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Abstract 
The paper presents the emerging field of integrated 
control and CPU-time scheduling, where more gen- 
eral scheduling models and methods that better suit 
the needs of control systems are developed. This cre- 
ates possibilities for dynamic and flexible integrated 
control and scheduling frameworks, where the con- 
trol design methodology takes the availability of com- 
puting resources into account during design and al- 
lows on-line trade-offs between control performance 
and computing resource utilization. 

1. Introduction 
Most control systems are embedded systems where 
the computer is a component in a larger engineer- 
ing system. The control system is often implemented 
on a microprocessor using a real-time kernel or a 
real-time operating system (RTOS). The real-time 
kernel or OS uses multiprogramming to multiplex 
the execution of the tasks on the CPU. The CPU 
time, hence, constitutes a shared resource which the 
tasks compete for. To guarantee that the time re- 
quirements and time constraints of the individual 
tasks are all met, it is necessary to schedule the 
usage of the shared resource. During the last two 
decades, scheduling of CPU time has been a very ac- 
tive research area and a number of different schedul- 
ing models and methods have been developed. 
The most common, and simplest, model used within 
the real-time scheduling community assumes that 
the tasks are periodic, or can be transformed to pe- 
riodic tasks, with a fixed period, T,, a known worst- 
case bound on the execution time (WCET), C,, and 
a hard deadline, D,.  The latter implies that it is im- 
perative that the tasks always meet their deadlines, 
i.e., that the actual execution time (response time) is 
always less or equal to the deadline, for each invoca- 
tion of the task. This is in contrast to a soft deadline, 
that may occasionally be violated. 
The most common example used by the real-time 
scheduling community for when this model is ap- 

plicable is computer-controlled systems. The fixed- 
period assumption of the simple task model has also 
been widely adopted by the control community and 
has, e.g., resulted in the development of the sampled 
computer-control theory with its assumption on de- 
terministic, equi-distant sampling. Another result of 
the simple model is that it has provided a separation 
between the control community and the real-time 
scheduling community. The separation has allowed 
the control community to focus on its o w n  prob- 
lem domain without worrying about how schedul- 
ing is being done, and it has released the scheduling 
community from the need to  understand what im- 
pact scheduling has on the stability and performance 
of the plant under control. From a historical per- 
spective, the separated development of control and 
scheduling theories for computer-based control sys- 
tems has produced many useful results and served 
its purpose. However, the separation has also had 
negative effects. The two communities have partly 
become alienated, which has led to  a lack of mu- 
tual understanding between the fields. A closer in- 
teraction between the fields is also needed for control 
applications requiring high degrees of flexibility, or 
when computing resources are limited. 
The aim of this paper is to  present the emerging 
field of integrated control and scheduling. In this 
field a closer interaction between control design and 
scheduling is employed, and more general schedul- 
ing models and methods that better suit the needs 
of control systems are developed. The development 
of more general scheduling models, and the comple- 
mentary control theory, create a possibility for dy- 
namic and flexible integrated control and scheduling 
frameworks where the control design methodology 
takes the availability of computing resources into ac- 
count during design and allows on-line trade-offs be- 
tween control performance and computing resource 
utilization. The computing resources could include 
CPU time and communication bandwidth. Here, we 
will, however, focus on CPU time. A more extensive 
survey can be found in [&Zen et al., 1999). 
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2. Real-Time Scheduling 
In 1973, Liu and Layland proposed two optimal 
priority-based scheduling algorithms, earliest dead- 
line first scheduling (EDF) and rate-monotonic 
scheduling (RM), [Liu and Layland, 19731. EDF is 
based on the principle that the task with the short- 
est remaining time to its deadline should run. The 
EDF approach is dynamic in the sense that the prior- 
ities between the tasks are decided dynamically on- 
line. The deadline can also be viewed as a dynamic 
priority, in contrast to the RM case where the prior- 
ity is fixed. Rate-monotonic scheduling is sometimes 
referred to as fixed priority scheduling. 
In the simplest case, i.e., Di = Ti, no interprocess 
communication, and an ideal real-time kernel, the 
schedulability condition for EDF is that the CPU 
utilization, U, should be less than 100 %, i.e., 

i=n ,-. 

For RM scheduling a sufficient condition is that 

U 5 421'" - 1) 

A sufficient and necessary condition based on the 
calculation of the response times, Ri, i.e., the worst- 
case execution time in the presence of the other 
tasks, was developed in [Joseph and Pandya, 19861. 
During the last decade the RM and EDF analysis 
have been generalized and extended, e.g., [Klein 
et al., 19931. 

