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Choosing Opponents in Prisoners’ Dilemma:
An Evolutionary Analysis*

Peter Engseld’ and Andreas Bergh?
Dept of Economics, Lund University, P.O. Box 7082, 220 07 Lund, Sweden

November 29, 2005

Abstract

We analyze a cooperation game in an evolutionary environment. Agents
make noisy observations of opponents’ propensity to cooperate, called rep-
utation, and form preferences over opponents based on their reputation. A
game takes place when two agents agree to play. Pareto optimal coopera-
tion is evolutionarily stable when reputation perfectly reflects propensity
to cooperate. With some reputation noise, there will be at least some
cooperation. Individual concern for reputation results in a seemingly al-
truistic behavior. The degree of cooperation is decreasing in anonymity.
If reputation is noisy enough, there is no cooperation in equilibrium.

JEL classification: C70; C72

Keywords: Cooperation; Conditioned Strategies; Prisoners Dilemma; Sig-
naling; Reputation; Altruism; Evolutionary Equilibrium

1 Introduction

1.1 Background

The literature on the problem of cooperation is huge and spans several disci-
plines, see e.g. Gintis et al. (2005) and Hammerstein (2003). There is, however,
still no consensus on how to explain both the emergence and deterioration of
cooperation with unrelated strangers in finite interactions. A classical example
of a cooperation game is the Prisoners’ Dilemma, in which playing defect is

a strictly dominant strategy. Nevertheless, both agents would be better off if
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they could somehow commit themselves to play cooperate. Note that feasible
commitments requires that agents are able to observe, directly or indirectly, the
actions of the opponent, otherwise defection can not be retaliated.

The tit-for-tat strategy was described in Axelrod (1984) as retaliation mech-
anism against defections, and became widely known as the best strategy in
repeated games of Prisoners’ Dilemma. However, as pointed out in Boyd and
Lorberbaum (1987), a population of cooperating tit-for-tats can be invaded by
nice but less retaliatory strategies, resulting in a population vulnerable to in-
vasion by defecting strategies. Thus, tit-for-tat is not an evolutionarily stable
strategy. The main mechanism behind this result is that in standard game theo-
retical models, the agents are unable to choose with whom they are matched up.
Instead, it is typically assumed that they are matched up with the same oppo-
nent or through random/tournament matching, see e.g. Kandori, Mailath, and
Rob (1993). This convention stems not from descriptive accuracy, but rather
from methodological considerations: Allowing other matching procedures would
open countless possibilities.

Nevertheless, many interactions in real life are the results of individual
choices, and not randomly imposed. Moreover, it is implausible to assume that
individuals, given a choice, continue to interact with those who treat them un-
favorably, see e.g. Tullock (1985). For this reason, it makes sense to analyze the
Prisoners’ Dilemma when agents have both some ability to observe the actions
of others, and some possibilities to choose between potential opponents. Since
the agents’ payoff is strictly increasing in the opponents probability to play co-
operate, all agents will seek to be matched with opponents who are more likely
to play cooperate. This imposes a restriction on the matching possibilities: If

you want to play with a cooperative agent, you have to play cooperative too.



1.2 Outline of the Model

In this paper, we analyze the Prisoners’ Dilemma in an evolutionary environ-
ment, see Maynard Smith (1982), using a theoretical framework similar to that
of Kandori, Mailath, and Rob (1993) and Young (1993). The main difference is
that the probability of mutations in our model is given and assumed to be close
to zero. We instead assume that agents make imperfect observations of oppo-
nents’ propensity to play cooperate, interpreted as reputation, which enables
them to form preferences over opponents based on their reputation. We intro-
duce preference based matching which pairs agents with their most preferred
feasible opponent.

The driving mechanism for our main results is the combination of observa-
tional skills and the ability to choose opponent. Under our assumptions, we
show that if observational skills are perfect, i.e. reputation perfectly reflects
each agent’s propensity to cooperate, the payoff maximizing strategy in evolu-
tionarily stable populations, is to cooperate and prefer to play with cooperative
agents.

When observational skills are imperfect, so that reputation only imperfectly
reflects past actions, any population can always be invaded by strategies with
marginally higher degree of defection. This decreases the degree of coopera-
tion in the population over time. However, if observational skills are accurate
enough, a population with a sufficient degree of defection can be invaded by pure
cooperators. In this case, the behavior in the population will change in a cycli-
cal pattern. To capture this dynamic, we introduce a new equilibrium selection
model which basically is a slightly modified absorbing set, and less restrictive
than the conventional evolutionarily stable strategies ESS, see Maynard Smith
(1982).

