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Testing for Stationarity in Panel Data when Errors
are Serially Correlated. Finite-Sample Results.∗

Kristian Jönsson†

February 18, 2005

Abstract

In this paper, we study the small sample properties of the panel data stationar-
ity test of Hadri (2000). We find that the previously suggested moments, that are to
be used when standardizing the panel data stationarity test, cause size distortions
when samples are small and serial correlation in the disturbance terms is allowed
for. Instead, we supply standardizing moments that are to be used in a panel data
stationarity test when samples are small and serial correlation in the disturbances
may be an issue. We also document a serious small-sample bias in the panel data
stationarity test when a linear trend is present in the data.

JEL Classification: C15; C23; C32; C33
Keywords: Panel Data; Stationarity; Serial Correlation; Monte Carlo Simulation

1 Introduction

Ever since the seminal papers by Levin and Lin (1992, 1993), Quah (1994) and
Im et al. (1997), the development of time-series methods in the panel data setting
has flourished. More recently, Hadri (2000) considers a stationarity test applied
to panels. When performing the panel data stationarity test of Hadri (2000), a
univariate stationarity test is performed on each of the time series in the panel.
By standardizing the univariate test statistics by appropriate moments and then
calculating the average of the univariate test statistics, a panel test statistic with a
standard normal limit can be obtained. The appropriate asymptotic moments for
the standardization has been supplied by Hadri (2000), while Hadri and Larsson
(2003) provide finite-sample moments. The asymptotic behavior of the test statis-
tic is independent of the presence or absence of serial correlation in the stationary
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Westerlund for helpful discussions regarding the topics covered in this paper. Financial support from
the Crafoord Foundation is also gratefully acknowledged.
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disturbance terms, as long as the long-run variance of the disturbance term i consis-
tently estimated, while the finite-sample moments, supplied by Hadri and Larsson
(2003), are obtained under the assumption that the stationary noise process are
serially uncorrelated.

In this paper, we investigate if the finite-sample or asymptotic moments can
be applied in small-sample situations where serial correlation in the disturbances
might be an issue. We find that the moments supplied by Hadri (2000) and Hadri
and Larsson (2003), cause size distortions when the panel data stationarity test
is performed while allowing for serially correlated disturbances. We provide stan-
dardizing moments that can be used under a wide range of small-sample situations
and autocorrelation structures without disturbing the size of the test. However,
when investigating the power of the size-corrected panel data stationarity test, we
find that the test has a severe small-sample bias, especially when detreding the
cross-section time series with a linear trend. The loss of power in the panel data
setting is in line with previous results for univariate stationarity tests, that suggest
that the power of this test can be severely affected when serial correlation in the
disturbance terms is an issue (see e.g. Lee, 1996; Caner and Kilian, 2001).

The rest of this paper is organized as follows. In Section 2, we introduce the
panel data stationarity test of Hadri (2000) and discuss the standardizing moments
previously suggested. We then continue, in Section 3, by studying the performance
of the panel data stationarity test when applying the currently available standard-
izing moments. We investigate the size of the test under a variety of circumstances
regarding the autocorrelation structure. In Section 4, we present appropriate stan-
dardizing moments that can be used under different autocorrelation structures. We
also study the size and power properties of the suggested moments. Finally, Section
5 concludes the paper.

2 The panel data stationarity test

To test for stationarity in panel data, Hadri (2000) considers a panel data model
containing N different time series each consisting of T time series observations.
More specifically, the panel data model is described by (1) and (2) below.

yit = αi + δit + ξit + εit (1)
ξit = ξit−1 + ηit (2)

In (1), yit is an observation for cross section i at time t. {αi, δit} is an intercept
and a time trend, respectively, which are specific to cross section i. ξit describes a
random walk component. Finally, εit is a disturbance term, with a N(0, σ2

ε,i) dis-
tribution, which is assumed to be uncorrelated over cross sections. The evolvement
of the random walk component is described in (2), where ηit ∼ N(0, σ2

η,i).
The null hypothesis of panel data stationarity is represented by a zero variance of

the disturbance that drives the random walk, that is H0: σ2
η,i = 0 ∀ i. Kwiatkowski

et al. (1992) suggest that univariate stationarity, for cross section i, should be tested
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using the test statistic in (3), which have the limiting distribution in (4).

