
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An Introduction to Control and Scheduling Co-Design

Årzén, Karl-Erik; Cervin, Anton; Eker, Johan; Sha, Lui

Published in:
Proceedings of the 39th IEEE Conference on Decision and Control, 2000.

DOI:
10.1109/CDC.2001.914701

2000

Link to publication

Citation for published version (APA):
Årzén, K.-E., Cervin, A., Eker, J., & Sha, L. (2000). An Introduction to Control and Scheduling Co-Design. In
Proceedings of the 39th IEEE Conference on Decision and Control, 2000. (Vol. 5, pp. 4865-4870). IEEE -
Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CDC.2001.914701

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/CDC.2001.914701
https://portal.research.lu.se/en/publications/d79ea23f-5753-48cd-9a00-9a25dfddb1e3
https://doi.org/10.1109/CDC.2001.914701

Proceedings of the 39* IEEE
Conference on Decision and Control
Sydney, Australia December, 2000

An Introduction to Control and Scheduling Co-Design

Karl-Erik b z b , Anton Cervin, Johan Eker

Department of Automatic Control

Lui Sha

Department of Computer Science
Lund Institute of Technology ' University of Illinois at Urbana-Champaign

Email: { karlerik/anton/johane}@control.lth.se Email: lrs@uiuc.edu

Abstract
The paper presents the emerging field of integrated
control and CPU-time scheduling, where more gen-
eral scheduling models and methods that better suit
the needs of control systems are developed. This cre-
ates possibilities for dynamic and flexible integrated
control and scheduling frameworks, where the con-
trol design methodology takes the availability of com-
puting resources into account during design and al-
lows on-line trade-offs between control performance
and computing resource utilization.

1. Introduction
Most control systems are embedded systems where
the computer is a component in a larger engineer-
ing system. The control system is often implemented
on a microprocessor using a real-time kernel or a
real-time operating system (RTOS). The real-time
kernel or OS uses multiprogramming to multiplex
the execution of the tasks on the CPU. The CPU
time, hence, constitutes a shared resource which the
tasks compete for. To guarantee that the time re-
quirements and time constraints of the individual
tasks are all met, it is necessary to schedule the
usage of the shared resource. During the last two
decades, scheduling of CPU time has been a very ac-
tive research area and a number of different schedul-
ing models and methods have been developed.
The most common, and simplest, model used within
the real-time scheduling community assumes that
the tasks are periodic, or can be transformed to pe-
riodic tasks, with a fixed period, T,, a known worst-
case bound on the execution time (WCET), C,, and
a hard deadline, D,. The latter implies that it is im-
perative that the tasks always meet their deadlines,
i.e., that the actual execution time (response time) is
always less or equal to the deadline, for each invoca-
tion of the task. This is in contrast to a soft deadline,
that may occasionally be violated.
The most common example used by the real-time
scheduling community for when this model is ap-

plicable is computer-controlled systems. The fixed-
period assumption of the simple task model has also
been widely adopted by the control community and
has, e.g., resulted in the development of the sampled
computer-control theory with its assumption on de-
terministic, equi-distant sampling. Another result of
the simple model is that it has provided a separation
between the control community and the real-time
scheduling community. The separation has allowed
the control community to focus on its o w n prob-
lem domain without worrying about how schedul-
ing is being done, and it has released the scheduling
community from the need to understand what im-
pact scheduling has on the stability and performance
of the plant under control. From a historical per-
spective, the separated development of control and
scheduling theories for computer-based control sys-
tems has produced many useful results and served
its purpose. However, the separation has also had
negative effects. The two communities have partly
become alienated, which has led to a lack of mu-
tual understanding between the fields. A closer in-
teraction between the fields is also needed for control
applications requiring high degrees of flexibility, or
when computing resources are limited.
The aim of this paper is to present the emerging
field of integrated control and scheduling. In this
field a closer interaction between control design and
scheduling is employed, and more general schedul-
ing models and methods that better suit the needs
of control systems are developed. The development
of more general scheduling models, and the comple-
mentary control theory, create a possibility for dy-
namic and flexible integrated control and scheduling
frameworks where the control design methodology
takes the availability of computing resources into ac-
count during design and allows on-line trade-offs be-
tween control performance and computing resource
utilization. The computing resources could include
CPU time and communication bandwidth. Here, we
will, however, focus on CPU time. A more extensive
survey can be found in [&Zen et al., 1999).

