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Evolutionary Stability in Bargaining with an
Asymmetric Breakdown Point

Par Torstensson®

June 15, 2005

Abstract

We study an asymmetric two-player bargaining game with risk of
breakdown and no discounting. We characterize the modified evo-
lutionarily stable strategies (MESS) by modelling strategies as au-
tomata. Payoff and complexity considerations are taken in the automata-
selection process. We show that a MESS exists in the bargaining game
and that agreement is reached immediately. It turns out that in the
search for evolutionary foundation, we find support for all partitions
that assigns the positive breakdown utility or more to the player with
the higher breakdown utility, given that it exceeds half the surplus.

Keywords: Modified evolutionary stable strategies; Automata; Breakdown;
Asymmetric bargaining,.

JEL classification: C72; C73; CT8.

1 Introduction

In this paper we are studying a bargaining game similar to Rubinstein’s
(1982) alternating-offers bargaining game, but with the following modifica-
tions. Instead of discounting the players perceive that the bargaining might
break down in a random matter. This modification shift the driving force
in the model from the players’ time preferences to the players’ risk prefer-
ences. In the latter case it is fear of a breakdown in the negotiations and not
impatience that makes the players prefer any given share of the pie sooner

*Department of Economics, Lund University, Box 7082, SE-22007 Lund, Sweden. Fax:
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rather than later. We also make the following assumption. In case of a
breakdown the players receive different payoffs. Thus, the breakdown point
is asymmetric.

To simplify matters we assume that the breakdown point is either (0, )
or (z,0), where x > 0 but less than the gains from agreement. In this case,
it is straightforward to show that the game has a unique subgame perfect
equilibrium outcome. Agreement is immediate and the payoffs are (when the
'pie’ is of size 1):

o (1115;, %) with (x,0), or

o (%, %ﬁ) with (0, z), where § is the continuation probability.

The interesting question is how much of this result is maintained if we
let the players’ behavior be formed by an evolutionary process instead of
being the result of backward induction reasoning. The evolutionary forces
favor high-payoff strategies at the expense of low-payoff competitors. They
also favor simplicity at the expense of complexity whenever the payoffs are
the same. To find a suitable strategy we use the idea of a modified evo-
lutionarily stable strategy (MESS), introduced by Binmore and Samuelson
(1992) for the study of repeated games. Like Abreu and Rubinstein (1988),
Banks and Sundaram (1990), Binmore and Samuelson (1992), Binmore et
al. (1998) and Chatterjee and Sabourian (1999; 2000), we model strategies
as automata. Complexity is measured by following the common practice
of counting the number of states in an automaton, i.e. the more states an
automaton uses, the more complex it is. We could also employ a broader
measure of complexity by using the collapsing state condition introduced by
Binmore et al. (1998), i.e. automaton M is less complex than A if each state
used by M can be obtained by consolidating collections of states in A.

We require that the automaton is able to play the game both when it has
the positive breakdown utility  and when its opponent has it. The automa-
ton must also be able to play the game in both player-roles, i.e. as player [
(when it has to start the bargaining process by making the first demand) and
as player 11 (when it has to respond to its opponent’s demand which started
the bargaining process). Given this, we establish that a necessary and suffi-
cient condition for an automaton A to be a MESS is that use of A against
itself constitutes a Nash equilibrium in which an agreement is achieved imme-
diately. It turns out that quite a few partitions can be supported by a MESS
automaton; all partitions that assigns the positive breakdown utility = or
more to the player with the higher breakdown utility, given that it exceeds
half the surplus. For a bargaining game in which the positive breakdown
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utility = is not greater than half the surplus, we establish the existence of a
MESS.

The present study is based on the work of Binmore et al. (1998). Other
related studies are Kandori et al. (1993), Young (1993a; 1993b), Bolton
(1997), Rosenthal and Landau (1979) and Ponti and Seymour (1997). The
paper proceeds as follows. In Section 2 we present the bargaining model.
The evolutionary approach is applied in Section 3. Section 4 contains the
results and Section 5 concludes the paper.

