( )1

ˆˆ
ˆ

2

−
Γ−Γ

=Γ ∑
TT

t tσ (18)
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 Note that T is the number of months included in this study and is equal to 126. In this

approach the risk premiums are assumed to be drawn from a stationary distribution (having

the same mean and variance over time).

 Alternative 2. We relax the assumption of constant variance over time and estimate Γ̂  as

the weighted average of the monthly estimated coefficients, where the weights are inversely

proportional to variance of the coefficients from monthly regressions

  ∑ Γ=Γ
t ttZ ˆˆ and  ( ) ( )∑ Γ=Γ

t ttZ ˆvarˆ 2σ , (19)

 where,

 
[ ]

[ ]∑
−

−

Γ

Γ
=

t t

t
tZ 1

1

)ˆvar(

)ˆvar(

 

 and )ˆvar( tΓ  is the estimated variance of tΓ̂  from the cross-section regressions at time t.

 

 To consider the fact that realised returns are noisy estimators of expected return, we will also

test the hypothesis of a positive relation between realised stock return and beta, conditional on

excess market return being positive and vice versa. We divide the estimates from the monthly

regressions, tΓ̂  into two periods and the test is performed separately for each period using the

t-statistics as in equation (17), while Γ̂ and ( )Γ̂σ  are computed separately for each period

using two alternative methods:

 Alternative 1.
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+
+
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R
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 Alternative 2.
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t
mttt RZ 0ˆˆ and ( ) ( )∑ ≥Γ=Γ+

t
mttt RZ 0ˆvarˆ 2σ , (21)

 where
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 T+ is the number of periods with positive excess market returns. The estimates for the

negative periods, 1ˆ −Γ  and ( )1ˆ −Γσ  are derived in an analogous manner. When excess market

return is negative we expect an inverse relationship between beta and returns.

 

 Finally we use a pooled regression model: we stack all observations for all firms and years

into one regression. This regression uses simultaneously firm information from different

points of time in estimating the coefficients, and the regression has a higher degree of

freedom and it is more efficient. The pooled regression model can be written as:

 itR~  = γ0 + γ1 βit +  Γ2 Xi,t-1 + εit

 t = 1,.…., *
iT and i = 1,....,N,

 where itR~  is the annual average of the monthly returns. *
iT  is the number of the years

included in the study for firm i. Therefore the total number of observations in the pooled

model is:

 ∑
=

=
N

i
iTn

1

* .

 We now use annual average of the monthly returns when running the pooled regression

instead of the monthly returns as in our cross-sectional regressions. Since we use the same

observations for all explanatory variables in the monthly regressions during one year, the

estimates from one single regression for average return in each year are the same as the
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average estimates of the monthly coefficients in that year. Stacking the observations on a

monthly basis will result in too large increase in degree of freedom, which makes the results

highly significant without using any further information. The pooled regression model is

estimated in the same manner as the CRS regressions and V is assumed to be block diagonal

with Vt along the diagonal.

 

 We use the Extreme Bound Analysis (EBA) as suggested by Leamer (1983) to examine the

sensitivity of the estimated coefficients to changes in the number of the explanatory variables

included in the model. EBA involves the following steps:

 i) defining prior specifications: CAPM defines which explanatory variables should be

included in the model. It means that beta is defined as an important variable and it is included

in the model, and the other variables are considered as doubtful and they may be included or

omitted.

 ii) estimating the coefficients: we estimate all the regression models, which may result from

inclusion of the important variable and all the possible combinations of the doubtful variables.

There are k2  possible combinations, where k is the number of doubtful variables.

 iii) defining the extreme bounds for each coefficient: we define the extreme bounds for each

coefficient, β, as the lowest and highest estimated values resulting from k2  different

regressions.

 iv) verifying the sensitivity of the coefficients: we define a coefficient as sensitive if it

changes signs or becomes insignificant at the extreme bounds.
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3 Data

 The data covers the period 1978 to 1990 and consists of stock returns which are corrected for

dividends and capital changes like splits etc. The sample includes all share on the so-called

”A1-listan” which means that the OTC shares are excluded. Our sample represents more than

95% of the market value of all shares. All information on book values is taken from the

annual statements by the firms. The size variable is measured each year by the market value

of the firm at the end of June. The leverage is the book value of total capital divided by the

book value of equity: total capital is measured at the end of the fiscal year, which is in

December for over 90% of the cases, and equity is measured at the end of December. The

earnings/price factor is measured at the end of the fiscal year: the earnings are from the

annual statement and the price is the market value of the firm at end of December. All

information from the annual reports has been collected by us.