When observational skills are sufficiently inaccurate, the model yields the
same equilibrium as standard models: there will be no cooperation in equilib-

rium. However, if agents are able to evolve such that observational skills can



improve, the observational skills will endogenously, due to evolutionary pressure,

improve over time.

1.3 Related Literature

The idea of conditioned actions in the Prisoners’ Dilemma, is not new. Dawkins
(1982) observed that if cooperative agents has an observable characteristic, such
as a "green beard”, agents with green beards will cooperate with each other and
play defect with others. A similar idea, with a secret handshake was later for-
mally modelled by Robson (1990). Frank (1988) considers the case when agents
send different signals regarding whether they play cooperative or defect; cooper-
ation is driven by an outside option which enables agents not to play. Grégoire
and Robson (2003) show that when the population is divided into at least three
subpopulations and imitation across subpopulations of the best strategy occurs,
all equilibria involve cooperation. Using the Prisoners’ Dilemma, Rob and Yang
(2005) show that the ability to leave a defecting partner can induce long term
cooperative relationships. Jackson and Watts (2005) introduce the term social
games for games where agents chose not only strategies, but also with whom
they play. In a non-evolutionary environment, they show that the threat of

rematching can sustain new equilibria.

2 The model

Consider a population I with a large even number /N agents who are repeatedly

matched to play a symmetric 2 X 2 game below.
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Let o € (0,1) and 8 € (—00,0) . Prisoners’ Dilemma is the special case when
cooperation is socially optimal (2o > 1+ ). The action set is A = {D,C},
where a € A. Actions are taken in discrete time, t € {1,2,3,...}. The actions D
and C can be thought of as Defect and Cooperate.

The game I' (o, ) is played repeatedly by the agents in the population. We
use the term propensity as a measure of action history, formally defined as

follows:

Definition 1 The propensity P},Vi € I at time t is a recursive function, where

Pl =pPr(at=C|)+(1—p) P PP €[0,1], and p € (0,1).

The propensity in period t is defined as a weighted average of the probability
to play C' in period t and the propensity in the previous period. This implies
that agents with identical action history will have identical propensity.

Every agent i € I observes the reputation r'; of an opponent —i, which is

a realization of the stochastic variable R! ;. R!,

; is symmetrically, unimodally

and smoothly distributed around P?,, as depicted below. As a measure of the

79
observational skills denoted O! € R we use the inverted standard deviation of
R’ ,. The value of r* ; € R is private information for ¢. Note that reputation is
not limited to the unit interval. Henceforth we omit the time index when there

is no risk for confusion.

R

v

Pt

Property 1 lim r_;, = P_;,Vi,—i € I.
O;— 0

By being able to observe the reputation of opponents, agents can form pref-

erences over all possible opponents. Let ¥ denote the set of all complete and



transitive preference relations defined on R. Let 7 € ¥ and let 7; denote the
preferences of agent i.

Let S denote the set of all pure strategies. A pure strategy s € S is a mapping
from own propensity, and opponents’ reputation onto A and ¥. More formally,
we have s: [0,1] x R — A x W. Less formally, a strategy assigns an action and a
preference order over every feasible population. Note that this mapping allows
agents to condition their actions on the reputation of their opponents.

A mixed strategy is denoted o and is defined as a probability distribution
over S. Formally, 0 = (04),cg, 0s € [0,1],Vs € S and [ g0, = 1. Any mixed

strategy can consequently be seen as a vector o € R°, that belongs to the unit

AUE{UER?;’/ Uszl}.
seS

A combination of strategies in the population is denoted (); and defined as a

simplex A, where

probability distribution over A,. Let g, denote the fraction of agents in I with
strategy 0. Formally, Q1 = (¢5),ca, s 4o € [0,1],Vo € A, and faeAg go = 1.
Any combination of mixed strategies in the population can be seen as a vector

Qr € RS, that belongs to the unit simplex Ag, where

AQ:{QIERiO/ qg:].}.
gEA,

Note that Q7 both can be viewed as a point in RS and as a set of strategies.
We use Qp\; to denote the strategy mix in the population I\ 4, and we let Op\;
denote the observational skills of all agents I\ i. The expected payoff for agent
i with strategy o; at period ¢t will be 7t (O'i, Oi; Qi OI\Z-). When there is no

risk of confusion, we use () to denote Q7.