2 The Bargaining Game

We study an alternating-offers bargaining game with risk of breakdown. It
is a two-player infinite-horizon game of perfect information in discrete time,
indexed t = 1,2,3... . Two players, I and II, bargain over the partition of
a "pie" of size 1. In each period, one player is the proposer and demands a
piece of the pie. A demand 0(t) in period t always indicates the fraction going
to the proposer, where 0(t) € [0,1]. The other player is the responder, who
either accepts or rejects the proposer’s demand. If the demand is accepted,
the bargaining ends and the agreement is implemented. If the demand is
rejected, the responder makes a counteroffer in the next period, where the
roles are reversed. We assume that with probability 1—4 the bargaining break
down in disagreement before the counteroffer is made, where § € (0,1). Thus
d € (0,1) is interpreted as a common continuation probability, which means
that if a responder rejects a demand the game continues to the next period
with probability 9.

The players’ utility functions u; are von Neumann-Morgenstern utility
functions that are linear in the pie. The payoff-pair obtainable through
perpetual disagreement is called the Impasse point and gives payoff (I, I;).
The payoff-pair obtainable through breakdown is called the Breakdown point
and gives payoff (br,br;). The expected payoff to player i from making a
demand 6 (¢) that is accepted in period ¢ is then 6 () 6" + (1 —0""") b;.
The corresponding payoff to the opponent from accepting this demand is
(1—06(t) 0" "+ (1—06"")b_;. Finally, it follows that (I;,I;;) = (br,br)
since lim;_, (1 — 5t_1) =1.

For the rest of the paper, let the breakdown point be either (0, z) or (z,0),
where x € (0, 1).



2.1 Subgame Perfect Equilibrium

Proposition 1 There exists a unique subgame perfect equilibrium outcome.
In this equilibrium, agreement is reached immediately and the payoffs are
(always expressed (ur,usr)):

145z 0(1—z) ) . _

¢ <1+5’ ) o b=,
l1-x O0+x . _

* <1+67 1+6) if b =x.

For proof, see Proposition 4.1 in Muthoo (1999, pp. 75-76).

3 The Evolutionary Approach

We study an automata-selection metagame in which two metaplayers choose
automata to play the bargaining game for them. Strategies are modelled
as automata because they are excellent instruments for measuring the com-
plexity of strategies. For example, by counting the number of states each
automata has, we can determine whether strategies are simple or not. This
is vital for us when we treat the automaton-selection process as a metaphor
for an evolutionary process, in which we assume that simplicity beats com-
plexity whenever two automata perform equally well. However, automata
that perform relatively poorly are overrun by those that perform relatively
well, regardless of complexity.

3.1 The Metagame & Nature

The automaton must be able to play the bargaining game as player / and
as player I, which is equally likely to happen. Likewise, they are re-
quired to play the game both when they have the positive breakdown utility
and when their opponent has it. Both events are equally likely to hap-
pen. Let m (A, M) € [0,1] denote the expected payoff to a metaplayer who
uses automaton A against another metaplayer who uses automaton M. Let
7. (A, M) denote the expected payoff to automaton A when it has the posi-
tive breakdown utility x, and let my (A, M) denote the expected payoff to A
when its opponent (M) has the positive breakdown utility z. Let

7 (A, M) = %m (A, M)+ %w@ (A, M). (1)



Let (A, M) denote the expected payoff to A when it plays the bargaining
game as player ¢ = [, I]. Let

7 (A, M) = %wf (A, M) + %w” (A, M). @)

We assume that Nature does two things. First, it randomly assigns the
positive breakdown utility x to one of the automata and then transmits
information about the outcome to both A and M, i.e. telling them who was
assigned x. Nature then randomly picks one of the automata to be player [
and sends a message to the automaton that is chosen. Receiving this second
message is interpreted by each automaton as being chosen to be player I.
Assume that A is chosen to be player I. Then the other automaton (M)
learns that play has begun by receiving a message in the form of a demand
from the opponent, which is interpreted as being chosen to be player I1.

3.2 The Automaton

An automaton A can have many states of which three are special. A can
use a pre-play state, which is occupied before the game begins. The pre-play
state makes it possible for A to condition its play on whether it was assigned
the positive breakdown utility  or not by Nature. In order to start the
play, each automaton has an initial state which is occupied before the actual
bargaining begins. A has two initial states if it has a pre-play state, otherwise
it has only one initial state. Each automaton must have an acceptance state,
denoted Y, which if reached ends the game with an agreement. Features
common to all other states are that they produce a demand when they are
first reached, and that they determine a shift to another state when they are
occupied and a demand from the opponent is received.