3. Control Loop Timing 
A control loop consists of three main parts: data col- 
lection, control algorithm computation, and output 
transmission. In most cases the control is executed 
periodically with a constant sampling period deter- 
mined by the process dynamics and the requirements 
on the closed loop performance. 

control delay. This should be as small as possible, 
and also without jitter. From a control perspective, 
sampling jitter and latency jitter can be interpreted 
as disturbances acting on the control system. The 
input-output latency decreases the stability margin 
and limits the performance of the system. If the jitter 
and the latency are small, they could be ignored. 
Otherwise, they should be accounted for in the 
control design. 
Scheduling theory can be used to analyze the time 
variations and delays in control loops when im- 
plemented as real-time tasks. Understanding the 
control requirements, the implementation could be 
made such that the resulting delay and the jitter 
are small. 
The following example shows that a simple-minded 
implementation of control loops can introduce a lot 
of jitter and delays: 

EXGMPLE 1 
Three control loops with different sampling periods 
are implemented in a priority-preemptive real-time 
OS with rate-monotonic priority assignment. The 
task code for each control loop looks like this: 

t := currentTime; 
LOOP 

AD-Conversion; 
ControlAlgorithm; 
DA-Conversion; 
t := t + h; 
W a i t U n t i l ( t )  ; 

END 

Assume that the execution time is 2 ms for all three 
tasks, and that the sampling periods are TI = 12 ms, 
T2 = 8 ms, and T3 = 5 ms. Fixed priorities are as- 
signed to  the tasks according to  the rate-monotonic 
theory. Figure 2 shows the execution graph of the 

Task 2 

Task I 

Sampling Per id  1 -  
0 0.010 0.020 0.030 0.040 

T i m  

Figure 1 Basic timing constraints of a control loop. 

The two basic timing constraints of a control loop are 
shown in Fig. 1. The first is the period which should 
be constant, i.e., without jitter. The second constraint 
involves the input-output latency, also known as the 

Figure 2 The activation graph (high=running, 
medium=preempted, low=sleeping) of the three control 
tasks in Example 1 

three control tasks when released at time zero. 
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Task 3 has the shortest period, thus the highest pri- 
ority, and executes with perfect periodicity. Tasks 1 
and 2, on the other hand, are frequently preempted. 
The preemption causes variations in both the sam- 
pling period and in the input-output latency. 0 

The above situation where a controller task is dis- 
turbed by the execution of other higher priority, 
controller or non-controller, tasks is very common. 
However, nondeterminism is common also in the ab- 
sence of competing tasks. There are strong market 
trends in the direction of using general purpose hard- 
ware and off-the-shelf operating systems also for con- 
trol system implementations. These systems are de- 
signed to  achieve good average performance rather 
than guaranteed worst-case performance. They of- 
ten introduce significant non-determinism in task 
scheduling. For compute-intensive high-end applica- 
tions, the large variability in execution time caused 
by modern hardware architecture also becomes visi- 
ble. The effect of this is again jitter in sampling pe- 
riod and control delay. 

4. Timing Compensation 
The reason why conventional real-time kernels and 
scheduling theory still can be used for control sys- 
tem implementation is the robustness of most control 
loops to timing variations. However, in many cases 
better performance can be obtained if the controller 
is allowed to actively compensate for the variations 
from sample to  sample by, e.g., recomputing the con- 
troller parameters. This requires that the necessary 
time measurements are available. 

EXAMPLE 2 q A M P L I N G  JITTER 
Consider PD control of a DC servo. The goal of the 
control is to  make the servo position, y( t ) ,  follow the 
reference position, r ( t ) ,  as closely as possible. Let the 
servo be described by the continuous-time transfer 
function 

1000 
G(s)  = - 

s(s + 1). 
A good implementation of the PD controller, which 
includes filtering of the derivative part, is 

P(t> = K ( r ( t )  - Y ( t ) ) ,  

u( t )  = P(t )  + D ( t ) ,  
o(t) = a d D ( t  - h)  -k b d ( y ( t -  h )  - y( t ) ) ,  

T N K T  where a d  = N ~ : T ~ ,  b d  = ~ h + l ! ? ~  

A nominal sampling period of h = 10 ms is chosen, 
and the PD controller is tuned to give a fast and well- 
damped response to set-point changes. The resulting 
parameters are K = 1, T d  = 0.04, and N = 30. The 

parameters U d  and b d  are normally pre-calculated, 
assuming that the sampling interval is constant. 
A first simulation of the closed-loop system, where 
there is no jitter in the sampling interval, is shown 
in Fig. 3. The controller behaves as expected, and the 
performance is good. A second simulation, where the 

i . . . . . . . . . J  
0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2 

Ti- 
Conml signal 

_ , . I  

-2 

0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2 
Ti- 

Figure 3 When no sampling jitter is present, the 
control performance is good. 