2.1 Evolutionary Stability

To analyze how the population evolves we apply an evolutionary setting similar
to e.g. Kandori, Mailath, and Rob (1993) and Young (1993). We impose per-

turbations such that every agent in the population in each period with a small



given probability will “mutate”, meaning that they change strategy. Just as in
the papers cited above, one or more agents can change strategy in each time
period and all mutations have equal probability.

The perturbations can be divided into three subgroups: successful mutations,
unsuccessful mutations and evolutionary drift. A successful mutation implies
that the change of strategy yields a strictly higher payoff, whereas an unsuc-
cessful mutation yields a strictly lower payoff. Evolutionary drift occurs when
the change of strategy yields the same payoff, see e.g. Binmore and Samuelson
(1999).

The growth in the population is such that strategies with higher payoffs will

have a higher representation in the population in the next period:!

. qft;H q(tjl : t . to 1.
(1) sign — — =% = sign (ﬂ' (o,5)—7" (o', )) .
qo‘ qg-/

Offsprings are assumed to inherit both strategy, propensity and observational
skill from the parent. The question whether a mutant strategy could invade
the current (incumbent) strategy distribution is not as straightforward as in
standard models. As usual, the payoff of an agent i depends both on the agent’s
strategy o; and on the opponent’s strategy o_;. However, the opponent’s actions
can also depend on the agent’s reputation, just as the agent’s action can depend
on the opponent’s reputation. This implies that if an agent changes strategy,
her actions and thus her propensity can change, which could trigger different
actions from other agents and thereby change their propensity, which in turn
might lead to other agents changing their actions ad infinitum.

An adiabatic relationship between the processes help us avoid such cumber-

some dynamic:

Assumption 1 The distribution of propensity in the population converges to a
limit state before the growth begins, and the growth converges to a limit state

before new perturbations.

IThe growth in this model is identical to that in Kandori, Mailath, and Rob (1993) and

Young (1993).



Consequently, the adjustment process of the propensity is much faster than
the growth process, which in turn is much faster than the process of perturba-
tions. This implies that the population on average can be considered stationary
in so far as the pair o;, P; is fixed Vi € I. This renders the index for time redun-
dant in most cases. Another consequence of Assumption 1 is that VQ € Ag,
there exists a corresponding propensity distribution.

A population can evolve from @ to @’ either through growth, successful

mutations or evolutionary drift.

—
Definition 2 QQ' denotes a path connected curve in Ag between Q and @',

implying that Q can evolve to Q' through growth or through perturbations.

Due to the potential existence of oscillating strategy mixes, standard equi-
librium concepts, such as ESS, are too restrictive. Let us therefore define a
mutation proof attraction set (MAS), which basically is a slightly modified ab-
sorbing set, see e.g. Samuelson (1998), where the set is closed under the growth
mechanism and mutations, whereas absorbing sets are closed only under the

growth mechanism.

Definition 3 (MAS) QMAS(T) is a set of strategy mizes Q € QMAS ()

where
e 3QQ, VQ,Q' € QMAS (I, and
 3QQ" for any Q" ¢ Q4 (T).
Let AMAS (1) = J QM4 (T).

Property 2 AMAS (T') ), ¥T.

A population I belongs to a MAS, precisely if the strategy mix @ in the

. . A 7
population belongs to an attraction set Q49 (T') such that 3 QQ’, VQ,Q’ €
QMAS(T'). That is, each combination of strategies in the population that be-

longs to the attraction set Q¥4 (I') must be able to evolve to any other point in



the attraction set, either through growth or through evolutionary drift. More-
over, there must not exist any feasible path such that the population could
evolve to a point Q" ¢ QMAS (T'). Note that MAS yields identical equilibria on
unconditioned strategies as neutrally stable strategies NSS, see Maynard Smith

(1982).

2.2 Matching of the Agents

The individual preference ordering 7~; € ¥ enables each agent to make pairwise
comparisons of all other agents in the population, such that & 7Z; j implies that
agent i weakly prefers agent k over agent j, whereas k »=; j implies that agent
i has a strict preference for agent k over agent j.

