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det har varit oerhört lärorikt att angripa diverse problemställningar till-
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Chapter 1

Introduction

Polymer adsorption is a phenomenon which is of great importance in a
number of areas in our everyday life. In many technical applications,
understanding and controlling polymer adsorption onto solid surfaces is
essential to the outcome of a product. Such technical areas may comprise
formulations of drugs, paints, detergents, cosmetics, and food stabilizers.
Biological aspects include mapping the adsorption of biopolymers, such
as mucin in the saliva or other proteins, to determine their structure and
function. Needless to say, the area of research is quite large and well
developed already. Numerous techniques for determining polymer sur-
face layer thickness and surface structure exist. However, there are still
many gaps to fill concerning the time-dependent properties of polymer
adsorption. With modern technology, the probed length- and time scales
gradually become smaller, motivating and enabling a deeper understand-
ing of surface phenomena on a detailed molecular level.

Using computer simulations in the field of polymer adsorption is no
new approach; the mathematically descriptive nature of polymers led to
various early numerical calculations. The vast technological advances in
computer science allow us to explore increasingly more complex issues
and systems. Using simulations, as in the work presented here, time-
dependent properties are resolved which are related to the interaction
between different types of polymers and surfaces. These calculations
need not be very complicated, but the number of numerical operations
needed to realize the motion of a polymer solution is enormous.

As a polymer adsorbs onto a surface, there is an associated loss in
conformational entropy. This loss in entropy must be smaller than the
energetic gain in enthalpy for the polymer upon adsorbing onto the sur-
face. If the interaction with the surface is strong the adsorbed polymers
will attain flatter conformations than if there is a weak interaction.



2 Introduction

The degree of interaction between a polymer and a surface may be
modified in several ways. The monomer–surface interaction strength
and the characteristics of the polymer, such as size and flexibility, have
a significant impact on the degree of adsorption. Other properties which
influence the behavior are the density and composition of the polymer
solution. The entire adsorption process of a polymer is a continuous
transition from a three-dimensional state in solution to the final equilib-
rium two-dimensional-like structure at the surface. The full transition
covers time regimes of several orders of magnitude, and the pathway to-
ward equilibrium may vary depending on the properties of the polymer.
In mixed solutions of different polymer types, the relaxation process is
prolonged due to competitive effects in the vicinity of and on the surface.

The immediate applications of the knowledge gained in this work
are of course not evident. The study which is presented here is but a
small contribution to the growing understanding of polymer adsorption.
However, novelty lies in the method with which we conduct our study,
along with the qualitative results we gain in employing this. We thus
feel that this work is a valuable contribution to the field.



Chapter 2

Polymers in Solution

2.1 Classifications

A polymer is defined by its repetitive structural units of lower molecular
weight which are connected to one another creating a larger entity with
a high relative molecular weight. Because of the (often) large size of the
formed entities, polymers are frequently referred to as macromolecules.
Polymers consisting of identical repeating monomers are called homopoly-
mers. If units or blocks of monomers of different species are combined
in a repeating fashion, these are named block copolymers and if differ-
ent units are connected in a completely random fashion these are called
heteropolymers. Furthermore, any of the above classifications can also
be referred to as a polyelectrolyte if the polymer carries ionizable units.
Schematic figures of some different polymer types are given if Figure 2.1
below.

Figure 2.1: Classes of polymers which depend on the physical relation of
the monomeric composition of a polymer, (a) homopolymer, (b) block
copolymer, and (c) heteropolymer.
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The subunits or monomers in a polymer may of course be connected
together in a number of different ways as shown in Figure 2.2. Besides
the most intuitive linear structure, there are various types of branched
polymers such as comb, star, randomly branched, and polymer networks.

Figure 2.2: Different branched polymer structures: (a) comb, (b) star
(c) randomly branched, and (c) polymer network, where the junction
monomers are indicated (black).

Polymers are formed by stepwise linking together the monomers Nb

of which it is made up

Nb,n + Nb → Nb,n+1 (2.1)

For monomers of a singular given molecular weight Mb, the total mole-
cular weight Mp of a polymer consisting of N monomers is given by

Mp = NMb (2.2)

The total number of monomers Nb which comprise a given polymer
may vary by orders of magnitude, from Nb ∼ 102 − 104 for synthetic
polymers up to Nb ∼ 109 − 1010 for natural polymers, such as DNA.1

Often for synthetic polymers, along with some biological ones, the reac-
tion which successively builds the macromolecule is end-terminated at
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different positions along the chain. This causes polymers to vary greatly
in molecular weight, and one is often interested in the weight distribu-
tion, p(M), among the polymers in a sample rather than the number of
monomers of each polymer. The degree of polymerization or number av-
erage, 〈Mn〉, for a discrete distribution of molecular weights of a polymer
type can be expressed as the probability, p(Mi), of finding a molecular
weight Mi, summed over all polymers in a sample

〈Mn〉 =
∑

i

p(Mi)Mi (2.3)

where the following condition
∑

i p(Mi) = 1 is met. The weight average,
〈Mw〉, is similarly

〈Mw〉 =

∑

i p(Mi)M
2
i

∑

i p(Mi)Mi
(2.4)

The ratio between the molecular weight average and the molecular num-
ber average

DM =
〈Mw〉

〈Mn〉
(2.5)

is called molar mass disperisty, or is often referred to as polydispersity
index and is a measure of the width of the distribution of molecular
weights in a sample. For a uniform polymer solution (monodisperse), the
molar mass dispersity is unity, and for any other non-uniform polymer
solution it is larger than unity.

A polymer immersed in a solvent will adopt a three-dimensional con-
formation in relation to its chemical composition and interaction with its
surroundings. If the thermal fluctuations of the solvent at equilibrium
are of higher energy than the rigidity of the polymer backbone in terms
of rotation about bonds, the polymer is considered flexible.

2.2 The Single Chain

Any single small particle suspended in a solvent will be continuously
subjected to collisions from the surrounding solvent molecules. This is
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known as Brownian motion and will cause the particle to diffuse through
the media in a non-deterministic fashion. If the erratic path of a single
particle was traced during some time interval, it would well describe
a random walk, which is a fundamental mathematical description of a
polymer. For a more thorough introduction to single chain statistics, see
one of the textbooks on the subject.1–4

2.3 The Extension of a an Ideal Chain

Assuming no interaction between segments which make up the chain,
a polymer may be considered as a sequence of N completely randomly
distributed segments (i.e random walk) as depicted in Figure 2.3. This
is then referred to as an ideal chain.

Figure 2.3: Illustration of the random walk model in two dimensions.