LMi =
T−2

∑T
t=1 S2

it

σ2
i

(3)

LMi →
σ2

i

∫ 1
0 V (r)2dr

σ2
i

=
∫ 1

0
V (r)2dr (4)

In (3), Sit =
∑t

j=1 εij is the partial sum process. σ2
i is the long-run variance

of εit, while
∫ 1
0 V (r)dr in (4) is a standard Brownian bridge. In practice, εit and

σ2
i are not known and these theoretical quantities have to be replaced by its es-

timated counterparts, ε̂it and σ̂2
i . ε̂it is found by demeaning and detrending each

individual time series using the deterministic components in (1), while the esti-
mator σ̂2

i depends of the nature of the disturbances, εit. If the disturbances are
serially uncorrelated, σ̂2

i in (5) can be used. If εit is stationary but autocorrelated,
Kwiatkowski et al. (1992) and Hadri (2000) suggest that the estimator σ̂2

i (l) of the
long-run variance in (6), with the weighting function w(s, l) in (7), can be used.

σ̂2
i = T−1

T∑

t=1

ε̂2
it (5)

σ̂2
i (l) = T−1

T∑

t=1

ε̂2
it + 2T−1

l∑

s=1

w(s, l)
T∑

t=s+1

ε̂itε̂it−s (6)

w(s, l) = 1− s

l + 1
(7)

Since all test statistics, LMi for i ∈ {1, ..., N}, are independent by assumption,
Hadri (2000) suggests that a panel data stationarity test is based on the average
of the univariate test statistics. By applying the sequential limit theory discussed
by Phillips and Moon (1999), and appropriately standardizing the average of the
individual test statistics, a panel data stationarity test with a standard normal
limit is achieved. The panel data test statistic, denoted LM(T,N→∞)seq

, and its
distribution is given in (8) below.

LM(T,N→∞)seq
=

N−1
∑N

i=1[LMi − E(LM∞)]√
V ar(LM∞)/N

⇒ N(0, 1) (8)

In (8), E(LM∞) and V ar(LM∞) are the expected value and the variance of the
functional of the Brownian bridge in (4). These moments depend on the detrend-
ing procedure used to obtain the residuals for the the individual stationarity test
statistics, LMi. If a only a an intercept is used when detrending the data, the appro-
priate asymptotic moments are given by E(LM∞) = 1/6 and V ar(LM∞) = 1/45,
while E(LM∞) = 1/15 and V ar(LM∞) = 11/6300 should be used when both an
intercept and a time trend is used to obtain the residuals.

The use of asymptotic moments can be problematic in empirical applications
since we always have to rely on finite samples that in addition often are small.
This lead Hadri and Larsson (2003) to derive standardizing moments to be used
for fixed, and finite, T . Let these moments be denoted E(LMT ) and V ar(LMT ).
With such moments at hand, we do not have to consider joint limit theory anymore
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since the moments for finite T is available. Instead we only have to consider cases
where N → ∞, while T is fixed. Hadri and Larsson (2003) hence supplied a new
panel data stationarity test, denoted LM(T fixed,N→∞), as in (9).