In order to allow each automaton to condition its play on whether it has
the positive breakdown utility or not, two outputs can be attached to the
pre-play state. The output is either z* or (), which are interpreted by the
automaton as having the positive breakdown utility « or not, respectively.
Rather than causing a message in the form of a demand to be transmitted
to the opponent, z* and () both cause an immediate shift to one of the
automaton’s initial states, at which point the automaton awaits new stimuli.
Using the pre-play state and its additional output (z* or ) is, however,
optional. Further, an additional output, denoted I*, can be attached to
the initial state(s) in order to allow the automaton to condition its play on
whether it is chosen to be player I or player /1. This output allows the
automaton to shift to another of its states before a demand is produced and
transmitted to the opponent.



Formally, the automaton consists of the following objects:

e A set of states S. The set S can contain a pre-play state s* but this is
optional. The set must contain an acceptance state Y. The automata
begin either with a pre-play state or an initial state s € S. The game
ends if state Y is reached.

e An output function ¥ : S — [0,1] U {z*,0,I*}. An output 6 in [0, 1]
is interpreted as a demand. To ensure a well-defined game, only the
pre-play state s* can have x* or () as its output and only an initial state
can have [* as its output.

e A transition function f, where
fAS 0,1} U{(s, U L(s7,27), (5% 0)} = SU{Y}.

f (s,m) is the state to which an automaton shifts when it is in state
s and receives message m. f(s',1*) identifies the state to which the
automaton shifts when it is chosen to be player I, where s’ is an initial
state. f(s*,z*) and f(s*,() identify the states to which the automa-
ton shifts when it is assigned the positive breakdown utility = and
when it is not assigned z, respectively. We let f (s',I*) # {s,Y} in
order to ensure well-defined outcomes. For the same reason, we let
f(s,0) # s forall s € Sif I(s') = I*, f(s,0) # s* for all s € S and

f(s7,27), f(s7,0) # Y.

3.3 Bargaining Protocol

The play of an automaton A is controlled by the following protocol. If A
receives a message when in state s, it checks its "intray" to find out whether
this messages is a demand from its opponent or not, where intray stand
for the imaginary place where all messages are temporarily stored in the
automaton.

Case 1. If A finds no demand in its intray, then state s is either a pre-
play state or an initial state and A examines the output attached to this
state ¥(s).

e If the output is a demand 6 € [0, 1], then state s is the initial state and
A transmits its demand to the opponent. A then awaits a response. If
this is not the first demand of the game, then with probability 1 —
Nature intervenes and ends the game, with the players then receiving



the playoff-pair given by the Breakdown point. With probability ¢, the
demand reaches the opponent and the game proceeds.!

e If the output is * or (), then state s is the pre-play state and A im-
mediately shifts to state f(s,z*) or state f(s,()), where it awaits new
stimuli.

e If the output is [*, then state s is an initial state and A immediately
shifts to the state f(s,[*). In state f(s,[*) it emits the output at-
tached to this latter state ¥ (f(s, [*)), which is then transmitted to the
opponent. A then awaits a response.

Case 2. If A finds a demand 6 in its intray, then state s is not a pre-
play state and A immediately shifts to state f(s, 6), clearing its intray in the
process.

o If f(s,0) =Y, the game ends with the opponent receiving the share 6
of the surplus and A getting what is left.

e If f(s,0) # Y, then a counterdemand is produced <f(s, é)) and trans-

mitted to the opponent. A then awaits a response from its opponent,
who with probability ¢ receives A’s counterdemand.

We define a period as each time a demand is made.

Example 3.1 Let A be up against automaton M. Let A use the pre-play
state as well as the additional output I* in both its initial states. Let M only
use the additional output I* in its unique initial state s. The first message
from Nature makes A (but not M) produce an output (assume it was x*)
which causes it to shift to one of its initial states (e.g. s”). Then A awaits
new stimuli. Assume that Nature then picks M as player I and sends him
a message that play is to begin. This message causes M to produce output
I*, which makes it shift to state f(s,*) and emit the output attached to
this latter state 9 (f(s,I*)) = 6. This demand is transmitted to A, then
M awaits a response. Now, A receives a message and finds demand 6 in
its intray. A immediately shifts to state f(s',6), clearing its intray in the
process. Only if this state is not Y, A transmits the output attached to the
state, ¥ (f(s',0)) = 6", to M and awaits a response. With probability §, the
demand 0" reaches M and the game proceeds.