 

4 Analysis

First the results are presented from a one-factor model with beta as the only explanatory

variable in the second pass regression. We also analyse the role of beta for driving return in

states where the excess market return is positive and negative respectively. Finally, other

explanatory variables will be included and we look at the effects of correcting for errors in

variables and the use of a pooled regression.

A One-factor equilibrium model

 In this model CAPM is tested by estimating the price of beta-risk and the intercept using the

method of Fama and MacBeth (1973) and correcting for errors in variables using Litzenberger

and Ramaswamy (1979). CAPM is not rejected if the price of beta-risk is positive and
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significant and the intercept is not significantly different from zero. We estimate for each

month the following regression correcting for error in variables:

 Rt = IN γ0t + βt γ1t  +  ε.

 In Table 1 the estimates of the price of market risk is insignificant but it is positive except for

the OLS-estimates. The intercept is positive but it is only significantly different from zero in

the simplest model. The positive constant may be a sign that there are other factors taking

care of market risk and/or there are other sources of risk besides the market risk; this

hypothesis is analysed below in the multi-factor model. The insignificant beta may be due the

fact that beta does not reflect market risk or the realised price of market risk, the realised

excess market return, is non-positive.

 

B Conditional factor model

 We have seen above that beta captures some part of the market risk and its estimated price, γ1,

moves together with realised excess market return. However, we have found that the average

price of beta over the whole period is not significantly different from zero. In this part we

study if beta is priced differently in periods with positive versus periods with negative

realised market return. Table 2 shows the result from the cross-sectional regressions. Beta has

significant coefficients in both states: positive in good states and negative in bad states. The

constant is significantly positive in good states and significantly negative (alt. 2) in bad states

which implies that other factors may also drive returns in these states. Thus, beta is a very

important variable for explaining cross-sectional differences among asset returns and its price

is conditional on the sign of realised excess market returns.
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C Multi-factor equilibrium model

We now analyse if there are other explanatory variables besides beta that can explain cross-

sectional variation in average stock returns. If stocks are priced rationally, systematic

differences in average returns are due to differences in risk. As a result explanatory variables

with significant coefficient should be proxies for sensitivities to common risk sources in

returns. The variables are: firm size, book-to-market, leverage, positive earnings-price ratio

and a dummy if the earnings-price ratio is negative.

The averages of the estimated coefficients from monthly OLS regressions and their t-values

are reported in Table 3. Beta is never significant but it is positive except for the OLS-estimate

that is still negative. Only the coefficient for the dummy variable E/P negative has a p-value

below 0.10 for all methods. Variables like Size and Book-to-Market have a significant

influence on return for some methods. But the Size variable has the ”wrong” price.

The results from the pooled regression of annual data in Table 4 show that several variables

are now significant and size and book-to-market has the same sign as in studies on U.S. data.

The coefficient for beta is always positive but it is still not significantly different from zero.

The coefficient for firm size is generally considered as a price of risk connected with small

firms. The positive coefficient for book-to-market may, according to Fama and French

(1992), be due to a leverage effect. But the contrarian camp explains the positive coefficient

as a sign of market inefficiency: naive investors may be more willing to invest in low book to

market firms because these firms performed well in the past and this behaviour will push up

their prices and lower their expected returns. The same explanation might be given for the

significantly negative coefficient for the earnings-price ratio.
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An extreme bound analysis of the pooled regressions leads to very interesting results, see

Table 5. On their own, neither the coefficient for the constant nor the coefficient for beta are

significantly different from zero. However, they are both related to the size variable, if size is

included the coefficient for the constant is always positive and significant and the coefficient

for beta is positive but not significant. The coefficient for the size variable is always

significantly negative.3 The coefficients for book-to-market and earnings-price ratio are

always significant if both variables are included, but on their own they are never significant.