LM(T fixed,N→∞) =
N−1

∑N
i=1[LMi − E(LMT )]√
V ar(LMT )/N

⇒ N(0, 1) (9)

Hadri and Larsson (2003) show that the appropriate finite sample moments are
E(LMT ) = (T + 1)/6T and V ar(LMT ) = (T 2 + 1)/20T 2 − (T + 1)2/(6T )2 for the
case where an intercept is present and E(LMT ) = (T + 2)/15T and V ar(LMT ) =
(T + 2)(13T 2 + 23)/2100T 3 − ((T + 2)/15T )2 in the case where both an intercept
and a time trend is present. Simulation results, provided by Hadri and Larsson
(2003), show that the test statistic using these performs excellent when εit is white
noise. The key question that we address in this paper is whether the asymptotic and
finite-sample moments are appropriate also in in the presence of serially correlated
disturbances. This issue is investigated in the next section.1

3 The performance of the panel data station-

arity test

In this section we investigate which standardizing moments that are appropriate,
and which that are not, when performing the previously discussed panel data sta-
tionarity test.

We can note that the moments that are supplied by Hadri (2000) are asymptotic
moments. As such, they can be used regardless of whether or not serial correla-
tion is allowed for.2 However, in finite samples these moments are not appropriate.
Instead, in finite-sample situations, the moments supplied by Hadri and Larsson
(2003) can be used. However, these moments are obtained under the assumption
that the estimator of the error variance, given by (5), is valid. But when distur-
bances are possibly serially correlated this estimator is not valid. Instead, we have
to apply the estimator for the long-run variance in (6) and (7). This will imply
that the small-sample behavior of long-run variance estimator will affect the panel
data test statistic in such a way that the finite-sample moments become may be
inappropriate. However, the effects of using either asymptotic or finite-sample mo-
ments, while allowing for serially correlated disturbances, have not been greatly
investigated previously. Hence, a first step is to study whether moments currently
available can be used for inference about the stationarity hypothesis in the panel
data context.

To study whether the available moments can be used in the panel data station-
arity test, while allowing for serially correlated disturbances, we set up a Monte
Carlo study. We generate data according to (1) under different assumption regard-
ing the deterministic components. When only an intercept is considered, we let αi

1It can be noted that Tiffin (1999) obtain some preliminary results on the panel data test of Hadri
(2000). However, the results are somewhat unclear and provide no specific solution to all of the problems
encountered.

2Hadri (2004) provides simulation evidence that indicate that asymptotic moments can be applied
without problem when samples are large and serial correlation is allowed for.

4



be uniformly distributed over the interval [0, 10], i.e. αi ∈ U [0, 10], while βi = 0. In
the case where both an intercept and a time trend is considered we let αi ∈ U [0, 10]
and βi ∈ U [0, 2]. The distribution of the error term, εi, is set to N(0, 1). Under
the null hypothesis of stationarity, σ2

η,it = 0 ∀ i. This implies that ξit = ξi0 ∀ i.
Without loss of generality we can let ξi0 = 0 across all i.

To investigate the size of the panel data stationarity test, we generate data with
different time-series and cross-section dimension. More specifically we consider the
cases where T ∈ {10, 20, 30, 40, 50, 75, 100} and N ∈ {10, 25, 50}. For each of the
samples, we then apply the test in (3). However, since we are interested in the cases
where the error term is possibly serially correlated, we apply the variance estimator
given by (6) and (7) where l = int[k( T

100)0.25] with k ∈ {4, 8, 12, 16, 20, 24}.3,4 We
generate 10,000 test statistics for each sample size and choice of k and then calculate
the mean over the cross-sectional dimensions for these 10,000 test statistics. Using
the finite-sample and asymptotic moments, together with the 5% critical value from
the normal distribution, we then calculate the size of the panel data stationarity
test. The results are presented in Table 1 and Table 2.

In Table 1, we see the size of the panel data stationarity test when applying
the asymptotic moments of Hadri (2000). From the tables we see that the size of
the panel data stationarity test is severely distorted when we consider fine-sample
situations and allow for serially correlated disturbances. When we consider the
model with only an intercept, we see from Table 1 that the time-series dimension
has to be large, T ≥ 75, and the parameter determining the lag window has to
be small, k = 4, for the asymptotic moments to be applicable without causing
any size distortions. Under these circumstances, the asymptotic approximation for
the moments seems to work well, rendering a size close to the significance level.
However, for smaller values of T and/or larger values of k, the error arising from
the poor approximation of the moments causes a size distortion in the panel data
stationarity test. As seen from Table 1, the size distortion becomes larger as the
number of cross sections, N , increases. When we consider the model with both
an intercept and a time trend, we see from Table 1 that none of the parameter
combinations in the simulation setup renders a situation where the asymptotic
moments can be used for inference about the stationarity hypothesis in the panel
data context without causing size distortions.

