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Low-complexity MISO models of T1DM glucose metabolism

Marzia Cescon, Rolf Johansson and Eric Renard

Abstract— One of the main limiting factor in developing
a control algorithm for glycemia regulation is the lack of a
control-oriented, parsimonious yet physiologically sound and
individualized model able to reflect the basic dynamical features
of the glucose-insulin metabolic system required for the control
design. In this paper we focus on estimating low-complexity
MISO models of the glucose metabolism in T1DM developed
specifically for a controller implementing a basal-bolus ther-
apy. The models are continuous-time second-order transfer
functions relating the amount of carbohydrate of a meal and
the insulin dose administered accordingly (inputs) to plasma
glucose evolution (output) and consist of 4 parameters clinically
relevant to be identified.

I. INTRODUCTION

Diabetes Mellitus is a chronic disease of disordered glu-
cose metabolism due to defects in either insulin secretion by
the pancreatic β -cells or insulin action [1]. In particular, Type
1 Diabetes Mellitus (T1DM), being caused by no production
of insulin whatsoever, is characterized by abnormally high
blood glucose levels (hyperglycemia, blood glucose > 180
[mg/dL]) leading to serious health damages. In order to
prevent the long term complications associated to the sus-
tained hyperglycemia it becomes critical, then, for diabetic
patients to regulate their blood glucose tightly, maintaining
its level within the near-normal range (70−180 [mg/dL]) [2].
Because insulin lack defines the disease, exogenous insulin
replacement administered with either multiple daily injec-
tions (MDI) or with an external insulin infusion pump (CSII)
is the hallmark of the treatments. The idea behind conven-
tional therapy insulin regimens is to mimic the physiological
insulin secretion pattern of the non-diabetic subjects using
delayed-acting (basal) doses to provide a background insulin
concentration throughout the day and short-acting (bolus)
doses to simulate the normal prandial insulin levels, this
strategy being called basal-bolus regimen. The task is non
trivial and demanding, therefore the development of control
tools aiming at assisting the patients in the management
of their disease has been the focus of extensive research
for almost 40 years [3] and is progressing towards a fully
automated closed-loop control artificial pancreas [4], [5].
However, while such a system is expected to improve the
quality of life reducing the time plasma glucose is outside
the target range, it will be suitable and affordable only
for a minority. In addition, closed-loop control introduces
certain risks, the most dangerous being potentially severe
and unavoidable hypoglycemia induced by overdelivery of
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insulin compensating for hyperglycemia following a meal
[3]. Against this background, the availability of an “advisory
system” recommending the user to take appropriate insulin
injections and eventually recovery carbohydrates, would be
desirable. Within this scenario the controller is expected
to determine impulse-like control inputs, namely insulin
shots and amount of carbohydrate of a meal, which are not
automatically applied but rather suggested to the patient,
thereby assuring safety. When an advice is suggested by the
algorithm, the patient can accept or reject it, remaining firmly
in the loop. As a matter of fact, this was the focus of the
major European project DIAdvisor TM [6]. The development
of such a controller requires mathematical models able to
quantify the effect on plasma glucose of insulin injections
and meal intakes, represented as impulses applied at irreg-
ularly sampled discrete time instants. To date several types
of glucose metabolism models have been proposed (see e.g.
[3] for a comprehensive review), most of these efforts being
first-principles based descriptions of diabetes physiology [7],
[8], [9] and only to a lesser extent mathematical modeling by
means of system identification [10], [11], [12]. Neverthless,
despite significant attention to the problem, the idea of
building models specifically for control purposes has not
emerged in the field until very recently [13], [14] [15]. That
said, keeping in mind that modeling is efficient when it is
tailored to the control design applications it was formulated
for [16], [17], our purpose is to estimate approximate, low-
order, physiologically sound models from real T1DM pa-
tients data for future use in a model-based control framework
targeting a basal-bolus treated population. In the application
considered the two control inputs are simultaneous, since
according to clinical practice, the subject boluses at the same
time of the meal intake, making it difficult to distinguish
each input’s contribution to blood glucose fluctuations. In
addition, the possibilities for experiment design are limited
due to strict safety requirements and patient risk. In the
light of the above considerations and bearing in mind that
ideally the collected data should be maximally informative
with respect to the intended use of the model [18] revealing
exactly the information required for the control design [16], a
novel and unique clinical database was created and exploited
to our objectives. The remainder of the paper is organized
as follows. Section II deals with data collection and the
explanation of the modeling work. Section III presents
identification and validation results for the estimated models
over the considered population, while the discussion on the
achievements is left to Sec. IV. Finally, Sec. V concludes the
paper with final remarks and considerations for future work.