!Like Binmore et al. (1998), we assume that the initial demand always reaches the
opponent in order to follow the alternating-offers model.



To simplify matters we often use a figure to describe an automaton. Be-
fore we continue it is necessary to explain how these figures should be inter-
preted. From Example 3.1 it is clear that an automaton might not have a
pre-play state, and its initial state may (see Figure 1) or may not have the
additional output I* (see Figure 2).2

0 —>
I 0<0"
So s
— =y
S2
0 —>

So S1
—> > o' —>
0<0 0<0
Y

Figure 2: No pre-play state and output I*.

Thus an initial state sq € S comes in two versions, which are described in
Figures 1 and 2. These and all other figures should be interpreted as follows.
The output attached to a state is always written inside the box representing
that state. The name of the state is written as close to the box as possible,
normally above or below the box. The only exception is state Y, with its
name written inside the box. For example, output [* is attached to state
so in Figure 1. The arrows that point from empty spaces into the pre-play
state and/or the initial state(s) are messages from Nature or the first de-
mand in the game when the opponent is player I. All other arrows show the
transitions between states. Thus, an arrow pointing from state s to state s
symbolizes a transition rule. The conditions for the transition are placed as

2Even if an automaton has a pre-play state, its initial states may (see Figure 3.10) or
may not have the additional output I* (see Figure 3.5).



close to the arrows as possible, normally above or to the left of the arrow. To
avoid messy figures some arrows lack the conditions for the transition, but
these are always implied by the other conditions. For example, the rule for
transition from state sy to state s; in Figure 2 is implied by the transition
condition from state sy to state Y. The demand is not accepted if § > ¢';
thus this is the condition for shifting to state s;. Notice that arrows can
point back to their point-of-origin (see Figure 3). Output () is denoted by 0
in the figures. Moreover, the box representing the pre-play state will only
have output z* inside it. This should be interpreted as; if output z* is not
produced, then the output is 0.3

The automaton in Figure 1 is interpreted as follows. Its initial state s
has output I* attached to it. Thus, if it is chosen to be player I, it shifts to
state s; and transmits demand 6’ to its opponent. Since it has no pre-play
state it will do so whenever it is chosen to be player I and regardless on
whether it was assigned the positive breakdown utility or not. Similarly, if
it is chosen to be player /1 and thus finds a demand @ in its intray, it shifts
to Y if § < @', otherwise it shifts to s, where it produces and transmits
demand 6" to its opponent. Notice that only the beginning of the automaton
is displayed in Figure 1. This is the case in most figures since we are only
concerned with this part of the automaton. The empty boxes representing
unspecified states are arbitrary.

Remark 3.1 It might be possible to remove the pre-play state and let
Nature simultaneously assign the positive breakdown utility x and let one of
the automata know that it is chosen to be Player I. The automaton then has
two initial states, one if it is assigned the positive breakdown utility x and
one if it is not assigned x. Nature picks one automaton and sends stimuli to
one of the latter’s states. This automaton is chosen to be Player I and, given
the initial state Nature picked, has the positive breakdown utility or not. The
important thing for our result is that when an automaton conditions its play
on whether it is assigned the positive breakdown utility or not, it is costly.
We choose to use the pre-play state because this makes things considerably
simpler when proving our result.

3.4 Complexity and Preferences

The complexity measure we use is simply the number of states in each au-
tomaton. This counting-states criterion is used by Abreu and Rubinstein

3To paraphrase the Rock n’ Roll saying "a cancelled gig is also a gig"; no output is also
an output.



(1988), Banks and Sundaram (1990), Binmore and Samuelson (1992) and
Chatterjee and Sabourian (1999).* There are other plausible measures that
can be used in this paper, e.g. the Collapsing state condition developed by
Binmore et al. (1998). This condition says that automaton M is simpler
than automaton A if there is one or more collections of states in A, one col-
lection containing at least two states, each of which is collapsed into a single
state in M. Whenever we collapse states in one automaton into one state in
a new automaton, the newer automaton will always have fewer states than
the former.