When we consider the size of the panel data stationarity test, standardized
with the finite-sample moments supplied by Hadri and Larsson (2003), we see from
Table 2 that the basic result is the same. When we consider the model with an
intercept only, and k ≥ 12, the test is size-distorted for all time-series dimensions
where T ≤ 100. For the model including both an intercept and a time trend, the
panel data stationarity test is size-distorted for all of combination of N , T and k
considered.

To come to terms with the size distortions that arise as a consequence of in-
appropriate standardizing moments, we suggest that moments should be supplied
for a specific model. That is, we argue that the standardizing moments that are
to be used in the panel data stationarity test should depend on the deterministic

3In the choice of weighting function and spectral window, we follow Kwiatkowski et al. (1992) and
Hadri (2000).

4Due to the insufficient number of degrees of freedom, we do not study the case where k ∈ {16, 20, 24}
while T = 10.
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component, time-series dimension and choice of lag window. In the next section,
we provide such moments and investigate the size and power characteristics of the
panel data stationarity test using the suggested moments.

4 Monte Carlo simulation

4.1 Appropriate moments

As seen from in previous section, the moments that have been previously suggested
for use in the panel data stationarity test of Hadri (2000) are inappropriate when
serial correlation is allowed for under the null hypothesis. We saw that the null
hypothesis was grossly over-rejected at the 5% significance level, leading to the
faulty conclusion that a panel of time series is not stationary. In this section we try
to alleviate the problems that arise as a consequence of the inappropriate moments
by providing a new set of moments that can be used when performing the panel
data stationarity test in finite samples when serial correlation is allowed for.

The moments that we supply in this paper are obtained through stochastic sim-
ulation. To obtain the moments, we generate data according to (1) under different
assumption regarding the deterministic components. When only an intercept is con-
sidered, we let αi be uniformly distributed over the interval [0, 10], i.e. αi ∈ U [0, 10],
while βi = 0. In the case where both an intercept and a time trend is considered
we let αi ∈ U [0, 10] and βi ∈ U [0, 2]. The distribution of the error term, εit, is set
to N(0, 1).

We generate data with different time series dimension, more specifically we con-
sider the cases where T ∈ {10, 20, 30, 40, 50, 75, 100}. For each of the samples we
then apply the test in (3). Since we want to obtain moments that varies across
different values of k, we apply the variance estimator given by (6) and (7) where
l = int[k( T

100)0.25] with k ∈ {4, 8, 12, 16, 20, 24}. We generate 10,000 test statistics
for each sample size. and calculate the mean and the variance of these 10,000 test
statistics. To distinguish the small sample moments for autocorrelated residuals
from the small sample moments that are to be used when errors are serially un-
correlated, we denote the simulated moments E(LMT,k) and V ar(LMT,k), where
T and k indicate the time series dimension and lag window parameter. To reduce
simulation error we repeat this procedure 100 times and hence get 100 estimated
means and 100 estimated variances for each sample size and choice of k. The aver-
age over the 100 different moments, for the different choices of T and k, is presented
in Table 3.5

With the simulated moments at hand we can once again study the performance
of the panel data stationarity test. To this end we generate 10,000 data sets under
the null hypothesis, for different choices of T , N and k, and calculate the individual
stationarity tests as in (3), with the long-run variance estimated as in (6) and
(7). We then obtain the panel data test statistic by standardizing the mean of the
individual test statistics using the different moments presented in Table 3. In Table
4, we present the size properties of the test using these moments.