TABLE I

SELECTED POPULATION: PATIENTS CHARACTERISTICS

Name Gender BMI [kg/m2] Age Therapy

P4 M 25.39 41 MDI
P5 M 31.07 61 CSII
P8 F 31.51 56 CSII

P10 F 25.50 27 CSII
P12 M 23.38 36 CSII

II. MATERIAL AND METHODS

A. Experimental conditions

The clinical protocol for data acquisition was designed
under the aegis of DIAdvisor TM [6], a large scale FP7-
IST European project, reviewed and approved by the eth-
ical committee of the Clinical Investigation Center (CIC)
in Montpellier, France. A population of T1DM subjects
using basal-bolus insulin regimen participated in the study
signing an informed and witnessed consent form. Patients
characteristics are reported in Table I. The trial comprised
a series of experiment sessions for a duration of up to 9
weeks per patient. In particular, a novel meal test was carried
out as follows. Patients were admitted at the clinic for a 6
hours observation period, from 7:00 am to 1:00 pm, fasting
from the midnight. A standardized breakfast, the amount
of carbohydrate being 40 [g], was served at 8:00 am. The
patients calculated and noted on their personal logbook the
amount of insulin needed to cover this meal, based on the
outcome of their personal glucose meter. However, contrary
to standard practice, the insulin bolus was administered 2
hours later. No other meals nor snacks were consumed up
until 1:00 pm. Blood samples were drawn every 10 minutes
for the 3 hours following the meal intake and every 20
minutes otherwise to assess glucose concentration by means
of a Yellow Spring Instrument (YSI) 2300 STAT Plus blood
glucose analyzer. A second meal test was performed 14±3
days apart, on day 3 of a 72-hours long in-hospital visit.
Blood samples were drawn every 15 minutes for the 4
hours following carbohydrate ingestion to assess glucose
concentration with the YSI. Prior to the above mentioned
test, the subjects performed an exercise test on an ergo-
cyclometer on day 1, whereas they were served a big meal
containing 100 [g] carbohydrate on day 2, in order to excite
the system. Figures 1-4 show such experiments for two
representative subjects.

B. Modeling strategy

Second order linear transfer function models were pro-
posed to approximate the behaviour of glucose in response
to meal and insulin intakes. The choice was based on the
analysis of the collected data and confirmed by physiology
as follows. From steady-state conditions during the sleep and
almost constant blood glucose levels corresponding to the
overnight fast as seen in the time interval before 8.00 am, at
8.00 am an input was applied, namely 40 [g] of carbohydrate
intake, which caused the controlled variable to rise (figs. 1-4).

7:00 8:00 9:00 10:00 11:00 12:00 13:00

50

100

150

200

250
Representative patient data

[m
g/

dL
]

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

20

40

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

5

10

Time[h]

[g
]

[I
U
]

Fig. 1. Patient 4. Meal test data, first admission. Top Blood glucose
measured by the YSI [mg/dL]; Center Carbohydrate intake [g]; Bottom

Insulin bolus [IU]. All the measurements vs. Time of the day [h]
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Fig. 2. Patient 8. Meal test data, second admission. Top Blood glucose
measured by the YSI [mg/dL]; Center Carbohydrate intake [g]; Bottom

Insulin dose [IU]. All the measurements vs. Time of the day [h]