Notice that the significance of the coefficient for beta invariably drops when book-to-market

and earnings-price ratio are included.4 The correlation between the book-to-market factor and

the earnings-price ratio is as high as 0.97, see Table 6, and the correlation between the

coefficients is -0.98, see Table 7. This result is very different from Fama and French (1992)

where the coefficient for earnings-price-ratio is positive and significant if book-to-market is

left out, but together only the coefficient for book-to-market is significant. The coefficient for

the leverage factor is never significant if the size variable is included. Finally, the coefficient

for negative earnings-price ratio is never significant. All in all, it seems safe to say that, under

all circumstances, the size variable plays an important role for explaining the cross sectional

differences among asset returns.

5 Conclusion

In this paper we analyse the ability of beta and other factors to explain cross-sectional

variation in average stock returns on the Swedish stock market for the period 1980-1990. We

correct for errors in variables problem of the estimated market beta by using the method of

Litzenberger and Ramaswamy (1979). In the second-pass regression we use a pooled

                                                
3 We have also performed the extreme bound analysis when first the constant is left out and secondly when beta
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regression model besides OLS to estimate the risk premiums of the different factors, the

pooled model gives more efficient estimates than to use separate cross-sectional regressions.

The pooled regression is also used for an extreme bound analysis.

In the test of the simple one-factor equilibrium model beta is not priced but it still captures a

lot of the market risk. The result may just be due to the fact that excess market return is not

often positive enough in our sample. We share this problem with a lot of other investigations.

We find that beta is priced differently in periods with positive versus periods with negative

realised market return. Beta has significant coefficients in both states and it is particularly

influential in bad states. Thus, beta is a very important variable for explaining cross-sectional

differences among asset returns and its price is conditional on the sign of realised excess

market returns.

In the multi-factor equilibrium model we analyse if there are other explanatory variables

besides beta that can explain cross-sectional variation in average stock returns. The variables

are: firm size, book-to-market, leverage, earnings-price ratio and a dummy if the last variable

is negative. In general, few variables are significant whether beta is corrected for errors in

variables or not. The picture is different for the pooled regression on annual data: several

variables are now significantly prized and size and book-to-market has the same sign as in

studies on U.S. data. The coefficient for beta is positive but it is still not significantly different

from zero.

                                                                                                                                                        
is left out. The coefficient of the size variable is robust even to these specifications.
4 In fact, if the size factor is left out the coefficient of beta is negative.
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In an extreme bound analysis of the pooled regressions we examine the sensitivity of the

estimated coefficients to changes in the number of the explanatory variables. On its own the

coefficient for beta is not significantly different from zero. But it is related to the size

variable, if size is included the coefficient for beta is positive but not significant. The

coefficient for the size variable is always significantly negative. The coefficients for book-to-

market and earnings-price ratio are always significant if both variables are included. But these

variables are highly positively correlated and their coefficients are highly negatively

correlated. We conclude that the size variable seems to be most important for explaining the

cross sectional differences among asset returns.
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Table 1. One factor equilibrium model
The table reports the results of the one factor equilibrium model; when beta is used as the only

measure of risk. The first rows in the table report the averages, standard errors, t-values, and

the significance level of the estimated coefficients from the one factor cross-sectional model:

Rt = IN γ0t + βt γ1t  +  ε.

The cross-sectional model is estimated for 126 months, correcting the errors in variables

problem. The t-statistics are computed as ( )Γ
Γ

= ˆ
ˆ

σ
t , where [ ]10 ˆ,ˆˆ γγ=Γ . Γ̂ and ( )Γ̂σ  are

estimated by two alternative methods.

Alt. 1
T

t t∑ Γ
=Γ

ˆ
ˆ and  ( ) ( )

( )1

ˆˆ
ˆ

2

−
Γ−Γ

=Γ ∑
TT

t tσ

Alt. 2 ∑ Γ=Γ
t ttZ ˆˆ and  ( ) ( )∑ Γ=Γ

t ttZ ˆvarˆ 2σ ,

where 
[ ]

[ ]∑
−

−

Γ

Γ
=

t t

t
tZ 1

1

)ˆvar(

)ˆvar(
and )ˆvar( tΓ   is the estimated variance for the tΓ̂

from the cross-section regressions at time t.