Let T denote the set of matched pairs. Formally, preference based matching

is described as follows:
Definition 4 (Preference based matching)
3(i,5), (k1) €1 such that k =; j, and i = I.

Preference based matching implies that agents are matched up with their
most preferred feasible opponent. Many matching procedures may satisfy the
conditions above, for an example see Appendix B. Preference based matching
procedures do not generate a deterministic set of matched agents. In order
to make the matching procedure path independent, the games are evaluated
through the expected payoffs given a fixed set of preferences and observational
skills in the population. For technical reasons, we assume that each strategy
present in the population is utilized by an even number of agents. By this
assumption we avoid the pathological case when a non-preferred opponent im-
posed on an odd agent with a given strategy, possibly decreases the expected
payoff for agents this strategy.

Note that when observational skills are non-existent, preference based match-

ing is equivalent to random matching.



3 Evaluating the Game
Denote the strategy mixes where all choose action C' and D respectively:
Q°={Q|Pr(a;=C)=1,Vie I}, and Q° ={Q | Pr(a; =C)=0,Vic I}.

Regardless of an agent’s strategy, the payoff is always higher if the opponent is
more likely to play C. Since changes in strategies are assumed to be rare, the
adiabatic relationship propensity and actions (Assumption 1) implies that the

expected payoff 7 is strictly increasing in the opponent’s propensity.
om;
Property 3 6—11317 > 0.

From the definition of reputation we know that the expected value of the

reputation equals the propensity.
Property 4 g—z > 0.

Denote by ¢ the set of preferences such that the agent prefers opponents

with higher reputation:

Definition 5 == {=|r; > r, & j = k,Vr € R}.

3.1 Perfect Observational Skills

Let us begin with the special case when reputation is identical to the propensity,
ie. O; = oo,Vi € I. From property 3 we know that the payoff is strictly
increasing in the opponent’s propensity. For this reason, assume for now that
all agents have preferences .

Since all agents will be able to avoid being matched up with opponents of
lower propensity, agents will only be matched up with opponents of identical
propensity.

Let z; = Pr(a; = C). Since agents matched with each other will have iden-

tical propensity, let z = z;. Focus now on how the payoff depends on the

10



propensity. The payoff for an arbitrary agent i is given by m; (1) = az? +

z (1 —2z) (14 (), which is maximized for

When cooperation is socially optimal, 2a > 1 4 3, this implies z = 1. If

2a < 143, the payoff is maximized for mixed strategies where the probability of

o

1+8—«

playing C is equal to %—i—% > % Thus, the probability of playing action C

is strictly increasing in «, and always higher than 50 percent. However, when all
agents have identical propensity, the population will be vulnerable to a neutral

invasion of agents with the same propensity as the incumbents, but with >~ #>C.
Lemma 1 P, = P;,Vi,j € I = (0 |z¢) =7 (0 |5 #2°) Vo € A,.

In other words, the population will through mutations drift away from all

agents preferring opponents with higher reputation.
Proposition 1 If Q € AMAS(T) and O; = oo,Vi € I then

° 2a21+6:>1\}im Pr(a; =C) =1, and

: _ 1 1 « .
. 2a<1—|—ﬁ:>N1£nOOPr(ai—C)—§—|—§1+ﬁ_a,w€[.

The intuition is as follows: Since agents with >~ #>C can only make a neutral
invasion, they will, for a given growth and perturbation speed, represent a small
subset of I of fixed size. This fraction can be exploited by strategies more
inclined to play D, with preferences =C. These strategies will initially yield more
than all other strategies in the population. However, strategies with =~ #>¢ will
yield less than all other strategies and therefore grow slower. This implies that
agents with low propensity strategies to a higher degree will become matched up
themselves, and thus earn a lower payoff. This process will eventually stabilize
when the expected payoff for agents with =~ #>C equals that of agents with low
propensity strategies.

Note that when the exploiting agents, due to their lower payoff, eventually

disappear from the strategy mix, the population will again drift away from all

11



agents having preferences -¢, and the process described above will start over,

causing a rare reoccurring limited cyclical movement in Q.

3.2 Imperfect Observational Skills
Assume now that reputation is noisy and only imperfectly reflects propensity.

Lemma 2 O; < 00,Vi € I, and 3P; # P;, for some 1,5 € I = 71'(0 \?\:C) >

7 (0 |z #2°) Vo € A,.