In absence of any action taken, plasma glucose concentration
didn’t fall (time interval 8.00 am to 10.00 am). Then, the
insulin shot which was previously calculated by the patient
was administered, making glucose concentration to fall. In
contrast to most of the existing models in the literature, we
did not use any compartment model for the description of
the rate of appearance in plasma following a food intake,
nor for the subcutaneous depots-to-plasma insulin dynamics,
rather we modeled the inputs as impulses applied at time
instants tcarb = 8.00 am and tins = 10.00 am, respectively. We
assumed noise-free conditions, as plasma glucose is directly
available thanks to the YSI. All these facts, led us to the
formulation of the following OE-model structure [19]:

YBG(s) = Gcarb(s)ucarb(s)+Gins(s)uins(s) (1)

where YBG(s) is the Laplace transform of the output blood
glucose concentration; the transfer functions from carbohy-
drate to blood glucose and from insulin to blood glucose are
given in Eq. 2 and 3, respectively.

Gcarb(s) =
Kcarb

s(1+ sTcarb)
(2)
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Fig. 3. Patient 12. Meal test data, first admission. Top Blood glucose
measured by the YSI [mg/dL]; Center Carbohydrate intake [g]; Bottom

Insulin bolus [IU]. All the measurements vs. Time of the day [h]
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Fig. 4. Patient 12. Meal test data, second admission. Top Blood glucose
measured by the YSI [mg/dL]; Center Carbohydrate intake [g]; Bottom

Insulin dose [IU]. All the measurements vs. Time of the day [h]

Gins(s) =
Kins

s(1+ sTins)
(3)

Further, ucarb,uins ∈ Z+ are the inputs carbohydrate amount
and insulin doses, respectively, Kcarb,Kins ∈ R are the gains
and Tcarb,Tins ∈R time constants governing rise and fall, re-
spectively, of plasma glucose. Our objective was to estimate
the unknown parameter vector θ̂ = [K̂carb K̂ins T̂carb T̂ins]
so that the estimation error between the actual blood glucose
data yBG(t) and the simulated model data ŷBG(t) is minimized
in a least-squares sense:

θ̂ = argmin
θ

∫ T

0
(yBG(t)− ŷBG(t))

2dt (4)

where t is the continuous-time index and T = 5 [h], subject
to some constraints on θ , namely K̂carb > 0, K̂ins < 0 to
guarantee qualitatively correct responses to inputs (blood
glucose increases after a meal intake and decreases after an
insulin shot) and T̂carb, T̂ins > 0 to guarantee stability. Now,
the search for the solution of the non-convex problem in
Eq. 4 may lead to local minima and possibly ill-conditioned
calculations, so to limit these problems we first tuned the
parameter values empirically by trial and error using intuition
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Fig. 5. Patient 4. Impulse responses of the proposed model structure. Left

Response to carbohydrate; Right Response to insulin

until we obtained a reasonable fit with the data. Next, we
refined the choice by means of the Matlab R© [20] function
pem.m initialized with the hand-tuned parameters. Last,
the output plasma glucose was interpolated and uniformly
resampled, the sampling period being 1 [min].

III. RESULTS

The identified models were the following:

y(t) =
3

s(s+ 0.1)
u1δ (t)+

−5
s(s+ 0.1)

u2δ (t)

y(t) =
5

s(s+ 0.3)
u1δ (t)+

−20
s(s+ 0.3)

u2δ (t)

y(t) =
30

s(s+ 0.1)
u1δ (t)+

−41
s(s+ 5)

u2δ (t)

y(t) =
20

s(s+ 0.1)
u1δ (t)+

−20
s(s+ 18)

u2δ (t)

y(t) =
45

s(s+ 0.1)
u1δ (t)+

−20
s(s+ 25)

u2δ (t)

for patient 4, 5, 8, 10 and 12, respectively.
Table II summarizes the model parameters across the

population. Figure 5 gives an example of impulse responses
to carbohydrate and insulin, respectively, obtained with a
model of structure (1) for a representative patient. Figures
6-10 left panels show the simulated models output using
calibration data.