0-7803-663&7/00$10.00 0 2000 IEEE 4865

mailto:lrs@uiuc.edu

2. Real-Time Scheduling
In 1973, Liu and Layland proposed two optimal
priority-based scheduling algorithms, earliest dead-
line first scheduling (EDF) and rate-monotonic
scheduling (RM), [Liu and Layland, 19731. EDF is
based on the principle that the task with the short-
est remaining time to its deadline should run. The
EDF approach is dynamic in the sense that the prior-
ities between the tasks are decided dynamically on-
line. The deadline can also be viewed as a dynamic
priority, in contrast to the RM case where the prior-
ity is fixed. Rate-monotonic scheduling is sometimes
referred to as fixed priority scheduling.
In the simplest case, i.e., Di = Ti, no interprocess
communication, and an ideal real-time kernel, the
schedulability condition for EDF is that the CPU
utilization, U, should be less than 100 %, i.e.,

i=n ,-.

For RM scheduling a sufficient condition is that

U 5 421'" - 1)

A sufficient and necessary condition based on the
calculation of the response times, Ri, i.e., the worst-
case execution time in the presence of the other
tasks, was developed in [Joseph and Pandya, 19861.
During the last decade the RM and EDF analysis
have been generalized and extended, e.g., [Klein
et al., 19931.

3. Control Loop Timing
A control loop consists of three main parts: data col-
lection, control algorithm computation, and output
transmission. In most cases the control is executed
periodically with a constant sampling period deter-
mined by the process dynamics and the requirements
on the closed loop performance.

control delay. This should be as small as possible,
and also without jitter. From a control perspective,
sampling jitter and latency jitter can be interpreted
as disturbances acting on the control system. The
input-output latency decreases the stability margin
and limits the performance of the system. If the jitter
and the latency are small, they could be ignored.
Otherwise, they should be accounted for in the
control design.
Scheduling theory can be used to analyze the time
variations and delays in control loops when im-
plemented as real-time tasks. Understanding the
control requirements, the implementation could be
made such that the resulting delay and the jitter
are small.
The following example shows that a simple-minded
implementation of control loops can introduce a lot
of jitter and delays:

EXGMPLE 1
Three control loops with different sampling periods
are implemented in a priority-preemptive real-time
OS with rate-monotonic priority assignment. The
task code for each control loop looks like this:

t := currentTime;
LOOP

AD-Conversion;
ControlAlgorithm;
DA-Conversion;
t := t + h;
W a i t U n t i l (t) ;

END

Assume that the execution time is 2 ms for all three
tasks, and that the sampling periods are TI = 12 ms,
T2 = 8 ms, and T3 = 5 ms. Fixed priorities are as-
signed to the tasks according to the rate-monotonic
theory. Figure 2 shows the execution graph of the

Task 2

Task I

Sampling Per id 1 -
0 0.010 0.020 0.030 0.040

T i m

Figure 1 Basic timing constraints of a control loop.

The two basic timing constraints of a control loop are
shown in Fig. 1. The first is the period which should
be constant, i.e., without jitter. The second constraint
involves the input-output latency, also known as the

Figure 2 The activation graph (high=running,
medium=preempted, low=sleeping) of the three control
tasks in Example 1

three control tasks when released at time zero.

4866

Task 3 has the shortest period, thus the highest pri-
ority, and executes with perfect periodicity. Tasks 1
and 2, on the other hand, are frequently preempted.
The preemption causes variations in both the sam-
pling period and in the input-output latency. 0

The above situation where a controller task is dis-
turbed by the execution of other higher priority,
controller or non-controller, tasks is very common.
However, nondeterminism is common also in the ab-
sence of competing tasks. There are strong market
trends in the direction of using general purpose hard-
ware and off-the-shelf operating systems also for con-
trol system implementations. These systems are de-
signed to achieve good average performance rather
than guaranteed worst-case performance. They of-
ten introduce significant non-determinism in task
scheduling. For compute-intensive high-end applica-
tions, the large variability in execution time caused
by modern hardware architecture also becomes visi-
ble. The effect of this is again jitter in sampling pe-
riod and control delay.

4. Timing Compensation
The reason why conventional real-time kernels and
scheduling theory still can be used for control sys-
tem implementation is the robustness of most control
loops to timing variations. However, in many cases
better performance can be obtained if the controller
is allowed to actively compensate for the variations
from sample to sample by, e.g., recomputing the con-
troller parameters. This requires that the necessary
time measurements are available.