In the social context we have in mind, strategies (or automata) can be
transmitted from one player to another, either by learning or imitation. The
more states an automaton has, the more error-prone are these transmissions.
Many of the errors will lead to dysfunctional strategies that cannot play the
game or play the game badly, rendering lower payoffs. A player using a
dysfunctional strategy is more willing to learn or imitate another strategy.
Players using successful strategies have no incentives to learn or imitate an-
other strategy. Some of the errors might lead to better strategies that either
render a higher payoff or is less complex than their "parent" (or both). In the
latter case transmissions are less error-prone compared to their parents. As a
rule, high payoff strategies survive at the expense of low payoff strategies and
simpler strategies will be more likely to survive than complex ones whenever
payofts are equal. Thus, from an evolutionary perspective, it is costly to
use an automaton which has states for punishing deviations, monitoring an
opponent’s play and condition its play to circumstances that can occur in
the game. Formally,

Definition 1 (Complexity) Let A = M mean that A is more complex than
M (or M is simpler than A). Automaton A is more complex than automaton
M if and only if A has more states than M.

The metaplayers are assumed to have lexicographic preferences. Consider
two automata, A and M. A metaplayer prefers A to M if A yields a higher
expected payoff than M against the opponent’s automaton. If and only if A
and M yield the same expected payoff against the opponent’s automaton, a
metaplayer will prefer A to M provided that A is less complex than M.

3.5 Evolutionary Stability

The metaplayers in the automaton-selection process are a metaphor for an
evolutionary process, which means that we seek an automaton that satisfies

1In Banks and Sundaram (1990) the number of transitions as well as the number of
states are costly.
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an evolutionary stability criterion. For this purpose, we use the concept of
modified evolutionarily stable strategy (MESS) introduced by Binmore and
Samuelson (1992).°

Definition 2 (Modified stability) An automaton A is a MESS if at least
one of the following conditions holds for each automaton M # A :

(i) m(A,A) > (M,A);
(i) (A, A) =7 (M,A) and 7 (A, M) >n(M,M);
(iii) m (A, A) =7 (M, A) and (A, M) =7 (M,M) and M = A.

4 Results

Our main results are presented in two propositions.

Proposition 2 Ifx € (%, 1) and the automaton A is a MESS, then there is
immediate agreement when A plays itself and

[ (#',1=6") if Player I has x
(m2(A, A), mp(A, A)) = { (1 —0%,0") if Player Il hasx |’

where (0,0%) € [0,1]* is a point in the rhomb (0' # z,1 and 6" # 1 — x,z)
0 A

1

defined by

°This is a refinement of Maynard Smith’s (1982) concept of a neutrally stable strategy.
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The proof of Proposition 2 is given in series of lemmas below. They establish
that the MESS automaton A in Proposition 2 must be constructed in the
following way:

*

0>0

So

0>0
Figure 3: The MESS automaton A.

Proposition 3 For x € (0, %] , the automaton B described in Figure 4 is a

MESS, where
1 1-9 <ot < ) +1—5 (3)
1+6 146 = =140 1+4°

Agreement is reached immediately when B plays itself, and ©'(B, B) = 0*
and 7' (B,B) =1 — 0",

So

0>0
Figure 4: The MESS automaton B.

The proof of Proposition 3 is given below.

Like the result in Binmore et al. (1998) there is nothing in Proposition
2 and Proposition 3 that requires the pie to be infinitely divisible. There
is, however, a major difference between the two propositions. Proposition 2
dictates how a MESS automaton must be constructed and which agreements
it must reach given that z € (%, 1). In contrast, Proposition 3 only displays
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a MESS automaton given that z € (0, %] It is possible for a MESS to be
constructed in another fashion when z € (O, %], e.g. by using the pre-play
state. But if the MESS automaton A in Proposition 2 is to be a MESS
for x € (O, %], then the points (¢',60*) = (6*,60*) must be removed from the
extended rhomb, where

1 1—9 ) 1—9

<<

11 115015 157 (4)

Otherwise, the mutant automaton B plays identically to A but is much sim-
pler. Besides B, no automaton can be constructed to yield equal payoff and
be less complex than A.