The bond-vector for the ith segment is thus ri, and the full extension of
the chain, which is the end-to-end vector for the complete set of segments
RN , is described by

〈R2
N 〉 =

〈
∣

∣

∣

∣

∣

N
∑

i=1

ri

∣

∣

∣

∣

∣

2〉

(2.6)

The freely jointed chain is an ideal chain with N discrete segments of
length ℓ, and its extension is thus given by

RN ≡
〈

R2
N

〉1/2
= N1/2ℓ (2.7)
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In the limit that ℓ → 0 and N → ∞ along with an assumption of
no rotational angle between consecutive segments for a chain at fixed
contour length L, we obtain the wormlike chain as a continuous ideal
chain. The end-to-end vector for the wormlike chain then becomes

RN =

∫ L

0
l(s)ds (2.8)

where l(s) = ∂r/∂s is the unit vector of a chain direction at distance
s from the start of the chain along its contour. Furthermore, from eq
2.7 we find a scaling relation between the end-to-end distance and the
number of segments or length of a polymer, 〈RN 〉 ∼ N1/2.

For all polymers there exists a length at which individual segments
may be considered as stiff, and the segmental contour length can be
regarded as having roughly the same size as the segments end-to-end
distance. This is referred to as a Kuhn segment, and relates the individ-
ual flexibility of a polymer to its average extension. To quantify this, we
define the persistence length lp as the distance over which the memory
of a polymers direction is retained,

〈cosθ(s)〉 = e
− s

lp (2.9)

where θ(s) is the average intersecting angle between tangents at the end
points of a Kuhn segment s.

Another useful property which describes the extension of a polymer in
three dimensions is the radius of gyration, Rg, which is defined according
to

〈R2
g〉 =

〈

1

N

N
∑

i=1

[ri − rcom]2
〉

(2.10)

with the center of mass

rcom =
1

N

N
∑

i=1

ri (2.11)
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where ri = [xi, yi, zi] is the coordinate of segment i. The relation between
the radius of gyration and the end-to-end distance is given by

〈R2
g〉 =

〈RN 〉

6
=

Nℓ2

6
(2.12)

If we represent a polymer by a collection of volumeless points con-
nected by vectors, the probability distribution of the end-to-end vector
can be described by a Gaussian function in the limit N → ∞

P (RN ) =

(

3

2πNℓ2

)− 3

2

exp

(

−
3R2

N

2Nℓ2

)

(2.13)

where the distribution is normalized so that the sum over all values of
RN gives a probability of one. A polymer which can be described by
such statistics is often referred to as a gaussian chain.

2.4 Chain Expansion and Solvent Conditions

A more realistic model of a polymer than that of the random walk can
be obtained by including a self-volume of the segments or monomers
that make up the chain; in other words, by restricting the space avail-
able to segments due to excluded volume interactions between sections
of the polymer. The simplest way of approaching this is by using the
self-avoiding walk (SAW), in which a polymer segment is forbidden to
occupy the same space as previously visited during the same walk. A
self-avoiding walk in three dimensions will cause the polymer chain to
expand, and computer simulations show a scaling behavior with respect
to the end-to-end distance of 〈RN 〉 ∼ Nν , where the Flory exponent
ν ≈ 3/5 for large N .

The randomness in the walks discussed above originates from the in-
trinsic properties of the solvent in which a polymer is immersed. The ex-
tension of a single polymer in solution as we have concluded so far comes
from the random walk and the excluded volume interactions between seg-
ments of the chain. The mathematical formulation of the random walk
and self avoiding walk discussed is referred to as athermal, which implies
no influence of temperature, though it is implicitly present by the origin
of random walk (motion) in our model.
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From regular solution theory temperature can explicitly be included
in the model via an energy term χ, which describes the interaction be-
tween a monomer and its surroundings. The net difference in interacting
with a non-adjacent segment or interacting with a solvent molecule for a
given polymer segment determines the sign and magnitude of this param-
eter. Furthermore, β = 1/kBT , where kB is the Boltzmann constant, is
included in the parameter, making this dimensionless and inversely pro-
portional to the temperature T . Thus the random excursions (expansion)
of a polymer and the energy minimization of segment interaction (con-
traction) determine the extension of a polymer in solution. For different
values of the χ-parameter a polymer will adopt characteristic conforma-
tions according to5

- Good solvent conditions, χ < 0.5, where the expansion of the poly-
mer dominates. A polymer behaves according to the SAW-model.

- Bad solvent conditions, χ > 0.5, where segment–segment interac-
tions are strong and contraction of the polymer prevails.

- θ solvent conditions, χ = 0.5, at which a polymer will behave as
a gaussian chain discussed above. The temperature at which this
occurs is referred to as the θ temperature

One can now show a relation between between the χ-parameter and the
Flory exponent ν, which relates the scaling behavior of the extension of
a polymer to its interaction in a solvent.

2.5 Properties of the Solution

In a polymer solution of finite concentration c the interaction between
different polymers must be taken into account. Depending on the nature
of a polymer type, the polymers in a solution may start to interpene-
trate and overlap at relatively low polymer concentrations. Consequently
there exists three concentration regimes of polymer solutions which are
displayed in Figure 2.4, and are referred to as: (i) dilute, where polymers
may be treated as isolated, (ii) semidilute, where polymers interact and,
(iii) concentrated, where substantial interaction at a high polymer volume
fraction takes place. The crossover from a dilute to a semidilute solution
is characterised by the overlap concentration, c∗. The overlap concen-
tration may be estimated as the concentration when the total volume
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Figure 2.4: The three concentration regimes in relation to the overlap
concentration c∗

of polymers is comparable to that of the volume available to the solu-
tion. The onset of c∗ is well defined, but the transition at the overlap
concentration is of continuous nature.

For polymers in a dilute solution, these may diffuse as isolated entities
unperturbed by other polymers. The translational self-diffusion of a
polymer coil may then be described by the Stokes-Einstein relation

D =
kBT

6πηr
(2.14)

where η is the solvent viscosity and r the radius of the polymer coil. In a
θ solvent the self-diffusion coefficient dependence of the molecular weight
M is D ∼ M−0.5.

In a semidilute solution, the translational motion of a polymer is hin-
dered by the presence of neighboring polymers and diffusion may only be
realized through reptational motion in the surrounding mesh of polymers.
This gives D ∼ M−2 as the relation between the diffusion coefficient and
the molecular weight. Thus polymer diffusion depends significantly on
the concentration and the molecular weight.



Chapter 3

Polymer Adsorption

Polymer adsorption is classified in accordance to the nature of interaction
between polymer and surface. If the interaction energy is considerable
(two or more orders of magnitudes larger than kBT ), covalent bonds may
form between the polymer and surface making the adsorption irreversible.
This type of adsorption is referred to as chemisorption. If on the other
hand the attraction is weak or moderate (in the order of kBT ) the adsorp-
tion is less rigid and is then referred to as physisorption. Chemisorption
is often a slow process associated with a much higher energy barrier than
that of the faster, often diffusion controlled physisorption.6 In this work
we are concerned only with physisorption of polymers to solid surfaces.