When the population contains agents with different propensity, preferences
>C will yield higher payoff. Moreover, if the population contains agents with
different propensity, the payoff is strictly increasing in observational skills for
agents with =C.

Lemma 3 O; < o0,Vi € I, and IP; # P;, for some i,j € I = %OI?) >

0,Viel and Vo € A,.
Corollary 1 3P; # Pj, for somei,j € I and Q € AMAS(T) = 0; = O,Vi € I.

If agents are able to evolve such that observational skills can improve, the

observational skills will improve over time.
Corollary 2 3P; # P}, for some i,j € I and Q € AMAS(T) = tlim O = 0.
—00

As a consequence of Corollary 1, we henceforth analyze the game under the
assumption that all agents have the same observational skills: O; = O,Vi € I.

Now consider two types of agents with strategies o, and o3, and correspond-
ing propensities P; > Py. Define m1 = 7 (01) and 79 = 7 (02). Let 711 denote
the payoff for type 1 agent when matched against another type 1 agent. Let w19
denote the payoff for a type 1 agent when matched against type 2. Analogously,
moo denotes the payoff when two type 2 agents meet, and 7o; is the payoff for
type 2 agents when matched against type 1.

p; denotes the fraction of type 1 agents who meet type 2, i.e. matching

failures for type 1. Analogously, p, denotes the fraction of type 2 agents who

12



meet type 1. Let N7 and No be the number of agents of type 1 and 2, and note
that plNl = p2N2.

The payoffs can be described as follows:

m=(1—p)m+pme and w2 = (1 — py)Ta2 + pamar,

As before, z; denotes the probability to play C for a type 1 agent with
propensity P;. Let zo = z; — x denote the corresponding probability for a type

2 agent, where = € (0, z1]. Hence, the relevant payoffs can be written:

(2) T o= Aat+z(l-2z)(1+43),

(3) e = z(a—w)a+(z—z)(1—2)+21—-2+1)6,
(4) T2 = (n—a)la+(z—2)1—z+2)(1+0),

(5) T = z(an-—z)a+(z—2)(1—2)8+2n(1—2+1).

Since w17 > w12 and woy < oy it follows that if matching failures for type
1 agents are sufficiently common, the less cooperative type 2 agents will earn
more. Let pi"®* be the value of p; for which m; = my. In other words, pi"®* is
the maximum fraction of matching failures allowed for type 1 agents in order
to prevent type 2 agents from earning a higher payoff and thereby successfully

invade the population.
Lemma 4 3P, < Py such that mo > m1,VP; € (0,1] when O < 0.

The maximum allowed fraction of matching failures for agents of type 1 in

a close proximity of P, corresponds to less mistakes than random matching,

No

NN From the assumption about the noise it follows that the

ie. o' <
ability to identify whether an agents is type 1 or 2 when |P; — Py| & 0 is close
to non-existent.

Consequently, unless observational skills are perfect, any population can al-

ways be invaded by agents less prone to play cooperative. The intuition behind

this result is that the observational skills needed to prevent invasion by more de-

13



fecting agents requires fewer errors than random matching, which is impossible
when the invasion occurs arbitrarily close to the propensity of the incumbents.

Lemma 4 suggests a dynamic that eventually will drive the population to-
wards a state where all agents play defect. Nevertheless, from the definition
of noise it follows that »—; =-C,Vi € [ = %’} < 0. That is, matching failures
for type 1 agents are decreasing in x, and thus also in the propensity distance
between type 1 and 2. Less formally, a slightly less cooperative opponent is
harder to recognize than an opponent with much lower propensity, and thereby

also harder to avoid being matched up with.
Lemma 5 30 < 00,2 € [0,1] and = € (0, z1] such that p** > p; > 0.
Corollary 3 30 < oo and x € (0, z1] such that w1 > ms.

That is, there exists an imperfect observational skill which enables a more
cooperative strategy to invade a population of less cooperative players. Let O*

denote the minimum observational skill with which Lemma 5 is satisfied.
Corollary 4 O > O* = 3z € (0, z1] such that w1 > 7.

If the observational skill in the population is better than O*, then type 1
agents can successfully invade a population with much less cooperative type 2
agents. But as shown in Lemma 4, this more cooperative population can in turn
be invaded by slightly less cooperative strategies. The process described above
will start over, causing a cyclical movement in @ such that the population will
oscillate between different degrees of cooperation.