EXAMPLE 2 q A M P L I N G JITTER
Consider PD control of a DC servo. The goal of the
control is to make the servo position, y(t) , follow the
reference position, r (t) , as closely as possible. Let the
servo be described by the continuous-time transfer
function

1000
G(s) = -

s(s + 1).
A good implementation of the PD controller, which
includes filtering of the derivative part, is

P(t> = K (r (t) - Y (t)) ,

u(t) = P(t) + D (t) ,
o(t) = a d D (t - h) -k b d (y (t - h) - y(t)) ,

T N K T where a d = N ~ : T ~ , b d = ~ h + l ! ? ~

A nominal sampling period of h = 10 ms is chosen,
and the PD controller is tuned to give a fast and well-
damped response to set-point changes. The resulting
parameters are K = 1, T d = 0.04, and N = 30. The

parameters U d and b d are normally pre-calculated,
assuming that the sampling interval is constant.
A first simulation of the closed-loop system, where
there is no jitter in the sampling interval, is shown
in Fig. 3. The controller behaves as expected, and the
performance is good. A second simulation, where the

i J
0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2

Ti-
Conml signal

_ , . I

-2

0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2
Ti-

Figure 3 When no sampling jitter is present, the
control performance is good.

actual sampling interval varies randomly between
hmin = 2 ms and h,, = 18 ms, is shown Fig. 4. The
sampling jitter causes the controller to repeatedly
take either too small or too large actions. The
resulting performance is quite poor. This is especially
visible in the control signal. Finally, the controller

Reference signal (dashed) and meaa-ment signal (full)
, , , , . , , . . . I

I , , , . " . . , . I

conuo1 signal

0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2
Time

2-

-1. -e I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Timc

Figure 4 Sampling jitter causes the control perfor-
mance to degrade.

is redesigned to compensate for the jitter. This is
done by measuring the actual sampling interval and
recalculating the controller parameters U d and b d at
each sample. Fig. 5 shows that this version of the
controller handles the sampling jitter well. 0

5. Task Attribute Adjustments
The possibility for controllers to compensate for tim-
ing variations was in the previous section used to re-
duce the effects of nondeterminism. It can, however,
also be used as a way to increase flexibility. Assume
that the computer contains a set of controller tasks.

4867

L , , I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Ti-
conlIU1 signal

2 n n i

-2 U

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Ti-

Figure 5 When compensating for the sampling jitter,
the control performance is good again.

The number of controller tasks and their execution
time bounds may change over time. The latter can
be due to too optimistic execution time bounds, caus-
ing occasional overruns, or due to different operation
modes in the controller. As the workload changes, the
scheduler may then adjust the task attributes, e.g.,
the sampling periods, of the controller tasks in order
to optimize global control performance under the con-
straint that the task set should remain schedulable.
A prerequisite for this type of on-line integration of
control and scheduling is that it is possible to make
an integrated off-line design of control algorithms
and scheduling algorithms. Such a design process
should allow an incorporation of the availability of
computing resources into the control design. This is
an area where, so far, relatively little work has been
performed. One of the first references that addressed
the problem was [Seto et al., 19961. An algorithm was
proposed that translates a control performance index
into task sampling periods considering schedulabil-
ity among tasks running with preemptive priority
scheduling. The sampling periods were considered
as variables and the algorithm determined their val-
ues so that the overall performance was optimized
subject to the schedulability constraints. On-line ap-
plication of the approach is suggested in [Shin and
Meissner, 19991.
An approach to optimization of sampling period and

-input-output latency subject to performance specifi-
cations and schedulability constraints is presented
in [Ryu and Hong, 19981. The performance is spec-
ified in terms of steady state error, overshoot, rise
time, and settling time. These performance parame-
ters are expressed as functions of the sampling pe-
riod and the input-output latency. A heuristic itera-
tive algorithm is proposed for the optimization of the
parameters subject to schedulability constraints.
Much of the work on dynamic task adaptation during
recent years is motivated by the requirements of
multimedia applications. Activities such as voice

4868

sampling, image acquisition, sound generation, and
video playing are performed periodically, but with
less rigid timing requirements. Missing a deadline
may decrease the quality of service (QoS) but does
not cause critical system faults. Depending on the
requested &OS, tasks may adjust their attributes to
accommodate the requirements of other concurrent
activities.
In [Buttazzo et al., 19981 an elastic task model
for periodic tasks is presented. A task has has an
associated elasticity coefficient ei 3 0, and may
change its period within certain bounds. When this
happens the periods of the other tasks are adjusted
so that the overall system is kept schedulable. An
analogy with a linear spring is used, where the
utilization of a task is viewed as the length of a
spring that has a given rigidity coefficient (l/ei)
and length constraints. The elasticity coefficient
is used to denote how easy or difficult it is to
adjust the period of a given task (compress the
string). A task with ei = 0 can arbitrarily vary
its period within its range, but it cannot be varied
by the scheduler during load reconfiguration. The
approach can be used under fixed or dynamic priority
scheduling. Task attribute adjustment strategies are
also presented in [Nakajima, 1998; Kuo and Mok,
1991; Kosugi et al., 19941.