The adsorption process of a polymer to a surface may be expressed
as a step-wise process involving: (i) a diffusion toward the surface, (ii)
an attachment to the surface, and (iii) a spreading on the surface. In
the following section we derive an expression for the adsorption rate of a
solution of one adsorbing component and try to relate this to processes (i)
and (ii). Further descriptions of the theories of adsorption and adsorption
kinetics may be found in a number of textbooks and reviews exist.5,7–12

3.1 Simple Description

For simplicity we consider the adsorption of small molecules which do
not deform upon adsorption to a surface. We further assume a situation
of steady-state convective diffusion with a linear concentration gradient,
which governs the transport of molecules to the surface from bulk. This
flux, J , is then directly related to the adsorption rate dΓ/dt, and defined
as
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J = k(cb − cs) (3.1)

where k is the rate constant dependent on the hydrodynamic conditions
of the solvent and diffusion coefficient, and cb along with cs are the
solute concentrations of the bulk and in the surface region, respectively.
Molecules in the vicinity of the surface may attach to it and molecules
which are adsorbed may detach from the surface. This gives rise to a
flux in each direction and the net flux describes the adsorption rate via

dΓ

dt
=

dΓ

dt

∣

∣

∣

∣

+

−
dΓ

dt

∣

∣

∣

∣

−
(3.2)

The positive flux is dependent on the attachment rate constant ka, the
solute concentration at the vicinity of the surface, and the available sur-
face fraction θ according to

dΓ

dt

∣

∣

∣

∣

+

= ka(1 − θ)cs (3.3)

where the surface fraction is defined as θ ≡ Γ/Γmax, and Γmax represents
the maximum adsorbed amount at saturation. Assuming no deformation
of adsorbed species this is a valid definition. The negative flux is defined
as

dΓ

dt

∣

∣

∣

∣

−
= kdθ (3.4)

where kd is the rate constant associated with the desorption.

As the surface coverage increases, the negative flux increases as well
until steady-state conditions are met where the net flux in eq 3.2 is zero,
corresponding to

ka(1 − θ)ceq = kdθ (3.5)
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Figure 3.1: (a) Typical high-affinity adsorption isotherm, and (b) the
corresponding kinetic curve, inspired by figures in ref.13

This gives an expression for the net adsorption rate

dΓ

dt
=

dΓ

dt

∣

∣

∣

∣

+

−
dΓ

dt

∣

∣

∣

∣

−
= ka(1 − θ)(cs − ceq) (3.6)

Now using the expression for the adsorption rate in eq 3.1 combined with
the derived expression of the net adsorption rate at steady-state in eq
3.6, we obtain a general adsorption rate equation

dΓ

dt
=

cb − ceq
1
k + 1

ka(1−θ)

(3.7)

The equilibrium concentration ceq is dependent on the equilibrium ad-
sorbed amount Γ. Hence, to obtain an explicit expression of the ad-
sorption rate dΓ/dt, an adsorption isotherm for ceq(Γ) is needed. This
involves a description of the interaction between the adsorbing molecules,
solvent, and surface. Such predictions have been developed using self-
consistent field theories,13 which give important information of the ad-
sorbed fraction as a function of the density profile of the polymers at the
surface.14

The use of the formulation above (eq 3.7) shows that for an attach-
ment process which is unhindered i.e., ka >> 1, the expression can
be used to predict the adsorption rate from the equilibrium adsorption
isotherm. Given the isotherm of a typical high-affinity polymer, one finds
that ceq ≃ 0 up to almost saturation9 (Figure 3.1a). This gives a linear
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behavior between the diffusion controlled transport and the adsorption
rate, which is the highest rate of adsorption for the polymers and is
known as the limiting flux, J0.

11 Knowing the adsorption isotherm and
thus the function ceq(Γ) we may solve the differential equation for Γ(t)
and construct a kinetic curve of the adsorption process. An initial linear
increase in the adsorption as a function of time is apparent as concluded
above, and on approaching saturation a plateau is reached which reduces
the adsorption rate (Figure 3.1b).

3.2 Obtaining Adsorption Isotherms

Adsorption isotherms are experimentally obtainable quantities and a key
parameter within polymer science. The experimental methods used for
determining adsorption isotherms may be indirect or direct. This means
that they can either be determined indirectly from conditions of the
solvent continuum or directly from the actual adsorbed amount at a
surface.

Indirect methods usually involve some spectroscopic method such as
ultraviolet-visible (UV), nuclear magnetic resonance or infra red (FTIR)
techniques. With these one measures the concentration of polymer in
the solvent before and after adsorption to some surface.

Direct methods usually involve techniques such as neutron- or opti-
cal reflectormetry, ellipsometry, quartz crystal microbalance (QCM) or
surface enhanced Raman scattering. Because direct methods measure
an absolute quantity, rather than a difference, these are inherently more
accurate but may suffer from faulty results due to contaminations on the
surface investigated.9



Chapter 4

Modelling of Polymers

4.1 Coarse Graining

A full atomistic polymer model which includes all molecular interactions
in a non-equilibrium system may be computationally feasible on a small
scale but is inadequate for large systems or simulations of long time
scales. The number of interacting particles for a system where solvent
molecules are modelled explicitly limits such simulations even with the
computer power now available to scientists. This problem is often dealt
with by coarse graining.15 There is always a careful balance of the num-
ber of parameters to include in a model in relation to the investigated
properties. If one includes too many details, the time needed to obtain
results is often wasted on events which do not significantly affect the
system, while not including enough details may fail in resolving vital
properties, giving false predictions of the state of a system.

The main objective of coarse graining is to reduce the number of
interactions in a system which is highly dependent on the number of
particles. More specifically, for a polymer model a reduction in the num-
ber of particles can be made by replacing groups of atoms with united
atoms, retaining the average size of the polymer and properties of the
backbone. Furthermore, one may replace quantum-mechanical potentials
by empirical (mean-field) potentials for the bond length, torsional and
bond angles, along with non-bonded interactions of the polymer.16,17

Below, we examine the polymer model and interactions which were
used throughout the work presented in this thesis. It should be noted
that the chosen model is one of many possibilities and was implemented
in this work due to its simplicity, well established behavior, and wide
application.