4.1 Proof of Proposition 2

The proof of Proposition 2 is outlined as follows. We start by substantiating a
trivial conclusion. If automaton A is a MESS then it must reach an agreement
when it plays itself (Lemma 1). Next, we show that if A is a MESS then the
agreement it reaches must be contingent on the breakdown point (Lemma
2). This implies that A uses the additional output z* (Lemma 3). In other
words, if A is a MESS it conditions its behavior on whether it has the positive
breakdown utility or not. Lemma 4 establishes that if A is a MESS that does
not condition its play on whether it is chosen to be player I or player I1,
then it reaches an agreement in period 1 when it plays itself.

Lemma 5 establishes that 9 (s) # I* if A is a MESS. First it shows that if
A conditions its play on whether it is chosen to be player I or player /1, then
agreement must be reached in period 1 when A plays itself. But if agreement
is reached in period 1 when A plays itself, then 9 (s) # I* if A is a MESS.
Finally, in Lemma 6, we show that A is constructed as in Figure 3 with the
demands specified in Proposition 2 if A is to be a MESS.

Lemma 1 If automaton A is a MESS, then A always reaches an agreement
when it plays itself.

Proof. Suppose agreement is not reached when A plays itself. Three cases
arise:

1. A always fails.

2. A fails when the automaton without the positive breakdown utility is
chosen to be player I.

3. A fails when the automaton with the positive breakdown utility is
chosen to be player I.

13



For all three cases we can construct a mutant that is a better reply to A
than A itself, or a best reply to A while A is not a best reply to it.

Case 1. We have 7 (A, A) = z/2 < 5. Let M use the pre-play state
and, in addition, condition its play on the player-role. If M is assigned the
positive breakdown utility and becomes player I, it demands some 0* > x
in the first period and then it imitates A. If M is assigned the positive
breakdown utility and becomes player 11, it accepts 8 < 1 — 6" in the first
period and then it imitates A. If M is not assigned x and becomes player
I, it demands 1 — #* in the first period and then it imitates A. If M is not
assigned x and becomes player I1, it accepts 6 < #* in the first period and
then it imitates A. Obviously, w (M, M) = 3. When M plays against A, we

have (6 > 0*,0 < 0*):

Wx(Mﬂ A) W@(Aa M)
(@) 30" +3(1-0) 5 (L—=07)+ 36
6 W+ L1 67) ®)
(¢) 2z+3i(1-9) 14
(d) x 0
and

(M, A) (A, M)
()  3L=0)+35(1-0)  307+30 6
() H(1- ) fo 1 b ©)
(9) 1(1-0) 30+ 37
(h) 0 x

Scenario (a) occurs if A accepts M’s first demand (6*) as player I and
if M accepts A’s first demand (§' < 1 — 0*) as player I, when M has x.
Scenario (b) occurs if A accepts M’s first demand (6*) as player I and if M
rejects A’s first demand (6 > 1 — 0*) as player I, when M has z. Scenario
(c) occurs if A rejects M’s first demand (6%) as player I and if M accepts A’s
first demand (0" < 1 — 6*) as player I, when M has z. Scenario (d) occurs if
A rejects M’s first demand (0*) as player I and if M rejects A’s first demand
(6" > 1—0") as player I, when M has x. Scenario (e) occurs if A accepts M’s
first demand (1 — 6*) as player I and if M accepts A’s first demand (6 < 6*)
as player I, when A has z. Scenario (f) occurs if A accepts M’s first demand
(1 — %) as player I and if M rejects A’s first demand (9 > 6*) as player I,
when A has x. Scenario (g) occurs if A rejects M’s first demand (1 — 0) as
player I and if M accepts A’s first demand (# < 0*) as player I, when A has

14



x. Scenario (h) occurs if A rejects M’s first demand (1 — %) as player I and
if M rejects A’s first demand (9 > 6*) as player I, when A has =.

Now, m,(M,A) = x and my(M, A) = 0 are required to satisfy w(M, A) =
(A, A), but then my(A, M) = 0 and 7,(A, M) = z, i.e. m(A M) =12/2 <
w(M, M). Hence, at least one of conditions (i)-(ii) in Definition 2 is violated.