As for the assessment of model performances, the follow-
ing metrics were considered:

• Percentage FIT:

FIT =
(

1−
‖y(t)− ŷ(t)‖

‖y(t)− ȳ(t)‖

)

× 100%

where y(t) are the actual measurements, ŷ(t) are the
model predictions, ȳ is the mean value of y(t) and
‖ · ‖ is the Euclidean norm. This metric measures how
much variability in the data is explained by the model
prediction.

• Percentage Variance Accounted For (VAF) calculated
as:

VAF =
(

1−
E[(y(t)− ŷ(t))(y(t)− ŷ(t))⊺]

E[y(t)y⊺(t)]

)

× 100%



TABLE II

ESTIMATED MODELS: IDENTIFIED PARAMETERS

Name K̂carb K̂ins T̂carb T̂ins

P4 3 -5 10 10
P5 5 -20 3.3 3.3
P8 30 -41 10 0.2

P10 20 -20 10 0.05
P12 45 -20 10 0.04

TABLE III

ESTIMATED MODELS: PERFORMANCE METRICS ON CALIBRATION DATA

Name FIT [%] VAF [%] RMSE [mg/dL2]
P4 95.9674 79.9187 10.9273
P5 94.2674 80.0200 12.39
P8 96.8484 82.2500 10.3631
P10 98.4969 87.7398 7.0873
P12 96.9014 82.3971 7.9706

TABLE IV

ESTIMATED MODELS: PERFORMANCE METRICS ON VALIDATION DATA

Name FIT [%] VAF [%] RMSE [mg/dL2]

P4 98.3433 87.1287 10.5380
P5 96.4356 81.1203 15.4572
P8 86.0122 62.5997 25.3631
P10 98.4299 87.4697 9.9095
P12 93.7859 75.0718 11.0476

where E[·] denotes mathematical expectation. The VAF
of two signals that are the same is 100%. If they differ,
the VAF will be lower.

• Root Mean Square Error (RMSE) [mg/dL2]:

RMSE =

√

(y(t)− ŷ(t))(y(t)− ŷ(t))⊺

n

where n denotes the number of samples.
Table III presents results obtained on the estimation data.

Last, we compare the statistics across the population on
identification data in figs. 11, where the central mark in
each box is the median of the empirical variance over the
population, the edges are the 25th and 75th percentiles.

A. Model Validation

Validation was perfomed on a completely new set of data
collected 14 ± 3 days apart, in different conditions with
respect to those of the first admission: in the first visit,
indeed, the patients were admitted to the hospital the exact
day of the meal test, in the second visit the patients spent
already 2 days in hospital in a controlled environment, being
served standardized meals, conditions that certainly affects
glucose metabolism. However, the experimental data exibited
a feature of reproducibility in response to the inputs. This
characteristic was verified by cross validation (Figs. 6-10 and
11 right panels, Table IV).

IV. DISCUSSION

We have proposed continuous-time transfer function mod-
els of second order to be used in a model-based controller
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Fig. 6. Patient 4. Validation results. Left Simulation using identification
data; Right Simulation using validation data. Actual interpolated blood
glucose (dotted) and estimated blood glucose from the model (solid) vs.
Time [h].
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Fig. 7. Patient 5. Validation results. Left Simulation using identification
data; Right Simulation using validation data. Actual interpolated blood
glucose (dotted) and estimated blood glucose from the model (solid) vs.
Time [h].