16 Modelling of Polymers

4.2 General Approach

The work presented in this thesis is based on a coarse grained bead–
spring off-lattice model to mimic the behavior of polymers immersed
in a good solvent. Solvent molecules are not explicitly included in the
model but the solvent is treated as a continuum. The polymer is rep-
resented by spherical beads connected via harmonic bonds which may
contract or expand to accommodate energetic variations in the local en-
vironment. Furthermore, a harmonic potential was included to mimic
intrinsic stiffness along the polymer, enabling us to model polymers of
desired persistence length. Non-bonded interactions were taken into ac-
count through a soft repulsive potential, precluding overlap of beads.
Finally, an external potential from a surface in the solution was applied
when adsorption or desorption of polymers was modelled. The sum of
these energetic contributions in our model can thus be represented as a
total energy U according to

U = Unonbond + Ubond + Uangle + Usurf (4.1)

4.3 Polymer Interaction Potentials

The non-bonded bead–bead potential energy Unonbond is assumed to be
pair wise additive according to18

Unonbond =
N

∑

i<j

u(rij) (4.2)

where rij denotes the distance between the interacting beads. The po-
tential energy is given by a truncated and shifted Lennard-Jones (LJ)
potential

u(rij) =







4ε

[

−
(

σ
rij

)6
+

(

σ
rij

)12
+ 1

4

]

, rij ≤ 21/6σ

0, rij > 21/6σ
(4.3)
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Figure 4.1: Lennard-Jones potential (solid black), shifted and truncated
(dashed black), along with the attractive (green) and repulsive (red)
contributions.

which describes the interaction between beads i and j, separated by
the distance rij . Furthermore, σ is the diameter of the bead and ε is
the interaction strength. The potential is constructed such that it is
truncated at the minimum of the attractive part of the well occurring at
r = 21/6σ and thereafter shifted to u(21/6σ) = 0, resulting in a smoothly
increasing repulsion at short distances of interacting beads. In Figure
4.1 the LJ potential is schematically presented along with the truncated
and shifted potential. The attractive and repulsive contributions of the
potential is also displayed.

The bond interactions can be visualized as a spring with a variable
stiffness which connects the beads along the polymer. The total contri-
bution to the bond potential for Np number of polymers of type γ is then
given by

Ubond =
1

2
kbond

Np,γ
∑

p=1

Nb,γ−1
∑

i=1

(ri,p − req)
2 (4.4)

where the the bond force constant kbond regulates the stiffness of the
spring and req is the equilibrium distance between adjacent beads.
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In a similar fashion, kangle regulates the bond angle stiffness via

Uangle =
1

2
kangle

Np,γ
∑

p=1

Nb,γ−1
∑

i=2

(θi,p − θeq)
2 (4.5)

where θeq is the equilibrium bond angle. Again the summation is made
over the number of polymers of a specific type.

4.4 External Interaction Potentials

When polymers are modelled together with a surface there is a contribu-
tion to the total energy in the system by the usurf term. The potential
is also assumed pairwise additive

Usurf =
N

∑

i=1

usurf (zi) (4.6)

where zi is the z-coordinate of a bead interacting with an attractive
surface in the x, y-plane. Thus the summation is only dependent on the
perpendicular coordinate of a bead. The completely smooth surface can
be obtained by parallel integration of a crystalline surface of LJ-particles,
including deeper layers. This yields an attractive 3-9 LJ potential of the
form

usurf (zi) =
2π

3
ρsσ

3
sεs

[

−

(

σs

zi

)3

+
2

15

(

σs

zi

)9
]

(4.7)

where ρs is the density of the LJ-particles with a mean diameter of
σs in the crystalline surface. Once again the magnitude of the inter-
action is dependent on the potential energy parameter εs. The min-
imum of the attractive potential occurs at zmin = (2/5)1/6σs, and at
this distance the magnitude of the attraction amounts to usurf (zmin) =
−[2π(10)1/2/9]ρsσ

3
sεs ≈ −2.2εs.

In a similar way to the approach of eq 4.3, a soft repulsive potential
can be produced from the attractive 3-9 LJ potential
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usurf (zi) =







2π
3 ρsσ

3
sεs

[

−
(

σs

zi

)3
+ 2

15

(

σs

zi

)9
+

(√
10
3

)

]

, zi ≤ zmin

0, zi > zmin

(4.8)

where the potential is truncated and shifted at the minimum of the at-
tractive potential zmin.





Chapter 5

Statistical Thermodynamics

The following section is a very condensed summary on the foundations
of statistical thermodynamics. For a more thorough introduction see
standard textbooks on the subject.19–21

5.1 The Boltzmann Distribution and Entropy

Imagine a collection (ensemble) of N macroscopically identical subsys-
tems (same number of particles and same volume) which is isolated at a
temperature T . The entire collection of subsystems is thus a represen-
tation of a thermodynamic system with the volume V and N particles,
which has a total energy E. For any single subsystem, the energy states
can be listed (ε1,ε2,ε3,...) and are shared among all N subsystems and are
equally probable. At any instant there will be a number of subsystems
(n1, n2, n3,...) found in some energy state, e.g., n1 number of subsystems
in state ε1, and so on. This imposes the following constraints on the
system

∑

j

nj = N (5.1)

∑

j

njεj = E (5.2)

The weight of a configuration is given by the number of states Ω of
the ensemble for a given distribution according to

Ω(n) =
(n1 + n2 + ...)!

n1!n2!...
=

N
∏

j nj !
(5.3)



22 Statistical Thermodynamics

The distribution which has the largest value of Ω will thus represent
the most probable. It turns out that the most probable distribution
is overwhelmingly large in comparison with the other distributions. The
probability distribution depends on the energy of the state in accordance
with the Boltzmann distribution:

Pj(N, V, T ) =
ni

N
=

e−βεi

Q(N, V, T )
(5.4)

where

Q(N, V, T ) =
∑

j

e−βεj (5.5)

and β = 1/kbT, the inverse of the temperature times the Boltzmann con-
stant. The quantity Q(N,V,T) is referred to as the canonical ensemble
partition function, from which all thermodynamic properties of a sys-
tem can be calculated. We now define the entropy associated with the
probability of the largest distribution according to

S(N, V, T ) = −kB

∑

j

PjlnPj (5.6)

For a given observable A in the limit as N → ∞, we obtain the average
as a sum over all states with their associated weights as an ensemble
average

〈A〉 =

∑

j Ae−βε

Q
(5.7)

where the average of the mechanical property A becomes the true en-
semble average as the number of subsystems N approaches infinity.

5.2 Classical Statistical Mechanics

The connection between statistical mechanics and quantum mechanics
becomes evident in the classical limit where (kBT >> ∆ε).19 As a
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consequence, the sum over the energy levels is replaced by an integral
in the partition function. At any given point in time, a set of particles
in a system may be described by their position (x1, ...zN) and momenta
px1, ...pzN. For a set of N particles this gives a 6N dimensional space,
called the phase space. The total energy of the system can be described
by the Hamiltonian H , in which the contribution of the potential and
kinetic energy is separated

H (r, p) =
∑

i

p2
i

2m
+ U(x1, ..., zN ) (5.8)

where m is the mass of the particle. For a system of interacting particles
in a given volume V , the classical partition function becomes

1

N !h3N

∫

e−H (r,p)βdx1...dpzN (5.9)

where the N ! shows that the particles are indistinguishable and h is
Planck’s constant, which ensures that each quantum sate is associated

with a phase space volume. The momentum part of the integral
∑

i
p2

i

2m
in eq 5.8 becomes

∫

e−H (p)βdpx1...dpzN =
1

N !Λ3N
(5.10)

where Λ = (h2/2(πmkBT ))(1/2). The classical partition function is then
only a function of the positions of the particles according to

Q =
1

N !Λ3N

∫

V
e−U(x1...zN )βdx1...dzN (5.11)

In analogy with eq 5.7 we find for the classical statistical ensemble
average for an observable A

〈A〉 =

∫

A(x1...zN )eU(x1...zN )βdx1...dzN
∫

eU(x1...zN )βdx1...dzN
(5.12)
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which is now a 3N dimensional integral. Despite the reduction, ana-
lytical results for such a statistical mechanical problems are few. Either
further simplifications need to be made or alternative numerical methods
used in order to solve this kind of problem. The next chapter will give
some insight to numerical approaches to obtaining results to this kind of
average.