Unless the observational skill in the population is higher than O*, complete

defection is a unique MAS.
Proposition 2 O < O* = QP = AMAS(T),

Nevertheless, given that observational skills can evolve, note that the popu-

lation will always be subjected to perturbations. Hence, agents with P > 0 will

14



rarely, but repeatedly emerge in the population, i.e. 3F; # P;, for some ¢,j € I.

. on; (O“i’/c)
From Lemma 3 it follows that —%0. —

Then from Lemma 4 and 5 it follows that 3P; # P;, for some 4, j € I.

> 0. Hence, eventually will O > O*.

Lemma 6 7, =¢,Vie I = 24 <.

The fraction of matching failures for type 1 agents is decreasing in observa-
tional skills. Hence, the possibility of successful invasion by type 1 agents will

increase as observational skills improve.

Proposition 3 The degree of cooperation in the population is strictly increasing

i observational skills when O > O*.
From Proposition 2 and 3 it follows:

Corollary 5 The degree of cooperation in the population is weakly increasing

in observational skills.

3.3 Summary

The results can now be summarized as follows:
1. If observational skills are perfect, i.e. O; = 00, Vi € I, we have two cases:

(a) When cooperation is socially optimal, 2« > 1 4 /3, almost total co-

operation is a unique MAS.

(b) When cooperation is inefficient, 2a < 1 + 3, more than half of the

actions in the MAS will be cooperative.

2. If observational skills are imperfect, but sufficiently good, i.e. O > O*,
the strategy mix in the population will oscillate between different degrees
of cooperation. The degree of cooperation in the population is strictly

increasing in observational skills.

3. If observational skills are poor enough, i.e. O < O*, complete defection is

a unique MAS, i.e. QP = AMAS(T).

15



4. If agents are able to evolve such that observational skills can improve, the

observational skills will improve over time.

4 Conclusions and Remarks

In our model individual concern for reputation results in a seemingly altruistic
behavior. We have thus shown that prosocial behavior, such as cooperation in
Prisoners’ Dilemma can be explained without resorting to models with altruism
or inequity aversion, see e.g. Fehr and Fischbacher (2003) and Fehr and Schmidt
(1999). Reputation based choice can also potentially explain the big impact of
the degree of anonymity on behavior. When reputation does not perfectly reflect
behavior, there are situations where the payoff associated with defections will
outweigh the reputational costs. For experimental evidence, see e.g. Hoffman,
McCabe, and Smith (1996).

Regarding the effect of reputation based choice of opponent, there is less
experimental evidence available. McCabe, Rigdon, and Smith (2003) pair par-
ticipants in a trust game based on their degree of trust and trustworthiness,
which allows cooperation to emerge and protects cooperation from being in-
vaded by defecting players.

This supports the idea that an important key to understanding cooperation
in repeated games is the matching procedure. Random/tournament matching
represents one extreme, whereas reputation based choice as analyzed in this
paper represents another. In practice, people encounter some situations where
they are able to choose their opponent in strategic interactions and some situa-
tions where they are forced to play games of cooperation against random agents
in the population. The implications of such mixed matching procedures deserve
to be examined closely. The results are likely to be positive for cooperation: As
long as there is at least some degree of free opponent choice, agents must take
into consideration the reputational consequences of their actions also when they

play against randomly assigned opponents.
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A  Proof

Proof of Lemma 1. P, =P;,Vi,jcl =z =2z;,Vi,j€l. 2z =2;Vi,jel
implies that all opponents will yield the same payoff. Consequently, 7 (o |Z) =

7(o|z),Vo e Ay and Vo', ='e U. m

~ )~

Proof of Proposition 1. From Property 3 we know that %’7 > 0. When
observational skills are perfect, we have that P_; = r_; which implies that all
agents can avoid being matched up with opponents with lower propensity. We
know that each agent 7 maximizes her payoff when z; = 1 if 2a > 1 + 3, and
Z; = % + %lﬂé‘;—a if 2a < 1+ (. Let @Q* denote the set of strategy mixes where
all agents, for given a and (3, use payoff maximizing strategies. This results in
a constant P; = P*,Vi € I. Denote the incumbent strategy o* with preferences
>C yielding the propensity P*. From Lemma 1 we know that the incumbent
population can be neutrally invaded by a strategy o’ with P’ = P* but with

> #7~C. This in turn makes the population vulnerable to invasion by a strategy

0" with P” < P* and with €. This will according to equation 1 result in

7 (") > 7w (c*) > 7 (o) = -~ >

However, as the fraction g, decreases relative to ¢,~, o” will gradually to a
higher degree become matched up with other ¢”, since o* will never be matched
up with ¢”. As a consequence 7 (¢”) will decrease as g, decreases. (o) will

continue to decrease until eventually

w(o*)>m (") = 0.t > 2.1/ and 7 (0*) > 7w (o)) = 4.t > 2.
ql. ., ql. qa’,

No more invasions are possible as long as g, > 0.