5It can be noted that we tried to fit response surface regressions to the moments. However, this
attempt proved fruitless. The smallest regression error in the response surface regressions accumulates
across the cross-sectional units and renders severe size distortions that becomes worse as N increases.
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As seen in the table, the size properties are very good when using the simulated
moments provided in Table 3. The conclusion is that the simulated moments pro-
vided in this paper are the appropriate moments to use when testing for stationarity
in panel data when disturbances are potentially serially correlated. The next thing
we want to investigate is how well the panel data stationarity test can distinguish
between the null and alternative hypothesis when the null is in fact false. That is,
we want to study the power of the test.

4.2 Power of the panel data stationarity test

To simulate the power of the panel data stationarity test, we generate data as de-
scribed in the previous section with the modification that we add a random walk
component to each of the time series in the panel. The random walk components
of different cross-sections are independent and driven by the disturbance term ηit

which, in addition to being independently distributed across cross sections, is se-
rially uncorrelated in all of our simulations. Moreover, we let that ηit ∼ N(0, 1).6

Finally, since the panel data stationarity test of Hadri (2000) is a heterogeneous
panel data test, we consider five different situations when investigating the power.
More specifically, we let the fraction of non-stationary cross-sections, Ψ, take the
five values 0.20, 0.40, 0.60, 0.80 and 1.00, respectively. In Table 5 and Table 6,
we present the power of the panel data stationarity test for the models with an
intercept and an intercept and a time trend, respectively, and for different choices
of sample size and lag window.

From Table 5 we see that the power of the test is good when an intercept is the
only deterministic component considered. For all sample sizes where T ≥ 30 and
k ∈ {4, 8, 12, 16, 20}, we see that the panel data stationarity test has acceptable
power properties. However, in some cases when T is small and k is large, an
unfortunate characteristic of the test is displayed. Consider for example that case
where T = 20 and k = 24. For this specific choice of parameter values, we see
that the power of the panel data stationarity test falls below the size of the test.
That is, the panel data stationarity test is biased. Moreover, the bias seems to
aggregate over N so that when N increases, the bias becomes more severe. Once
we consider the the cases where T increases, while keeping k fixed, we see that
the bias disappears. However, the results indicate that we should be aware of the
low power of the test in small-sample situations where severe autocorrelation is an
issue.

From Table 6 we see that the bias of the test becomes even more accentuated
when we allow for both an intercept and a time trend. When k = 24, we must have
as much as 100 observations in order to get a power of the panel data stationarity
test that is higher than the size of the test at the 5% significance level. Also,
contrary to the case where we have an intercept only, the bias of the panel data
stationarity test occurs across all choices of k.

One key question, that arises in the light of the size and power properties of
the panel data stationarity test, is whether k has to be chosen as large as 16, 20

6The signal-to-noise ratio σ2
η,i/σ2

ε,i affects the power of the panel data stationarity test. However,
since we are not aiming to portray the power of the test for different signal-to-noise ratios, we only
consider the case where the ratio is equal to one and instead focus on the effects of the choice of lag
window.
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or 24 in order to account for possible serial correlation in the disturbances. To
answer this question, we study the size properties of the panel data stationarity
test under various degrees of serial correlation. We generate data under the null
hypothesis, according to the procedure describes above, with the modification that
we now let the disturbance term, εit, be serially correlated. More specifically,
the process for the disturbance term is given by εit = ρiεit−1 + νit, where νit

is set to be distributed N(0, 1). We perform the simulation for the case where
N = 10 and T = 50.7 The autoregressive parameter, ρi, is uniformly distributed
over the interval (µρ − 0.01, µρ + 0.01).8 To assess how the different choices of
lag window are able to accommodate different degrees of serial correlation, we let
µρ ∈ {0.00, 0.05, . . . , 0.90, 0.95}. Using 10,000 replications for each choice of µρ, we
calculate the size of the panel data stationarity test.

In Figure 5, we present the size of the panel data stationarity test when the
only deterministic component allowed for is an intercept. As seen in the figure, the
size of the panel data stationarity test has large distortions already for µρ = 0.50
when k ∈ {4, 8, 12}. For µρ = 0.85, none of the choices of k is able to produce a
panel data stationarity test without size distortions.