Chapter 6

Molecular Simulation

Techniques

This chapter will in short present some of the simulation techniques used
throughout the work in this thesis. All simulations carried out in this
work were done using the integrated software package MOLSIM c©, which
has been developed by Per Linse and co-workers at the Division of Phys-
ical Chemistry at Lund University.22

6.1 Motivation

Due to the complex nature of interactions in many-particle systems, ana-
lytical solutions to various properties are unobtainable. Simulation tech-
niques such as Monte Carlo, molecular dynamics, and Brownian dynam-
ics, can be used to predict thermodynamic and transport properties of a
system by numerical calculations based on the interactions between mod-
elled species. Simulation can thus be employed to validate a proposed
model system by comparing its properties with experiments, and if there
is agreement between the two a correct estimate of intermolecular inter-
actions may be assumed. Furthermore, a simulation may be helpful in
predictions of approximate analytical theory applied to the same model.
The theory may then be adjusted until satisfactory results are achieved.

With increasing computer power the size and complexity of simulated
systems increase. However, dynamics of non-equilibrium properties of
polymers such as those studied in this work comprise rather heavy cal-
culations. The longer Brownian dynamic simulation times presented in
this work were in the order of 2000 CPU hours on 3.0 Ghz dual core
processors. We used a simple model and therefore focused more on the
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universal properties of the system rather than carrying out a quantitive
study.

There are numerous comprehensive textbooks on the subject of sim-
ulation techniques,15,17,23,24 which more specifically deal with the un-
derlying concepts, theory, and algorithms needed. The following is a
very limited and condensed description of Monte Carlo and Brownian
dynamics simulation techniques.

6.2 Monte Carlo Simulation

The Monte Carlo (MC) simulations used in this work are based on the
Metropolis algorithm, which is basically a weighted sampling method
which probes the configurational part of the phase space introduced in
section 5.2. The method relies on the use of a Markov chain to generate
a set of states for a system, implying that (i) a state is only dependent
on its immediately preceding state, and that (ii) there is a finite number
of such states.26 Furthermore, at equilibrium the condition of detailed
balance must be met, meaning that the number of transitions from the
equilibrium state to some other state exactly cancel each other. If this
condition is not met the system may be brought out of equilibrium.

For each transition of a system the energy of the new state is calcu-
lated. The energy difference from the preceding state is evaluated and if
the energy of the new state is lower the new state is accepted. If the en-
ergy of the new state is higher, however, the state may only be accepted
on a partially random basis.

The following algorithm shows in six steps how a trial transition from
one state to another is conducted for a system of N particles character-
ized by their coordinates ri = [xi, yizi] and a maximum displacement
parameter δ:

1. Pick a particle i at random and pick three random numbers η1, η2, η3

in the interval [0,1[.

2. Calculate the new positions of the particle

xnew
i = xold

i + (2η1 − 1)δ

ynew
i = yold

i + (2η2 − 1)δ

znew
i = zold

i + (2η3 − 1)δ

3. Calculate the energy difference between the new and old positions
of the particle: ∆U = Unew − Uold
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4. If the energy of the new configuration is decreased (∆U > 0) then
accept the move and replace the old coordinates: rnew

i = rold
i . Then

update the energy: Unew = Uold + ∆U

5. If the energy is increased (∆U < 0), pick another random number
η4 on the interval [0,1[, and evaluate the following:

η4 < e−β∆U : accept the move, update positions and energy.

η4 > e−β∆U : reject the move, leave position and energy unchanged.

6. Pick another particle at random and proceed again according to
steps 1 through 6.

The non-deterministic nature of the MC algorithm suggests that there
is no inherent time coupling to relaxation toward equilibrium, making
this method a poor choice for sampling of dynamic properties. However,
such methods do exist and are commonly used.17

6.3 Brownian Dynamics Simulation

The natural choice of simulation method which incorporates the full
dynamics of a system would be one which models time-dependent mo-
tion of all (relevant) molecular components, including individual solvent
molecules. Such detailed methods exist and are commonly referred to
as molecular dynamics (MD) simulations. Basically, these simulations
numerically solve Newton’s equations of motion using the position of a
particle and the force which acts upon it, often using the Lagrangian for-
malism.25 This is then carried out in a sequential manner for all particles,
whereafter averages of desired properties are calculated for the system.
However, when the process studied takes place on time scales which are
much longer than the motion of the individual solvent molecules this is
a poor choice.

Using Brownian dynamics (BD) simulation techniques has the ad-
vantage of not explicitly modelling the solvent molecules, but instead
replacing these with stochastic forces which mimics their collective er-
ratic motion. Once the rapid motion of the solvent molecules has been
replaced by a stochastic force, time scales do not have to be resolved be-
low that of the dynamics of the macromolecules, making simulations of
macroscopic proportions computationally feasible. For a more complete
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introduction into the physics of stochastic processes see textbooks on the
subject.26,27

A stochastic equation which describes a system represents a number
of possible realizations, all with an associated probability. In a Brownian
dynamics simulation individual realizations are chosen in such a way
that the time evolution of the system provides the correct probability
distribution. The stochastic equation is integrated forward in time to
create trajectories which describe the motion of a particle suspended in
solution. The equation of motion (used in this work) for the simple case
of no external flow, assumed incompressible flow, and no hydrodynamic
interactions becomes17,28

ri(t + ∆t) = ri(t) +
D0∆t

kT
Fi(t) + Ri(t; ∆t) (6.1)

where ri(t + ∆t) is the location of particle i at the time t + ∆t, ri(t) the
location of particle i at the time t, D0 the particle self-diffusion coeffi-
cient in the absence of systematic forces, k Boltzmann’s constant, T the
temperature, and Fi(t) the systematic force on particle i at time t aris-
ing from the potential energy in the system. Furthermore, Ri(t; ∆t) is a
random displacement of bead i representing the effect of collisions with
solvent molecules at time t and is sampled from a Gaussian distribution
with the mean 〈Ri(t; ∆t)〉 = 0 and the variance 〈Ri(t; ∆t) ·Rj(t

′; ∆t)〉 =
6D0∆tδijδ(t − t′) as obtained from the fluctuation-dissipation theorem.
The theorem regulates the interrelation between the stochastic and de-
terministic terms in the stochastic differential equation, ensuring that all
fluxes at equilibrium must be zero, maintaining a detailed balance.