OLS WLS EIV-corrected
Constant Beta Constant Beta Constant Beta

Alt. 1 Coeff. 0.873 -0.232 0.66 0.10 0.58 0.17
Std 0.476 0.364 0.52 0.40 0.70 0.77
t-value 1.833 -0.637 1.27 0.21 0.84 0.22
p-value 0.07 0.52 0.25 0.80 0.40 0.83

Alt. 2 Coeff. 0.82 -0.13 0.49 0.24 0.29 0.48
Std 0.21 0.20 0.21 0.21 0.38 0.38
t-value 3.82 -0.66 2.30 1.15 0.76 1.27
p-value 0.00 0.51 0.02 0.25 0.45 0.21
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Table 2. Monthly cross-sectional regressions for periods with positive and
negative excess market returns
The table reports the averages for the estimated coefficients from the one factor cross-

sectional model for periods with positive and negative realised market return respectively.

The estimates from the monthly regressions, t0γ̂  and t1γ̂ , are divided into two periods and the

test is performed separately for each period. The t-statistics for each period are computed as

( )Γ
Γ

= ˆ
ˆ

σ
t , where [ ]10 ˆ,ˆˆ γγ=Γ . Γ̂  and ( )Γ̂σ  are estimated by two alternative methods.

Alt. 1
( )

+
+

∑ ≥Γ
=Γ

T

R
t

mtt 0ˆ
ˆ and  ( )

[ ]( )
( )1

ˆ0ˆ
ˆ

2

−

Γ−≥Γ
=Γ ++

+

+
∑

TT

R
t

mtt

σ

Alt. 2 ( )∑ ≥Γ=Γ+

t
mttt RZ 0ˆˆ and ( ) ( )∑ ≥Γ=Γ+

t
mttt RZ 0ˆvarˆ 2σ ,

where 
[ ]

[ ]∑
−

−

≥Γ

≥Γ
=

t mtt

mtt
t

R

R
Z 1

1

)0ˆvar(

)0ˆvar(
and )ˆvar( tΓ   is the estimated variance for

the tΓ̂  from the cross-section regressions at time t. T+ is the number of periods

with positive excess market returns.

The estimates for the negative periods, 1ˆ −Γ  and ( )1ˆ −Γσ  are derived in an analogous manner.

Positive Negative
Constant Beta Constant Beta

Alt. 1 Coeff. 2.11 2.67 -1.52 -3.28
Std 0.82 0.84 1.16 1.29
t-value 2.58 3.18 -1.32 -2.54
p-value 0.01 0.00 0.19 0.01

Alt. 2 Coeff. 1.67 2.01 -1.77 -1.82
(Weighted) Std 0.49 0.49 0.60 0.60

t-value 3.39 4.10 -2.94 -3.03
p-value 0.00 0.00 0.00 0.00
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Table 3 Monthly cross-sectional regressions for the multi-factor model
The table reports the averages for the estimated coefficients from the multi-factor cross-

sectional model.

Rt = IN γ0t + βt γ1t +  Xt-1 Γ2t + εt,

where  Rt = (R1t,…. RNt)' is the vector of return in excess of the risk free rate for N assets,

βt  = (β1t,…. βNt)' is the true market beta vector; Xt-1 is a N×K matrix which includes K

explanatory variables.

The cross-sectional model is estimated for 126 months. The t-statistics are computed as

( )Γ
Γ

= ˆ
ˆ

σ
t , where [ ]210

ˆ,ˆ,ˆˆ Γ=Γ γγ . Γ̂ and ( )Γ̂σ  are estimated by two alternative methods.

Alt. 1
T

t t∑ Γ
=Γ

ˆ
ˆ and  ( ) ( )

( )1

ˆˆ
ˆ

2

−
Γ−Γ

=Γ ∑
TT

t tσ

Alt. 2 ∑ Γ=Γ
t ttZ ˆˆ and  ( ) ( )∑ Γ=Γ

t ttZ ˆvarˆ 2σ ,

where 
[ ]

[ ]∑
−

−

Γ

Γ
=

t t

t
tZ 1

1

)ˆvar(

)ˆvar(
and )ˆvar( tΓ   is the estimated variance for the tΓ̂  from

the cross-section regressions at time t.
Constant Beta Size Book

To
Market

Leverage E/P
Positive

E/P
Negative
Dummy

OLS Coeff. 0.10 -0.32 0.07 0.51 -0.02 1.30 -1.16
Std 9.24 3.69 1.13 3.61 0.52 13.78 6.23
t-value 0.13 -0.97 0.70 1.60 -0.36 1.06 -2.09
p-value 0.90 0.33 0.48 0.11 0.72 0.29 0.04