Now consider the neutral invasion by ¢’. Since 7 (0*) = 7 (0’) =

t+1
q . . . . .
?’L, Hence, according to equation 1 the fraction ¢,/ is constant. Given As-

o/

sumption 1, this implies that ¢, will be decreasing in population size N. Also
note that g, is bounded by ¢,/. Hence there exist a bounded neighborhood

around @* which is decreasing in IV, such that the population in a MAS will
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converge to:

lim Pr(a;=C) = 1,Vielif2a>1+p4,and
lim Pr(a; = C) Lyl @ vierit2a<i+
im Pr(a; = = 4= i '
N—oo @i 2 21+ﬁ—0¢7 ! @

Proof of Lemma 2. From Property 3 and 4 we know that 88;_? > (0 and
867”:? > 0. If 3P; # P;, forsome 4, j € I, then >C will result in a lower probability
of being matched up with low propensity opponents, and a higher probability

of being matched up with high propensity opponents, than any =~ #>C. m

Proof of Lemma 3. Consider a population with a fixed distribution
of observational skills and focus an agent 7 with observational skill O;. The
probability that agent ¢ mistakenly perceives an opponent to be more coopera-
tive than she really is, is clearly decreasing in observational skill. Analogously,
the probability that agent i correctly identifies an opponent as having a higher
propensity is increasing in observational skills. Consequently, for agents with
>C  a better observational skill leads to a higher probability that low propensity
agents are ranked low and high propensity agents are ranked high, which in turn
results in a higher probability to become matched up with a high propensity

agent. The Lemma follows directly from Property 4. m

Proof of Lemma 4. Let O; = O,Vi € I. Consider the difference 71 — 7o,

and assume that m; — w9 = 0. Hence,

b'e b'e le le
m —my = (1 — p*™) m11 + o712 — <1—/0r1na F) Moo — p1 o N, T2 =0.
2 2

max

Solving for pi"®* yields:

N (w99 — m11)
Ny (m12 — 711) + N1 (w92 — 1)

(6) o =
Substituting the payoffs from equations 2 to 5 into equation 6 yields:

max __ Ng((QZl—JI)((X—ﬁ—l)—f—l—l-ﬂ)
Pl No+ N (z1(@—B -1 +1) —aN (a—pB—1)
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Note that p; denotes the actual fraction of mistakes for the incumbents. It
follows that p"** < p; = m < 79 and p"™ > p; = w1 > ™.
Note that having no observational skills is equivalent to random matching

where p; = From the definition of reputation, it follows that the fraction

N2+N

of matching failures converges to random matching as z — 0. Consequently, we
. o ]\f2

have }}g}) P1 = Worw -

For an invasion arbitrariliy close to the incumbents, we have

max _ _Na(2z1(a—f—1)+1+0)
Jim ™ = W MO G- DD

Consider the difference lir% P — lim Lp1
r— r—

— (N2+N1)(z1(a—B-1)+1) Not N1 Not Ny

Na(2z1(a—B-1D)+14+8) N» N2 2z (a—p—-1)+1+4 -1
z1(a—pB—1)+1 :

Since —2— > 0, we have hm max _ Jim p, <0
N2+Ny 1 z—0 P1

@%71<0@21(1+67®>6.