actual sampling interval varies randomly between 
hmin = 2 ms and h,, = 18 ms, is shown Fig. 4. The 
sampling jitter causes the controller to repeatedly 
take either too small or too large actions. The 
resulting performance is quite poor. This is especially 
visible in the control signal. Finally, the controller 

Reference signal (dashed) and meaa-ment signal (full) 
, , , , . , , . . . I  

I , ,  , . " .  . , . I 

conuo1 signal 

0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2 
Time 

2- 

-1. -e I 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Timc 

Figure 4 Sampling jitter causes the control perfor- 
mance to degrade. 

is redesigned to compensate for the jitter. This is 
done by measuring the actual sampling interval and 
recalculating the controller parameters U d  and b d  at 
each sample. Fig. 5 shows that this version of the 
controller handles the sampling jitter well. 0 

5. Task Attribute Adjustments 
The possibility for controllers to  compensate for tim- 
ing variations was in the previous section used to re- 
duce the effects of nondeterminism. It can, however, 
also be used as a way to  increase flexibility. Assume 
that the computer contains a set of controller tasks. 
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Figure 5 When compensating for the sampling jitter, 
the control performance is good again. 

The number of controller tasks and their execution 
time bounds may change over time. The latter can 
be due to too optimistic execution time bounds, caus- 
ing occasional overruns, or due to different operation 
modes in the controller. As the workload changes, the 
scheduler may then adjust the task attributes, e.g., 
the sampling periods, of the controller tasks in order 
to  optimize global control performance under the con- 
straint that the task set should remain schedulable. 
A prerequisite for this type of on-line integration of 
control and scheduling is that it is possible to make 
an integrated off-line design of control algorithms 
and scheduling algorithms. Such a design process 
should allow an incorporation of the availability of 
computing resources into the control design. This is 
an area where, so far, relatively little work has been 
performed. One of the first references that addressed 
the problem was [Seto et al., 19961. An algorithm was 
proposed that translates a control performance index 
into task sampling periods considering schedulabil- 
ity among tasks running with preemptive priority 
scheduling. The sampling periods were considered 
as variables and the algorithm determined their val- 
ues so that the overall performance was optimized 
subject to the schedulability constraints. On-line ap- 
plication of the approach is suggested in [Shin and 
Meissner, 19991. 
An approach to optimization of sampling period and 

-input-output latency subject to  performance specifi- 
cations and schedulability constraints is presented 
in [Ryu and Hong, 19981. The performance is spec- 
ified in terms of steady state error, overshoot, rise 
time, and settling time. These performance parame- 
ters are expressed as functions of the sampling pe- 
riod and the input-output latency. A heuristic itera- 
tive algorithm is proposed for the optimization of the 
parameters subject to schedulability constraints. 
Much of the work on dynamic task adaptation during 
recent years is motivated by the requirements of 
multimedia applications. Activities such as voice 
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sampling, image acquisition, sound generation, and 
video playing are performed periodically, but with 
less rigid timing requirements. Missing a deadline 
may decrease the quality of service (QoS) but does 
not cause critical system faults. Depending on the 
requested &OS, tasks may adjust their attributes to 
accommodate the requirements of other concurrent 
activities. 
In [Buttazzo et al., 19981 an elastic task model 
for periodic tasks is presented. A task has has an 
associated elasticity coefficient ei 3 0, and may 
change its period within certain bounds. When this 
happens the periods of the other tasks are adjusted 
so that the overall system is kept schedulable. An 
analogy with a linear spring is used, where the 
utilization of a task is viewed as the length of a 
spring that has a given rigidity coefficient (l/ei) 
and length constraints. The elasticity coefficient 
is used to denote how easy or difficult it is to 
adjust the period of a given task (compress the 
string). A task with ei = 0 can arbitrarily vary 
its period within its range, but it cannot be varied 
by the scheduler during load reconfiguration. The 
approach can be used under fixed or dynamic priority 
scheduling. Task attribute adjustment strategies are 
also presented in [Nakajima, 1998; Kuo and Mok, 
1991; Kosugi et al., 19941. 

6. Feedback Scheduling 
A scheduler that on-line adjusts task attributes in 
order to optimize control performance or &OS can 
be interpreted as a controller in itself. Important 
issues that then must be decided are what the 
right control signals, measurement signals, and set- 
points are, what the control structure should be, 
and which process model that may be used. The 
block diagram of a feedback scheduler is shown in 
Figure 6. The goal of the scheduler is to keep the 

a3 
m 

Figure 6 Feedback scheduler structure 

CPU utilization, U, at  a desired value. In order to 
do this it adjusts the sampling frequencies of the 
controller tasks. Feedforward is used to compensate 
for mode changes. The idea of using feedback in 
scheduling has to some extent been used previously 
in general purpose operating systems in the form 
of multi-level feedback queue scheduling [Kleinrock, 
1970; Blevins and Ramamoorthy, 1976; Potier et al., 



Figure 7 The cost Ji(h) as a function of the sampling 
interval for a non-inverted pendulum. The plots shows 
the graphs for 00 = 3.1416(full), 3.7699(dot-dashed), and 
4.0841( dashed). 