WLS Coeff. 0.02 0.08 0.04 0.61 -0.01 0.63 -0.98
Std 0.90 0.37 0.11 0.32 0.05 1.19 0.54
t-value 0.02 0.22 0.32 1.89 -0.18 0.53 -1.82
p-value 0.98 0.83 0.75 0.06 0.86 0.60 0.07

WLS Coeff. -0.43 0.12 0.06 0.19 0.00 -0.08 -0.70
Weighted Std 0.44 0.23 0.06 0.10 0.01 0.22 0.41

t-value -0.98 0.50 1.13 1.88 0.30 -0.36 -1.70
p-value 0.33 0.62 0.26 0.06 0.77 0.72 0.09

EIV-Corrected Coeff. 0.50 1.94 -0.22 0.24 -0.04 0.77 -1.28
Std 0.98 1.64 0.22 0.41 0.05 1.22 0.57
t-value 0.51 1.18 -0.99 0.59 -0.91 0.63 -2.24
p-value 0.61 0.24 0.32 0.55 0.36 0.53 0.03

EIV-Corrected Coeff. -0.63 0.22 0.18 0.20 0.00 -0.22 -0.95
Weighted Std 0.51 0.58 0.08 0.15 0.01 0.30 0.49

t-value -1.23 0.38 2.29 1.37 0.16 -0.73 -1.94
p-value 0.22 0.70 0.02 0.17 0.88 0.47 0.05
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Table 4 Multi-factor pooled regressions
The table reports the coefficients estimated by the multi-factor pooled regression model, with

and without correcting for errors in variables.

itR~  = γ0 + γ1 βit +  Γ2 Xi,t-1 + εit,

where itR~  is the annual average of the monthly returns.

t = 1,.…., *
iT and i = 1,....,N.

*
iT  is the number of the years included in the study, which is equal to 11.

Constant Beta Size Book
To

Market

Leverage E/P
Positive

E/P
Negative
Dummy

OLS Coeff. 2.98 0.14 -0.47 0.41 0.00 -0.75 -0.55
Std 0.80 0.41 0.10 0.14 0.01 0.27 0.62
t-value 3.71 0.33 -4.53 2.89 -0.17 -2.84 -0.90
p-value 0.00 0.74 0.00 0.00 0.86 0.00 0.37

WLS Coeff. 3.94 0.50 -0.66 0.64 0.00 -1.18 -1.10
Std 0.83 0.47 0.11 0.19 0.02 0.35 0.78
t-value 4.73 1.07 -6.13 3.43 0.24 -3.34 -1.41
p-value 0.00 0.29 0.00 0.00 0.81 0.00 0.16

EIV-Corrected Coeff. 3.00 1.05 -0.65 0.71 0.01 -1.27 -1.46
Std 1.00 1.03 0.13 0.24 0.02 0.45 0.89
t-value 3.01 1.02 -5.06 2.94 0.47 -2.81 -1.65
p-value 0.00 0.31 0.00 0.00 0.64 0.01 0.10



24

Table 5. Sensitivity analysis
The table reports the coefficients and their t-values resulted from the extreme bounds analysis

of the multi-factor pooled regression model, correcting for errors in variables.