for glycemia regulation. The set-up is that of a basal-bolus
therapy, involving impulsive control variables, namely insulin
shots and meal carbohydrates, administered several times
over the course of the day at irregularly spaced time instants.
We remind the reader in passing that this framework differs
from most of the proposed strategies to manage diabetes in an
automated fashion [4], [5], [21], [22], [23], [24] nevertheless,
it is the most widespread approach among the diabetics to
cure their disease and in the authors’ opinion it represents a
viable path worth pursuing and investigating. The parameters
in the models are linked to clinical variables. In particular,
Kcarb, Tcarb can be related to glucose tolerance, i.e., how the
body metabolizes glucose, whereas Kins, Tins are connected to
insulin sensitivity or resistance, i.e., how effective is insulin
in lowering blood glucose. Actually, prior information could
be incorporated in the tuning procedure, taking into account
the patient personal history of the disease and the experience
gained in its regulation. It is a well known fact, indeed, that
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Fig. 8. Patient 8. Validation results. Left Simulation using identification
data; Right Simulation using validation data. Actual interpolated blood
glucose (dotted) and estimated blood glucose from the model (solid) vs.
Time [h].
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Fig. 9. Patient 10. Validation results. Left Simulation using identification
data; Right Simulation using validation data. Actual interpolated blood
glucose (dotted) and estimated blood glucose from the model (solid) vs.
Time [h].
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Fig. 10. Patient 12. Validation results. Left Simulation using identification
data; Right Simulation using validation data. Actual interpolated blood
glucose (dotted) and estimated blood glucose from the model (solid) vs.
Time [h].
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Fig. 11. Population study. Top Panels Percentage FIT; Center Panels

Percentage VAF; Bottom Panels RMSE [mg/dL2]. Each box presents the
results achieved over the considered population. The central mark is the
median, the edges of the box are the 25th and 75th percentiles. Left Using
calibration data. Right Using validation data.

the subjects learn by trial-and-error how their glycemia reacts
to different sources of carbohydrate and different insulin
analogues. The approach resembles standard clinical practice
being personalized due to the high inter-subject variability
and particularly appealing as it amounts to estimating only
4 parameters in the plausible range, provided that the data
for identification are informative enough with respect to
the model application. Contrary to previous contributions
dealing with simulated data obtained with in-silico ad-hoc
experiments, e.g. [15], [24], we have employed actual T1DM
patient data collected within a major European study, DIAd-
visor TM [6]. Experiment design turned out to be of crucial
importance, not only being tightly connected to the intended
use of the model but also being constrained due to safety
issues when dealing with patients harm. Despite the simple
structure the models are able to sufficiently describe the main
dynamics of the gluco-regulatory system and in our opinion
are suitable for controller design. The resulting blood glucose
profile seems to reflect what observed by the clinicians in the
care units, i.e., a plausible increase of glycemia in response
to carbohydrate, and a decrease of glycemia in response
to insulin. In addition, the time constants estimated seems
to be appropriate, being in the range 40− 60 [min]. Time
delays accounting for food transportation along the gastro-
intestinal tract and insulin kinetics from the subcutaneous
tissues to plasma has not been considered at this point
but could be easily incorporated in the model structure as
in [25]. The main reason for not including such delays



is that we are focusing on obtaining models useful for
control applications, able to provide an approximation of
the real system, that are as simple as possible, yet able
to describe glucose evolution. The proposed models have
been obtained from breakfast data only and may, hence, turn
out not to be accurate in modeling lunch and dinner. In
order to assess whether or not this is the case, a clinical
meal test similar to that used in this contribution should be
carried out and the same method applied to the new set of
data. In the actual setting the controller performances will
be assessed by subcutaneous continuous glucose monitoring
sensor (CGMS) or self-monitoring finger-stick glucose meter
(SMBG) measurements, introducing issues such as sensor
noise, device recalibration, time delays just to mention a few.
This contrasts our assumption of noise-free set-up and would
require additional components to the control system, i.e., a
sensor model [26], [27].

V. CONCLUSIONS AND FUTURE WORK

Low order continuous-time transfer function models have
been identified from actual T1DM patients data collected
adhering to a unique protocol for a meal test. The strategy
is appealing as it amounts to estimating only 4 parameters.
The parameters have intuitive meaning that can be linked
to clinical practice. The structure seems to be suitable for
controller design mimicking a basal-bolus type of therapy
for insulin treated subjects. The paper considered breakfast
data only due to lack of data for lunch and dinner. Thus,
it would be interesting to perform the same type of meal
test experiments, upon protocol approval by the ethical
committees and consequent modeling for other meals or
snacks. Future work will be carried out to extend the study
on a larger population.
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