19761. However, this has mostly been done in an ad- 
hoc way. 
So far relatively little has been done in the area of 
real-time feedback scheduling. In [Stankovic et al., 
19991 it is proposed to use a PID controller as an on- 
line scheduler under the notion of Feedback Control- 
EDF (FC-EDF). The measurement signal (the con- 
trolled variable) is the deadline miss ratio for the 
tasks and the control signal is the requested CPU 
utilization. Changes in the requested CPU utiliza- 
tion are effectuated by two mechanisms (actuators). 
An admission controller is used to control the flow 
of workload into the system and a service level con- 
troller is used to adjust the workload inside the sys- 
tem. The latter is done by changing between dif- 
ferent versions of the tasks with different execution 
time demands. 
For multimedia applications, feedback-based 
scheduling mechanisms that dynamically adjust 
the QoS level have been proposed in a few cases. 
In [Li and Nahrstedt, 19981 a general framework 
is proposed for controlling the application requests 
for system resources using the amount of allocated 
resources for feedback. It is shown that a PID con- 
troller can be used to bound tasks’ resource usage in 
a stable and fair way. In [Abeni and Buttazzo, 19991 
task models suitable for multimedia applications 
are defined. Two of these use PI control feedback to 
adjust the reserved fraction of CPU bandwidth. 
A feedback scheduler for LQ-control is proposed in 
[Eker et  al., 20001. The LQ cost is calculated as a 
function of the sampling interval. A n  optimization 
routine minimizes the global cost (the sum of cost 
function for of each controller) subject to  a schedula- 
bility constraint. The minimization of the global cost 
function constitutes a nonlinear programming prob- 
lem. 
Control performance optimization in the context of 
task attribute adjustments needs cost functions that 
relate the sampling period with the control perfor- 
mance for each control loop, and cost functions that 
relate the input-output latency with the control per- 
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formance. In addition to this it would also be benefi- 
cial if the control design methodology could provide 
cost functions for the jitter in sampling period and 
input-output latency. An interesting question is the 
general nature of these cost functions. For example, 
it is not always so that faster sampling gives better 
performance. The quadratic cost function as a func- 
tion of the sampling interval for a non-inverted pen- 
dulum is shown in Figure 7. Note that the cost does 
not depend monotonously on the sampling period. 

7. Anytime Controllers 
A task attribute adjustment strategy can reduce the 
workload required by a controller task in two ways: 
by increasing the sampling period or by decreasing 
the maximum allowed execution time for the task. 
The latter would be a possibility for controllers 
that could be expressed on “anytime” form, i.e., 
controllers that would monotonously improve the 
control performance as a function of the allotted 
execution time. It is also possible to have control 
algorithms with optional parts that may be skipped. 
Examples of anytime control algorithms can be found 
in model-predictive control. In the standard MPC 
form a quadratic optimization problem is solved ev- 
ery sample. The techniques employed are based on 
sequential unconstrained minimization. The calcula- 
tions performed every sample are organized as a se- 
quence of iterations. An interesting possibility is to 
calculate bounds on how much the objective function 
decreases for each new iteration. 

8. Event-Based Sampling 
An integrated control and scheduling system that dy- 
namically adjusts sampling frequencies to compen- 
sate for workload changes or uncertainties can from 
a system point of view be seen as an event-based sys- 
tem. Much theoretical work on event-based systems 
was done in 1960-1980. The analysis is considerably 
harder than for time-based sampled system, primar- 
ily due to the fact that sampling is no longer a linear 
operation. The analysis is related to general work 
on discontinuous systems, e.g., [Utkin, 19871 and 
impulse control, see [Bensoussan and Lions, 19841. 
There is also strong relationships to hybrid and 
switching control systems, e.g., [Morse, 19951. For ex- 
ample, it is fully possible to obtain switching-induced 
instability if the sampling interval is changed in an 
unfortunate way. 

9. Conclusions 
Control and scheduling co-design is motivated for 
applications requiring high degrees of flexibility or 
when computing resources are limited. The field 



contains a number of interesting research issues, 
some of which have been discussed in this paper. 
The work behind this paper has been funded by 
ARTES, “TEK, and LUCAS - Center for Applied 
Software Research. 
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