In Figure 5, we present the corresponding results for the case where the deter-
ministic components consist of both an intercept and a time trend. The results
for k ∈ {4, 8} are principally unchanged when compared to the case where only an
intercept was allowed for. However, for the case where k=12, the size properties of
the panel data stationarity test seems to be good for values of µρ as large as 0.75.
For the cases where k = 16, k = 20 or k = 24, the panel data stationarity test
has a downward size distortion, rendering a test that always fail to reject the null
hypothesis 5% of the time even though this is the chosen significance level.

The results presented in this section applied to all situations where a lag window
has to be chosen, regardless of what method that is applied to obtain the lag win-
dow. That is, even if we apply the data-dependent lag window selection procedure
of e.g. Newey and West (1994), the panel data stationarity test will possess the
same properties as presented above as long as l is close to the values obtained for
different choices of k above.9 Corresponding results, regarding the power of the
stationarity test, have been established in the univariate setting by e.g. (Lee, 1996;
Caner and Kilian, 2001). The results of this paper indicates that the problems doc-
umented in the univariate environment become more accentuated in the panel data
setting, i.e. as the number of cross sections considered increases. The results also
indicate that more research has to be directed towards the small-sample properties
of panel data stationarity test of Hadri (2000) in order to solve the problems caused
to serially correlated disturbance terms.

7Simulation results for other sample sizes are available upon request.
8We let the autoregressive parameter vary across i since the panel data stationarity test allows for

heterogeneity, also in the serial correlation pattern.
9Methods using a pre-whitening procedure in the estimation of the long-run variance, such as the

method suggested by Andrews and Monahan (1992), could be applied in this context. However, Lee
(1996) has found that these procedures renders a fall in power for the univariate KPSS test. The fall in
power can be so large that the test becomes biased (see Lee, 1996, p 135). There is no reason why these
results cannot be extended to the panel data context. Indeed, it is likely that the bias of the univariate
test accumulates across the cross sections, rendering a panel data stationarity test with an even larger
bias. Hence, we focus on the estimation of the long-run variance, without considering a pre-whitening
procedure.
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5 Conclusions

In this paper, we study the small-sample properties of the panel data stationarity
test of Hadri (2000) when disturbances are allowed to display serial correlation
under the null hypothesis. We find that the moments that have been previously
supplied for the panel data stationarity test are inappropriate when we allow for
the possibility of serially correlated disturbances. More specifically, we find that
the panel data stationarity test has a severe size distortion that causes the test
to reject the null hypothesis too often. We supply standardizing moments that
renders a test that has no size distortions. However, simulation results show that
the power properties of the panel data stationarity test can be very poor in small
samples under specific circumstances. When the model contains both an intercept
and a time trend, and allows for a large degree of serial correlation, the panel data
stationarity test is shown to be biased for situations where the time series dimension
is as large as 50. The results indicates that results from empirical applications of
the test should be interpreted cautiously under these circumstances.
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Table 1: Size of panel stationarity test when using asymptotic moments.

Intercept Intercept and trend
N=10 N=25 N=50 N=10 N=25 N=50

k=24 T=10 - - - - - -
20 1.000 1.000 1.000 1.000 1.000 1.000
30 1.000 1.000 1.000 1.000 1.000 1.000
40 0.971 1.000 1.000 1.000 1.000 1.000
50 0.644 0.998 1.000 1.000 1.000 1.000
75 0.168 0.573 0.934 1.000 1.000 1.000

100 0.090 0.262 0.587 1.000 1.000 1.000
k=20 T=10 - - - - - -

20 1.000 1.000 1.000 1.000 1.000 1.000
30 0.966 1.000 1.000 1.000 1.000 1.000
40 0.529 0.985 1.000 1.000 1.000 1.000
50 0.267 0.780 0.994 1.000 1.000 1.000
75 0.093 0.274 0.600 1.000 1.000 1.000