Different techniques have been developed which have more or less
of the elements associated with Brownian dynamics but also of mole-
cular dynamics. The common notion, however, is to consider these as
Brownian dynamics as long as the solvent in the model is treated as a
continuum.

6.4 Boundary conditions

As pointed out in section 5.1, true values of any calculated mechanical
property are valid in the the limit of infinite number of subsystems.
Clearly the number of simulated particles in any system is much lower
than this and thus still very far from the validity of the thermodynamic
limit. It can in other words not be assumed that the confinement of a
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Figure 6.1: Schematic representation of boundary conditions for a system
of polymers and particles. Interacting entities (black) to a central (gray)
particle are displayed.

system within a given volume may not effect the outcome of a calculated
property.

The need to simulate bulk behavior is essential in any system and is
usually achieved by the implementation of periodic boundary conditions.
This means that any particle in a system interacts on the length scale of
the entire system, as depicted in Figure 6.1. In other words, any chosen
particle in a given system will interact with its surrounding as if it were
localized in the center of the system at all times.

Boundary conditions may be combined in a simulation so that some
directions are periodic in nature while others do not allow periodicity.
This may be invoked for example when simulating the adsorption onto
a solid surface which is modelled along one of the coordinate axes.

6.5 Truncation and Neighbor Lists

Another important technical aspect is that of the number of interactions
in an N -particle system. Calculating the potential of interaction between
particles in such a system implies the evaluation of N(N − 1)/2 pair
interactions. This means that the time needed to evaluate the energy
of the system scales as N2. If a system of short-ranged interactions is



30 Molecular Simulation Techniques

simulated there is a high probability that a substantial amount of CPU-
time is devoted to pair interactions which do not significantly contribute
to the total energy of the system.

It is obvious that the efficiency of the simulation may be increased by
excluding interactions at some distance rc. At distances larger than rc,
the potential is then cutoff, either by a simple truncation or a truncation
and shift. In molecular or Brownian dynamics simulations, the latter
choice of handling the potential is preferred, as forces on the particles
are finite. The magnitude of rc must of course be chosen with great
care and one must be aware of implications of introducing cutoffs to the
potential. For example, a correctional pressure term may be needed for
simple truncations and an energy tail contribution may be needed when
there is a truncation and shift.

Reducing the number of pair interaction calculations does not reduce
the number of N(N − 1)/2 pair distance evaluations. This problem can,
however, also be approached by introducing neighbor lists. The neighbor
list is implemented by introducing a second cutoff distance rv > rc,
which is schematically shown in Figure 6.2. Before the interactions are
calculated, a list is made of all particles within the distance rv of particle
i. As long as the displacement of particle i is smaller than rv − rc there
is no need to update the neighbor list. Every time the neighbor list is
updated the calculation remains in the order of N2. However, when the
neighbor list is used the calculation is in the order of N for a large number
of particles. The efficiency of the neighbor list method depends on the

Figure 6.2: Schematic representation of the implementation of neighbor
list. Particle i interacts with particles within the cutoff rc, while the
neighbor list contains all particles within rv.
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number of particles which need to be listed. This should be significantly
smaller than the total number of particles in the system.

6.6 Simulation Protocol

The simulations performed in Paper I - IV involve both MC and BD
methods. The MC simulations were used for the generation of equilib-
rium configurations of (i) single polymers in Paper I, and (ii) polymer
solutions in Paper II - IV. In this section the employed protocols which
enabled simulations of the two different situations will in the following
be presented briefly.

In the single polymer studies presented in Paper I, the following sim-
ulation protocol was employed:

i Equilibrium conformations of polymers with desired length and
stiffness were generated in a cubic simulation box of length Lx =
Ly = Lz, with periodic boundary conditions applied in x, y, and
z-directions.

ii After the initial generation and relaxation, the polymer was trans-
lated in the z-direction to a position in the box where the closest
bead–to–surface distance was fixed at a distance zs.

iii An adsorbing surface was invoked in the x, y-plane, using the 3-9
LJ potential described in eq 4.7, after which the BD simulation was
started.

iv A time limit was set at which the polymers must have attached to
the bare surface. If this criteria was not met the simulation was
disregarded.

Steps i - iv were repeated ≈1000 times for each polymer type and averages
of desired properties were continuously collected during the simulation.

The desorption studies in the same paper were conducted in a similar
manner:

i Equilibrium adsorbed structures of polymers were generated with
applied potential using the 3-9 LJ potential.

ii The potential was truncated and shifted according to eq 4.8, yield-
ing a soft repulsive potential at the surface, after which the BD
simulation were initiated.
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The average properties were evaluated in the same way as in the adsorp-
tion studies described above.

The use of MC simulations to create initial equilibrium properties
was also utilized in Paper II - IV where adsorption from solutions of
polymers was studied. The protocol in these simulations involved the
following:

i Generation and equilibration of a bulk solution containing polymers
of desired type in a simulation box of lengths Lx = Ly = L′

z,
where L′

z = Lz + ∆z. Periodic boundary conditions were applied
in the x and y-directions, whereas in the ±z-direction hard walls
were invoked at ±Lz/2. This created a slab of polymer free zone
adjacent to the surfaces located at ±L′

z/2.

ii The hard walls were removed, and the 3-9 LJ was invoked at ±L′
z/2,

after which the BD simulation was started.

Sampled properties were averaged over both surfaces (±L′
z/2).

6.7 Sampled Properties

One important issue that remains, is what properties to examine once we
have a working simulation method applied to a model system, whether
it is in equilibrium or not.

The simplest, and maybe most relevant property due to the appli-
cability is that of the adsorbed amount of polymer Γ. This property is
conceptually easy to grasp, where we need only define a parallel plane
in relation to the adsorbing surface where a polymer may be consid-
ered to be adsorbed. However, one must bear in mind the unphysical
and nontrivial choice of such a definition of adsorption. Furthermore, in
comparison with an experimental setup, the polymer bulk density is of-
ten insensitive to adsorption, which may not be the case in a simulation.
The property is nonetheless important in our study as it enables us to de-
termine the adsorption rates, attachment and detachment processes and
equilibrium adsorbed amounts for our systems. We adopt the notation
of Nads

b for the number of adsorbed beads and Nads
p for the number of

adsorbed polymers. Furthermore, the same quantity may be expressed
in terms of surface density profiles, either as the surface density of beads
ρb or ρp polymers.
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The location of a polymer as a function of time during an adsorption
is described by its center of mass rcom(t), which was defined in eq 2.11.
The time-dependent analog of this property then becomes

〈rcom(t)〉 =

〈

1

N

N
∑

i=1

ri(t)

〉

(6.2)

where ri(t) = [xi(t), yi(t), zi(t)] is the coordinate of bead i at time t.
Specifically the location of a polymer’s center of mass perpendicular to
the surface along the z-axis, 〈zcom(t)〉, is of interest and obtained by
replacing ri(t) with zi(t) in eq 6.2.