6. Feedback Scheduling
A scheduler that on-line adjusts task attributes in
order to optimize control performance or &OS can
be interpreted as a controller in itself. Important
issues that then must be decided are what the
right control signals, measurement signals, and set-
points are, what the control structure should be,
and which process model that may be used. The
block diagram of a feedback scheduler is shown in
Figure 6. The goal of the scheduler is to keep the

a3
m

Figure 6 Feedback scheduler structure

CPU utilization, U, at a desired value. In order to
do this it adjusts the sampling frequencies of the
controller tasks. Feedforward is used to compensate
for mode changes. The idea of using feedback in
scheduling has to some extent been used previously
in general purpose operating systems in the form
of multi-level feedback queue scheduling [Kleinrock,
1970; Blevins and Ramamoorthy, 1976; Potier et al.,

Figure 7 The cost Ji(h) as a function of the sampling
interval for a non-inverted pendulum. The plots shows
the graphs for 00 = 3.1416(full), 3.7699(dot-dashed), and
4.0841(dashed).

19761. However, this has mostly been done in an ad-
hoc way.
So far relatively little has been done in the area of
real-time feedback scheduling. In [Stankovic et al.,
19991 it is proposed to use a PID controller as an on-
line scheduler under the notion of Feedback Control-
EDF (FC-EDF). The measurement signal (the con-
trolled variable) is the deadline miss ratio for the
tasks and the control signal is the requested CPU
utilization. Changes in the requested CPU utiliza-
tion are effectuated by two mechanisms (actuators).
An admission controller is used to control the flow
of workload into the system and a service level con-
troller is used to adjust the workload inside the sys-
tem. The latter is done by changing between dif-
ferent versions of the tasks with different execution
time demands.
For multimedia applications, feedback-based
scheduling mechanisms that dynamically adjust
the QoS level have been proposed in a few cases.
In [Li and Nahrstedt, 19981 a general framework
is proposed for controlling the application requests
for system resources using the amount of allocated
resources for feedback. It is shown that a PID con-
troller can be used to bound tasks’ resource usage in
a stable and fair way. In [Abeni and Buttazzo, 19991
task models suitable for multimedia applications
are defined. Two of these use PI control feedback to
adjust the reserved fraction of CPU bandwidth.
A feedback scheduler for LQ-control is proposed in
[Eker et al., 20001. The LQ cost is calculated as a
function of the sampling interval. A n optimization
routine minimizes the global cost (the sum of cost
function for of each controller) subject to a schedula-
bility constraint. The minimization of the global cost
function constitutes a nonlinear programming prob-
lem.
Control performance optimization in the context of
task attribute adjustments needs cost functions that
relate the sampling period with the control perfor-
mance for each control loop, and cost functions that
relate the input-output latency with the control per-

4869

formance. In addition to this it would also be benefi-
cial if the control design methodology could provide
cost functions for the jitter in sampling period and
input-output latency. An interesting question is the
general nature of these cost functions. For example,
it is not always so that faster sampling gives better
performance. The quadratic cost function as a func-
tion of the sampling interval for a non-inverted pen-
dulum is shown in Figure 7. Note that the cost does
not depend monotonously on the sampling period.

7. Anytime Controllers
A task attribute adjustment strategy can reduce the
workload required by a controller task in two ways:
by increasing the sampling period or by decreasing
the maximum allowed execution time for the task.
The latter would be a possibility for controllers
that could be expressed on “anytime” form, i.e.,
controllers that would monotonously improve the
control performance as a function of the allotted
execution time. It is also possible to have control
algorithms with optional parts that may be skipped.
Examples of anytime control algorithms can be found
in model-predictive control. In the standard MPC
form a quadratic optimization problem is solved ev-
ery sample. The techniques employed are based on
sequential unconstrained minimization. The calcula-
tions performed every sample are organized as a se-
quence of iterations. An interesting possibility is to
calculate bounds on how much the objective function
decreases for each new iteration.

8. Event-Based Sampling
An integrated control and scheduling system that dy-
namically adjusts sampling frequencies to compen-
sate for workload changes or uncertainties can from
a system point of view be seen as an event-based sys-
tem. Much theoretical work on event-based systems
was done in 1960-1980. The analysis is considerably
harder than for time-based sampled system, primar-
ily due to the fact that sampling is no longer a linear
operation. The analysis is related to general work
on discontinuous systems, e.g., [Utkin, 19871 and
impulse control, see [Bensoussan and Lions, 19841.
There is also strong relationships to hybrid and
switching control systems, e.g., [Morse, 19951. For ex-
ample, it is fully possible to obtain switching-induced
instability if the sampling interval is changed in an
unfortunate way.