100 0.063 0.153 0.332 0.996 1.000 1.000
k=16 T=10 - - - - - -

20 1.000 1.000 1.000 1.000 1.000 1.000
30 0.535 0.986 1.000 1.000 1.000 1.000
40 0.214 0.689 0.981 1.000 1.000 1.000
50 0.125 0.405 0.803 1.000 1.000 1.000
75 0.061 0.133 0.282 0.982 1.000 1.000

100 0.054 0.092 0.175 0.755 0.999 1.000
k=12 T=10 1.000 1.000 1.000 1.000 1.000 1.000

20 0.808 1.000 1.000 1.000 1.000 1.000
30 0.166 0.525 0.915 1.000 1.000 1.000
40 0.092 0.266 0.590 1.000 1.000 1.000
50 0.072 0.176 0.391 1.000 1.000 1.000
75 0.047 0.081 0.148 0.651 0.993 1.000

100 0.050 0.065 0.097 0.334 0.806 0.991
k=8 T=10 0.963 1.000 1.000 1.000 1.000 1.000

20 0.162 0.528 0.911 1.000 1.000 1.000
30 0.060 0.139 0.288 0.975 1.000 1.000
40 0.055 0.097 0.195 0.813 1.000 1.000
50 0.053 0.077 0.114 0.423 0.903 0.999
75 0.049 0.059 0.078 0.205 0.505 0.859

100 0.051 0.057 0.071 0.147 0.326 0.620
k=4 T=10 0.170 0.540 0.917 1.000 1.000 1.000

20 0.057 0.089 0.152 0.520 0.961 1.000
30 0.053 0.063 0.083 0.175 0.441 0.777
40 0.045 0.060 0.078 0.172 0.439 0.768
50 0.052 0.055 0.067 0.124 0.260 0.493
75 0.055 0.058 0.058 0.085 0.133 0.223

100 0.055 0.057 0.061 0.084 0.129 0.198
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Table 2: Size of panel stationarity test when using the moments of Hadri and Larsson
(2003).

Intercept Intercept and trend
N=10 N=25 N=50 N=10 N=25 N=50

k=24 T=10 - - - - - -
20 1.000 1.000 1.000 1.000 1.000 1.000
30 1.000 1.000 1.000 1.000 1.000 1.000
40 0.963 1.000 1.000 1.000 1.000 1.000
50 0.618 0.996 1.000 1.000 1.000 1.000
75 0.162 0.539 0.913 1.000 1.000 1.000

100 0.086 0.243 0.548 1.000 1.000 1.000
k=20 T=10 - - - - - -

20 1.000 1.000 1.000 1.000 1.000 1.000
30 0.956 1.000 1.000 1.000 1.000 1.000
40 0.500 0.977 1.000 1.000 1.000 1.000
50 0.248 0.736 0.987 1.000 1.000 1.000
75 0.089 0.250 0.547 1.000 1.000 1.000

100 0.061 0.141 0.300 0.993 1.000 1.000
k=16 T=10 - - - - - -

20 0.999 1.000 1.000 1.000 1.000 1.000
30 0.493 0.972 1.000 1.000 1.000 1.000
40 0.197 0.628 0.962 1.000 1.000 1.000
50 0.115 0.362 0.740 1.000 1.000 1.000
75 0.058 0.118 0.247 0.968 1.000 1.000

100 0.052 0.085 0.156 0.714 0.998 1.000
k=12 T=10 1.000 1.000 1.000 1.000 1.000 1.000

20 0.763 0.999 1.000 1.000 1.000 1.000
30 0.149 0.439 0.840 1.000 1.000 1.000
40 0.084 0.223 0.492 1.000 1.000 1.000
50 0.067 0.149 0.329 0.997 1.000 1.000
75 0.046 0.075 0.124 0.579 0.983 1.000

100 0.048 0.061 0.086 0.296 0.739 0.980
k=8 T=10 0.926 1.000 1.000 1.000 1.000 1.000