Constant Beta Size Book
To

Market

Leverage E/P
Positive

E/P
Negative
Dummy

Coeff t-value Coeff t-value Coeff t-value Coeff t-value Coeff t-value Coeff t-value Coeff t-value
3.00 3.01 1.05 1.02 -0.65 -5.06 0.71 2.94 0.01 0.47 -1.27 -2.81 -1.46 -1.65
2.80 2.83 1.05 1.01 -0.62 -4.90 0.64 2.71 0.01 0.34 -1.14 -2.56
3.41 3.38 1.66 1.71 -0.74 -6.10 0.05 0.95 0.01 0.30 -1.01 -1.15
3.06 3.10 1.04 1.01 -0.65 -5.07 0.70 2.92 -1.26 -2.78 -1.43 -1.62
3.51 3.47 1.71 1.75 -0.75 -6.24 0.00 0.29 0.02 0.23 -1.00 -1.13
-0.58 -0.65 -0.53 -0.58 1.08 4.75 0.01 0.56 -1.91 -4.46 -0.83 -0.94
3.24 3.24 1.62 1.66 -0.72 -6.01 0.05 0.94 0.00 0.22
3.45 3.45 1.65 1.70 -0.74 -6.10 0.05 0.95 -0.99 -1.13
2.85 2.91 1.04 1.01 -0.62 -4.91 0.64 2.69 -1.14 -2.55
-0.61 -0.69 -0.50 -0.55 1.03 4.67 0.01 0.49 -1.82 -4.37
-0.76 -0.85 0.09 0.10 0.10 1.76 0.01 0.30 0.05 0.06
-0.51 -0.58 -0.55 -0.60 1.07 4.73 -1.90 -4.43 -0.79 -0.90
-0.73 -0.81 0.13 0.14 0.00 0.28 0.06 0.58 0.11 0.13
3.33 3.33 1.66 1.71 -0.73 -6.17 0.00 0.21 0.03 0.27
3.52 3.50 1.71 1.75 -0.76 -6.27 0.00 0.29 -1.00 -1.14
3.54 3.54 1.70 1.74 -0.75 -6.25 0.02 0.23 -0.98 -1.11
3.27 3.30 1.61 1.66 -0.72 -6.02 0.05 0.94
-0.76 -0.85 0.09 0.10 0.10 1.76 0.01 0.31
3.35 3.36 1.66 1.71 -0.73 -6.19 0.00 0.21
-0.56 -0.63 -0.52 -0.57 1.02 4.66 -1.82 -4.35
3.36 3.39 1.65 1.71 -0.73 -6.17 0.03 0.27
-0.72 -0.80 0.13 0.14 0.00 0.29 0.06 0.58
-0.70 -0.78 0.11 0.13 0.00 0.28 0.10 0.12
-0.72 -0.82 0.08 0.09 0.10 1.75 0.07 0.08
3.56 3.57 1.69 1.74 -0.76 -6.27 -0.99 -1.12
-0.69 -0.78 0.11 0.13 0.06 0.58 0.13 0.15
3.38 3.42 1.65 1.71 -0.73 -6.19
-0.72 -0.82 0.08 0.09 0.10 1.76
-0.70 -0.78 0.11 0.13 0.01 0.29
-0.69 -0.78 0.11 0.13 0.06 0.58
-0.67 -0.75 0.10 0.11 0.12 0.14
-0.66 -0.75 0.10 0.11

Min. -0.76 -0.85 -0.55 -0.60 -0.76 -6.27 0.05 0.94 0.00 0.21 -1.91 -4.46 -1.46 -1.65
Max. 3.56 3.57 1.71 1.75 -0.62 -4.90 1.08 4.75 0.01 0.56 0.06 0.58 0.13 0.15
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Table 6. Correlation matrix of the explanatory variables
The table reports the correlation matrix of the explanatory variables based on the total number

of observations.

Beta Size Book
 To

Market

Leverage E/P
Positive

E/P
Negative
Dummy

Beta 1.00
Size 0.14 1.00
Book  To Market -0.01 -0.13 1.00
Leverage -0.03 -0.06 -0.01 1.00
E/P Positive -0.05 -0.07 0.97 0.00 1.00
E/P Negative Dummy 0.06 -0.23 0.03 0.14 -0.03 1.00
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Table 7. Correlation matrix of the coefficients estimated by the pooled
regression
The table reports the correlation matrix of the estimated coefficients estimated by the multi-
factor pooled regression model, correcting for errors in variables.

Constant Beta Size Book
 To

Market

Leverage E/P
Positive

E/P
Negative
Dummy

Constant 1.00
Beta -0.29 1.00
Size -0.86 -0.20 1.00
Book  To Market -0.23 -0.20 0.25 1.00
Leverage -0.09 0.02 0.03 0.07 1.00
E/P Positive 0.20 0.20 -0.23 -0.98 -0.07 1.00
E/P Negative Dummy -0.17 -0.06 0.19 -0.18 -0.14 0.19 1.00