1+40—a<0 = Z1<1<—%
Two cases: 1+6
1+8—-a>0 = Z1>O>1+ﬂL—a

1 3 N3 (2z1 (a—B—1)+1+03) N.
Since 21 € [0, 1], it follows that (N22+N11)(z1(a7571)+1) < gl

Then 3¢ > 0 such that:

No(2z1(a—B—1)+1+03)
e Gt boeD + € < mtwr

Na((221—z)(a—B—-1)4+14+p) N
Then there also 3z > 0 such that (N2+N12;(21(;_5_1)+1)_$N1(a_ﬁ_1) < N

Consequently, 3P, < P; such that w9 > 71 or more explicitly:
7w (02,0) > 7 (01,0),VO < c0. B
Proof of Lemma 5. From the proof of Lemma 4 we know that

max __ Nao((2z1—z)(a=F—1)+1+0)
(7) P1 - (N2+N12)(Z1(L—5—1)+1)—wN1(a—[ﬁ’—l) ’

Remember that: p"®* > p; = m; > mp. Consequently, 3p*** > 0 = Jp; >

0 such that w1 — w5 > 0. Consider the denominator in equation 7:

(NQ—‘er)(Zl(Oé—ﬁ—1)+1)—$N1(0é—ﬁ—1) >

(1—x)(a=B-1)+1 > 0.
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Now consider the nominator, for x = z; = 1:
Ny (221 —2) (=B —1)+145) = Naa > 0.
Consequently, 3p1"®* > 0. Then Jpi"* > p; =71 > 7. W
Proof of Proposition 2. Follows from Lemma 5 and Corollary 4. m

Proof of Lemma 6. Consider a population I with agents of type 1 and
2, and propensities P, > P». Let p; denote the probability for a type 1 agent
to become matched up with a type 2 agent. Let p; ; denote the probability that
agent i of type 1 is going to be matched with agent j of type 2.

Let p; ; denote the combined probability that an agent ¢ of type 1 mistakenly
ranks an agent j of type 2 higher than a type 1 agent, and that agent j correctly
ranks agent ¢ higher than a type 2 agent.

Note that p; ; is increasing in p; j, Vi,j € I, i.e. g%z:f >0,Vi,j €I

Let p denote the probability that an agent i of type 1 perceives an agent
of type 2 to be more cooperative than herself, p = Pr(ry > P;). Since both
types have identical observational skills, the probability that an agent j of type
2 perceives an agent of type 1 to be more cooperative than herself, is 1 — p =
Pr(r; > P,). Note that % <0.
pi,; 1s increasing in the combined probability (p) (1 — p) = p, 5, i.e. g%:? > 0.
From the definition of reputation it follows that p < %, hence %L’ > 0.

p; - Op; i Opi.; OPi.; op; s 9p; ;i O
X ij ij OPij OPij g — ZFig Op
Consequently o5 = Do op o > 0. Moreover, —5 90 < 0.

That is, the probability that agent ¢ of type 1 is going to be matched with agent
7 of type 2 is decreasing in observational skill.
Since the probability that agent 7 of type 1 is going to be matched with agent

j of type 2 is decreasing in observational skill for every pair in the population,

we have that sign (8§8j> = sign (%) u

Proof of Proposition 3. From Lemma 6 we know that % < 0. Since

T > T2 = g—’;i < 0and 7oy < w1 = g_;f > 0, it follows that a decrease in p,
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benefits more cooperative agents. Hence, fewer mistakes will make it harder for
less cooperative agents to exploit cooperative agents. As observational skills im-
prove, the population will converge towards the degree of cooperation described

by Proposition 1. m

B Example of a Matching Procedure

First, for each individual preference ordering 7—; € W there exists at least one cor-
responding vector R; = (R}, R?,..., RY) where RF denotes agent i’s k-preferred
choice. Thus, R} denotes i’s most preferred opponent, R? her second best, and
SO on.

This procedure makes use of a randomized choosing order, assumed (with-
out loss of generality) to coincide with the numbers 1 to N. First, agent 1
asks her most preferred opponent, who accepts if agent 1 is her most preferred
opponent. Then agent 2 asks her most preferred opponent, and when all agents
have proposed to their first best choice, the procedure is repeated for second
best choices. The procedure continues until all agents are paired. Formally, the
matching procedure can be described by the following algorithm, which pairs

all agents in I into I.
Algorithm 1 (Matching procedure) Let I be the set of matched pairs.
Step 0. LetI=0,i=1, and [ = 1.

Step 1. If there exists an m € [1,1] such that if (R} =j) A (R}* =) A (3,5 ¢ 1),

then (i,j) € L.
Step 2. Increase i by 1. If i < N, go to step 1.
Step 8. Increasel by 1 and leti=1. If | < N, go to step 1.

To ensure that the realized payoff for every agent at each period is equal
to the expected payoff, the matching procedure is assumed to be repeated an

infinite number of times within each period.
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