As previously discussed in section 2.3, the radius of gyration Rg is a
useful measure when it comes to describing the three-dimensional struc-
ture of a polymer. This property may also be followed as a function of
time using

〈R2
g(t)〉 =

〈

1

N

N
∑

i=1

[ri(t) − rcom(t)]2
〉

(6.3)

At sufficient bead–surface interaction strength, an adsorbing polymer
will make a transition from a three-dimensional structure in solution to
a more pancake-like two-dimensional structure at the surface. The ad-
sorption will not only induce a collapse perpendicular to the surface but
will also increase the expansion of the polymer parallel to the surface
due to excluded volume interactions between adsorbed beads. This rear-
rangement of a polymer was monitored using the perpendicular (⊥) and
parallel (‖) components of 〈R2

g(t)〉 according to

〈R2
g(t)〉⊥ =

〈

1

N

N
∑

i=1

[zi(t) − zcom(t)]2
〉

(6.4)

〈R2
g(t)〉‖ =

〈

1

N

N
∑

i=1

{[xi(t) − xcom(t)]2 + [yi(t) − ycom(t)]2}

〉

(6.5)

satisfying 〈R2
g(t)〉 = 〈R2

g(t)〉⊥ + 〈R2
g(t)〉‖.

As a polymer becomes adsorbed, its adapted structure at the surface
may be described by loop, tail, and train subchains.9 A subchain of
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Figure 6.3: Schematic representation of the three different kinds of sub-
chains. The plane which defines a bead as adsorbed is also shown.

adsorbed beads is referred to as a train, a non-adsorbed subchain with
both ends bonded to trains as a loop and a non-adsorbed subchain with
one end bonded to a train as a tail, as depicted in Figure 6.3. The
definition of an adsorbed polymer depends on where the adsorption plane
is placed parallel to the surface; the plane is then used to define the
different types of subchains.

During the adsorption of nonflexible polymers, these tend to form
nematic structures on the surface, where the degree of nematic order is
much dependent on the persistence length of the polymer. In Paper III
and IV, we evaluate the nematic bond order by considering the bond
order parameter η, which is evaluated in the proximity of an adsorbed
bond i as

ηi = λi (6.6)

where λi is the largest eigenvalue of the 3x3 matrix Bi, in which the
elements are defined by

Bαβ,i =
1

NVi

∑

j∈Vi

1

2
(3bα,jbβ,j − δαβ) (6.7)

where bj is the normalized bond axis vector of bond j, {α, β} = {x, y, z}
and the summation involves NVi

bonds in the spherical volume Vi with
the radius Rη centered at bond i. Only bonds that are adsorbed are
included in the sum; thus, in practice bonds in a cylinder of radius Rη

and a height given by the adsorption threshold (z-axis) are considered.
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The bond order parameter ranges from zero for random bond directions
to unity for completely parallel bond directions. The formation of struc-
tured domains on the surface is analyzed by studying the time-dependent
bond order η(t).





Chapter 7

Highlights of the Papers

Here the results from paper I - IV will briefly be discussed and the main
conclusions of the work will be highlighted.

7.1 Paper I

The simplest case of adsorption of polymers using our model is the ad-
sorption of single polymers onto a solid surface from a good solvent. The
focus is thus a comparison to a polymer solution in the dilute regime,
where the polymers behave uninfluenced by other polymers in the solu-
tion. In paper I, we examined the behavior of single polymers as these
adsorb onto a planar surface as a function of time. The properties varied
were (i) the polymer length, (ii) intrinsic polymer stiffness, and (iii) the
polymer–surface interaction strength.

During the adsorption of polymers we identified three distinct phases
corresponding to periods during the adsorption of significant conforma-
tional change. The phases were as follows:

- Distortion phase, where the polymers become elongated perpen-
dicular to the surface as the segments closest to the surface expe-
rience an attraction.

- Attachment phase, where the polymers establish physical con-
tact with the surface, which is followed by a relatively fast collapse
of the polymer to a more two-dimensional structure.

- Relaxation phase, where the polymers continue to spread on
the surface attaining their equilibrium structure. The relaxation
involves essentially only the parallel extension on the surface and
comprises the slowest process.
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We identified the characteristic time of the attachment phase for the
polymers as a function of the polymer length N , which revealed a sub-
linear behavior, whereas the relaxation phase revealed a much stronger
N dependence. The result reflects the polymer’s geometrical size in so-
lution, and the fact that as it collapses onto the surface there will be an
increasing entanglement of segments of a polymer with N .

Increasing the stiffness of the polymers promoted a flatter conforma-
tion on the surface at equilibrium, which could also be induced with a
stronger bead–surface interaction. Furthermore, the attachment phase
was reduced and the relaxation was prolonged for polymers with a higher
surface affinity. For a stiffer polymer, the process of attachment differs
as there is a preferential realignment for the stiffer polymers rather than
a collapse of a flexible object.

7.2 Paper II

In our second contribution, we extended the system to investigate solu-
tions of flexible polymers with varying density and polymer length. We
found that the collective diffusion of the polymers toward the surface is
enhanced by higher bulk density, as well as the relaxation on the surface
in terms of formation of subchains.

The relaxation of the number of adsorbed polymers toward the equi-
librium value was investigated in some detail. Comparisons to a solution
of adsorbing unconnected beads revealed a biexponential behavior corre-
sponding to that of the polymer solutions. This was attributed to the (i)
adsorption to a bare surface and (ii) to a surface which is partly covered.

We also investigated the rate and frequency of attachment and de-
tachment of the polymers at the surface. From this we concluded some
general aspects related to the polymer length and the density of the
solution. (I) Lower densities of shorter polymers showed a correlation
between early attaching polymers and those that remain attached for a
long time of the simulation. (II) Higher densities of shorter polymers
showed virtually no such correlation but an increasing and higher reat-
tachment frequency of polymers at the surface. (III) Longer polymers
which adsorb early showed a higher frequency in reattachment than poly-
mers adsorbing late during the simulation.
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The relaxation of the polymers on the surface revealed yet another
process than those obtained in Paper I. During the structural relaxation,
the increased surface pressure induces a final contraction of polymers
parallel to the surface reducing the polymer fraction of beads in trains
and increasing the fraction in tails.

7.3 Paper III

In Paper III we conducted a comprehensive survey on polymer adsorp-
tion from solution, varying the intrinsic polymer stiffness and the bead–
surface interaction strength. The work comprised both static and dy-
namic investigations of the systems.

We found an interesting dependence of the average number of ad-
sorbed polymers and the average number of adsorbed beads on the flex-
ibility of the polymers. At any given bead–surface interaction strength,
there is a maximum in the average number of adsorbed polymers when
the flexibility of the polymers is initially decreased. This was only ob-
served for slightly nonflexible polymers, and was attributed to the com-
peting effects of the larger perpendicular extension of polymers, as a
result of increased surface pressure, and the preferred parallel adsorption
of a rod-like polymer.