20 0.137 0.405 0.787 1.000 1.000 1.000
30 0.053 0.106 0.197 0.923 1.000 1.000
40 0.050 0.080 0.146 0.706 0.998 1.000
50 0.050 0.066 0.087 0.330 0.802 0.991
75 0.047 0.053 0.067 0.170 0.401 0.752

100 0.049 0.053 0.063 0.127 0.265 0.518
k=4 T=10 0.121 0.312 0.643 1.000 1.000 1.000

20 0.048 0.060 0.081 0.300 0.730 0.975
30 0.049 0.049 0.052 0.111 0.232 0.431
40 0.042 0.049 0.057 0.117 0.274 0.507
50 0.049 0.049 0.050 0.096 0.169 0.300
75 0.052 0.054 0.050 0.072 0.099 0.146

100 0.053 0.053 0.054 0.073 0.100 0.142
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Table 4: Size of panel data stationarity tests when using simulated moments.

Intercept Intercept and trend
N=10 N=25 N=50 N=10 N=25 N=50

k=24 T=10 - - - - - -
20 0.056 0.057 0.055 0.049 0.057 0.049
30 0.060 0.057 0.056 0.054 0.057 0.052
40 0.056 0.057 0.052 0.057 0.056 0.053
50 0.057 0.052 0.051 0.063 0.063 0.058
75 0.060 0.055 0.054 0.058 0.056 0.053

100 0.057 0.053 0.053 0.052 0.055 0.052
k=20 T=10 - - - - - -

20 0.059 0.055 0.053 0.054 0.051 0.053
30 0.058 0.051 0.050 0.057 0.057 0.056
40 0.054 0.053 0.052 0.057 0.054 0.055
50 0.057 0.057 0.054 0.060 0.054 0.052
75 0.055 0.055 0.052 0.051 0.055 0.052

100 0.056 0.057 0.053 0.058 0.052 0.054
k=16 T=10 - - - - - -

20 0.054 0.054 0.054 0.057 0.056 0.051
30 0.056 0.056 0.051 0.062 0.056 0.057
40 0.053 0.057 0.053 0.059 0.060 0.057
50 0.057 0.057 0.052 0.059 0.055 0.056
75 0.058 0.054 0.056 0.057 0.054 0.051

100 0.060 0.054 0.056 0.056 0.056 0.052
k=12 T=10 0.055 0.056 0.050 0.053 0.058 0.055

20 0.054 0.053 0.053 0.066 0.055 0.053
30 0.062 0.057 0.052 0.055 0.056 0.058
40 0.057 0.055 0.053 0.053 0.054 0.049
50 0.059 0.056 0.060 0.058 0.056 0.055
75 0.056 0.056 0.050 0.063 0.057 0.053

100 0.062 0.058 0.055 0.059 0.056 0.056
k=8 T=10 0.054 0.057 0.053 0.062 0.054 0.052

20 0.055 0.052 0.054 0.060 0.055 0.050
30 0.056 0.056 0.053 0.058 0.054 0.054
40 0.061 0.055 0.055 0.060 0.059 0.050
50 0.062 0.061 0.058 0.057 0.057 0.055
75 0.061 0.058 0.056 0.060 0.057 0.054

100 0.064 0.060 0.059 0.061 0.052 0.057
k=4 T=10 0.058 0.054 0.055 0.062 0.062 0.051

20 0.062 0.059 0.058 0.057 0.051 0.053
30 0.063 0.059 0.054 0.061 0.063 0.058
40 0.058 0.057 0.055 0.057 0.056 0.054
50 0.062 0.058 0.054 0.065 0.062 0.058
75 0.064 0.063 0.057 0.060 0.057 0.057

100 0.064 0.060 0.057 0.062 0.059 0.057
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Figure 1: Size when disturbances are autocorrelated, intercept only.
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Figure 2: Size when disturbances are autocorrelated, intercept and trend.
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