9. Conclusions
Control and scheduling co-design is motivated for
applications requiring high degrees of flexibility or
when computing resources are limited. The field

contains a number of interesting research issues,
some of which have been discussed in this paper.
The work behind this paper has been funded by
ARTES, “TEK, and LUCAS - Center for Applied
Software Research.

10. References
Abeni, L. and G. Buttazzo (1999): “Adaptive band-

width reservation for multimedia computing.” In
Proceedings of IEEE Real Time Computing Sys-
tems and Applications, Hong Kong.

h e n , K-E., B. Bernhardsson, J. Eker, A. Cervin,
K. Nilsson, P. Persson, and L. Sha (1999): “In-
tegrated control and scheduling.” Report ISRN
LUTFDB/TFRT--7586--SE. Department of Au-
tomatic Control, Lund Institute of Technology,
Lund, Sweden.

Bensoussan, A. and J.-L. Lions (1984): hpu l se con-
trol and quasi- variational inequalities. Gauthier-
Villars, Paris.

Blevins, P. and C. Ramamoorthy (1976): “Aspects of
a dynamically adaptive operating system.” B E E
5”s Computers, 2S7.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic
task model for adaptive rate control.” In Proceed-
ings of the IEEE Real- Time Systems Symposium.

Eker, J., P. Hagander, and K.-E. k z 6 n (2000): “A
feedback scheduler for real-time control tasks.”
Accepted for publication in Control Engineering
Practice.

Joseph, M. and P. Pandya (1986): ‘‘Finding response
times in a real-time system.” The Computer Jour-
nal, 295, pp. 390-395.

Klein, M. H., T. Ralya, B. Pollak, R. Obenza,
and M. Gonzalez Harbour (1993): A Practi-
tioner’s Handbook for Real- Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Sys-
tems. Kluwer Academic Publisher.

Kleinrock, L. (1970): ”A continuum of time-sharing
scheduling algorithms.’’ In Proc. ofAFLps, SJCC.

Kosugi, N., K. Takashio, and M. Tokoro (1994):
“Modification and adjustment of real-time tasks
with rate monotonic scheduling algorithm.” In
Proceedings of the 2nd Workshop on Parallel and
Distributed Systems, pp. 98-103.

Kuo, T.-W. and A. Mok (1991): “Load adjustment
in adaptive real-time systems.” In Proceedings of
the 12th IEEE Real- Time Systems Symposium.

Li, B. and K Nahrstedt (1998): “A control theo-
retic model for quality of service adaptations.” In

Proceedings of Sixth International Workshop on
Quality of Service.

Liu, C. L. and J. W. Layland (1973): “Scheduling
algorithms for multiprogramming in a hard real-
time environment.” Joruaal of the ACM, 201,
pp. 40-61.

Morse, A. S. (1995): “Control using logic-based
switching.” In Isidori, Ed., Tkends in Control. A
European Perspective, pp. 69-1 13. Springer.

Nakajima, T. (1998): “Resource reservation for adap-
tive QoS mapping in real-time Mach.” In Proceed-
ings of the Sixth International Workshop on Par-
allel and Distributed Real- Zime Systems.

Potier, D., E. Gelenbe, and J. Lenfant (1976): “Adap-
tive allocation of central processing unit quanta.”
Journal of ACM, 231.

Ryu, M. and S. Hong (1998): “‘Ibward automatic
synthesis of schedulable real-time controllers.”
Integrated Computer-Aided Engineering, 5:3,

Seto, D., J. Lehoczky, L. Sha, and K. Shin (1996): “On
task schedulability in real-time control systems.”
In Proceedings of the IEEE ReaETime Systems
Symposium.

Shin, K. G. and C. L. Meissner (1999): “Adaptation of
control system performance by task reallocation
and period modification.” In Proceedings of the
11 th Euromicro Conference on Real- Time Sys-
tems, pp. 29-36.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999):
“The case for feedback control real-time schedul-
ing.” In Proceedings of the 12th Euromicro Con-
ference on Real- Time Systems, pp. 11-20.

Utkin, V. I. (1987): “Discontinuous control systems:
State of the art in theory and applications.” In
Preprints 10th IFAC World Congress. Munich,
Germany.

pp. 261-277.

4870