The adsorption rates of flexible and rod-like polymers are initially
similar, but the final relaxation of the property is prolonged for the latter.
Our analysis shows that this longer relaxation occurs as a consequence of
the slow formation of domains with nematic bond order on the surface.
The process appears on time scales comparable to that of the entire
simulation, and thus constituting the slowest relaxation mechanism.

Finally, we conducted an analysis by which we extracted information
of mean integration times of polymers into the adsorbed layer along with
average adsorption times. The flexible polymers displayed increasing
integration times and average adsorption times with increasing bead–
surface interaction strength. This is an effect of a higher bead density
at the surface as the bead–surface interaction is increased, creating a
less penetrable barrier for non-adsorbed polymers arriving at the surface
which increases the time needed for a polymer to become firmly anchored.
For the rod-like polymers these times increased 3-fold as compared to
flexible polymers at equal bead–surface attraction, as a consequence of
the higher surface affinity of these polymers. When a rod-like polymer
is adsorbed at the surface this occurs with an average fraction of 60 to
80 % of the polymer in trains depending on the bead–surface attraction.
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Therefore, the probability that all of these segments are simultaneously
detached is smaller than for flexible polymers with fewer segments in
trains. This explains the large increase both in integration times and
adsorption times.

7.4 Paper IV

In Paper IV, having established much of the dynamic processes which
occur for one-component solutions in Paper II and III, we introduced
mixed solutions of polymers with varying degree of rigidity, polymer
length, and bead–surface interaction strength. We aimed to resolve some
of the dynamic competitive events during the co-adsorption of different
types of polymers.

Regarding the number of adsorbed beads for the flexible polymers,
the general dynamic behavior that we captured during the simulations
well resembled those of several experimental systems previously studied.
We identified certain time-dependent events regarding the competitive
adsorption which distinguished the mixed systems from adsorption of
the single component solutions. These were:

- a reduction of the number of adsorbed beads compared to the re-
spective polymer types single component solution; this effect was
more pronounced for the shorter polymer.

- a maximal number of adsorbed beads was reached for the shorter
polymer at the same time as the longer polymer revealed a markedly
slower adsorption rate.

- a slow exchange of the shorter for longer polymer types at the
surface, occurring at constant number of adsorbed beads.

The different combinations of stiff and flexible polymer lengths re-
vealed that the stiff and long polymers dictate the adsorption behavior
in terms of the number of adsorbed beads at the surface. However, for a
mixture of flexible long polymers and stiff short ones, the shorter poly-
mers replaced the long at the surface. This induced an overadsorption
of the longer polymers, prolonging the subsequent replacement of these
by the short stiff ones.



Populärvetenskaplig

sammanfattning p̊a svenska

Polymerer är l̊anga kedjemolekyler som best̊ar av sammanhängande min-
dre repeterande enheter. Vi finner dessa nästan överallt; vi har dem i
h̊aret när vi tvättar oss, i maten vi äter, i förpackningar, i medicin och
i rengöringsmedel. Kroppen producerar l̊anga komplicerade former av
polymerer som proteiner och styrs via den kanske viktigaste polymeren
av alla, v̊ar arvsmassa - DNA. I m̊anga tekniska applikationer vill man
kontrollera, antingen genom att till̊ata eller genom att förhindra, poly-
merer fr̊an att fästa vid olika ytor. Detta har gjorts i flera hundra år och
görs fortfarande i stor utsträckning p̊a basis av empiriska försök. Vill
man först̊a vad som sker eller kanske vad som inte sker m̊aste man först̊a
de bakomliggande mekanismerna i en s̊adan process. Detta är viktigt när
det gäller att ta fram nya material med skräddarsydda egenskaper.

Avhandlingsarbetet har fokuserat p̊a n̊agra av de tidsberoende pro-
cesser som sker d̊a en eller flera olika polymerer fäster vid ytor. De
processer som sker i en lösning där en polymer närmar sig en yta, för att
sedan fästas och spridas p̊a denna, sker ofta p̊a mycket korta tidsskalor
och det är sv̊art att experimentellt studera s̊adana processer. Därför
använder vi olika typer av matematiska modeller och numeriska metoder
för att simulera dessa förlopp. De modeller vi använder för att rep-
resentera polymerer, lösningsmedel och ytor anpassas till en detaljniv̊a
som är hanterbar, men änd̊a representativ. Simuleringarna g̊ar ut p̊a
att numeriskt lösa de ekvationer som beskriver systemets energitillst̊and
och hur de olika polymererna växelverkar med sin omgivning. Efter-
som vi i modellen har konstruerat en lägre potential invid den yta som
vi vill att polymererna skall fästa p̊a, kommer de tids nog ocks̊a att
hamna där. Det m̊aste ocks̊a finnas en n̊agorlunda riktig tidsskala om
vi vill hävda att de olika processerna tar olika tid och först̊a varför de
gör det. Detta har vi löst med hjälp av den specifika simuleringsmetod
vi använt: Brownsk dynamik. Metoden innebär att det lösningsmedel
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som inneh̊aller polymererna och själva ytan har egenskaper som till viss
del liknar de fysikaliska betingelser hos vanligt vatten. Istället för en-
skilda vattenmolekyler skapar man en helhet som omsluter polymererna
och kontinuerligt ger dem knuffar i slumpmässiga riktningar. Det finns
regler för hur lösningsmedlet delar ut knuffar och däri ligger ocks̊a tids-
beroendet.

De olika system vi har tittat p̊a innefattar polymer med olika längd,
stelhet och attraktionskraft till ytan. I v̊art första arbete undersökte vi
ensamma polymerer när dessa fäster vid en yta; detta för att kartlägga
och isolera de tidsberoende processer som r̊ader beroende p̊a systemets
karaktär. Efterföljande arbeten behandlar lösningar med flera polymerer,
dels av samma slag, men ocks̊a blandsystem av olika polymertyper. Dessa
arbeten visar p̊a de effekter som uppst̊ar d̊a flera polymerer täcker en yta
och hur detta kan p̊averka den enskilda polymerens struktur. I de fall
där det handlar om olika typer av polymerer uppst̊ar det konkurrens
om plats intill och p̊a ytan. Det kan ta mycket l̊ang tid för dem att
arrangera sig för att n̊a jämvikt. I vissa fall kan stela polymerer uppvisa
olika mönster p̊a ytan i samband med att de täcker denna, s̊a kallade
nematiska tillst̊and, vilket ocks̊a bidrar till mycket l̊anga tider för att n̊a
jämvikt.

Även om de förlopp vi har studerat inte riktar sig specifikt mot n̊agon
speciell typ av polymer eller system, s̊a ligger värdet av resultaten i de
kvalitativa egenskaper som vi har kartlagt. De processer vi har studerat
för polymerer och ytor beskriver s̊aledes generella egenskaper och sätter
dessa i relation till varandra i tiden. Detta gör att först̊aelsen för de
fenomen vi har modellerat kan appliceras och utvecklas för andra system
och polymertyper och kan d̊a även jämföras med experimentella resultat.
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