Case 2. Let M’ use the pre-play state and, in addition, condition its play
on the player-role. Let M’ imitate A if it is assigned the positive breakdown
utility = and becomes player I and if it is not assigned z and it becomes
player I1. If M’ is assigned the positive breakdown utility x and becomes
player 11, it accepts # < 1 — 0" in the first period and then it imitates A.
If M’ is not assigned = and becomes player I, it demands 1 — 6" in the first
period and then it imitates A, where 0* € (z,1). Let 7,(A, A) = 7 and
mp(A, A) = 7°. We have

Wm(M’,M'):W:”—l—lG*—lx (7)
2 2
and )
m(' M) = 4 L (1 0). ®)
When M plays against A, we have (6 > 0*):
(a) 7Tx+%é— T 7T®+%<1—é) 9)
(b) v Tis
and
(M, A) (A, M)

© WHi0-0) e —de (10)

(d) T i
As in the previous case, (a)-(d) are the possible scenarios. Now, 7, (M, A) =
7® and 7g(M, A) = 7 are required to satisfy 7(M, A) = (A, A), but then
m9(A, M) = 7% and 7,(A, M) = 7%, i.e. w(A, M) < n(M,M). Hence, at
least one of the conditions (i)-(ii) in Definition 2 is violated.

Case 3. An argument analogous to that in the previous case applies. W
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Lemma 2 If automaton A is a MESS, then the agreement(s) it reaches
against itself must assign a share larger than or equal to x to the player
with the positive breakdown utility x.

Proof. Suppose that A reaches agreement (z,1 — z) in period ¢ against
itself if the automaton with x is chosen to be player I. Suppose that A
reaches agreement (w, 1 — w) in period 7 against itself if the automaton with
x is chosen to be player 1. Further, let z < x and w > 1 — z, so that the
share assigned to the player with the positive breakdown utility is less than
x. Then we can construct a mutant M that consists of two altered versions
of A and that is a better reply to A than A itself.

The mutant automaton has the positive breakdown utility x.

Then we can construct a mutant M’ as follows.

Case 1. If M’ is chosen to be player I, then it plays as automaton A does
when it is player [ until period ¢, at which point it starts to demand 0 = =
and only accepts demands # < 1 — x from the opponent. Now, if A makes
the demand in period ¢, then M’ rejects because § > 1 — x. In the continued
bargaining, either A accepts M"’s demand of x (or, it demands §# <1 —z) in
some period t* or the bargaining breaks down. In any event, M"’s payoff is
at least x which is larger than the share A achieves against itself when it has
the positive breakdown utility. If A’ makes the demand in period ¢, then
either A eventually accepts M"’s demand of = (or, it demands < 1 — x) in
some period t* or the bargaining breaks down. In any event, M"’s payoff is
at least x, which is larger than the share A achieves against itself when it
has the positive breakdown utility.

Case 2. If M’ is chosen to be player I, then it plays as automaton A
does when it is player I until period 7, at which point it starts to demand
0 = x and only accepts demands if § < 1 — z. Now, if A makes the demand
in period 7, then M’ rejects because > 1 — z. In the continued bargaining,
either A accepts M"’s demand of x (or, it demands § < 1 — z) in some
period t* or the bargaining breaks down. In any event, M"’s payoff is at least
x which is larger than the share A achieves against itself when it has the
positive breakdown utility. If M’ makes the demand in period 7, then either
A eventually accepts M'’s demand of x (or, it demands # < 1 — ) in some
period t* or the bargaining breaks down. In any event, M"’s payoff is at least
x, which is larger than the share A achieves against itself when it has the
positive breakdown utility.

The mutant automaton has the breakdown utility 0.
Then we can construct a mutant M” as follows.
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Case 3. If M" is chosen to be player II, then it plays as automaton
A does when it is player [I until period ¢, at which point it only accepts
demands if § < x, and until period ¢ + 1 when it starts to always demand
0 =1—x. Now, if A makes the demand in period ¢, then M" accepts. If M"
makes the demand in period ¢, then A accepts. Hence, it reaches the same
agreement as would two A automata. What happens when it plays against
M'? If M’ makes the demand in period t, then M" accepts. If M” makes
the demand in period ¢, then M’ rejects, but M” accepts M"’s demand in
the next period.

Case 4. If M" is chosen to be player I, then it plays as automaton A does
when it is player [ until period 7, at which point it only accepts demands if
0 < x, and until period 7 + 1 when it starts to always demand 0 = 1 — .
Now, if A makes the demand in period 7, then M" accepts. If M"” makes the
demand in period 7, then A accepts. Hence, it reaches the same agreement
as would two A automata. What happens when it plays against M’'? If M’
makes the demand in period ¢, then M" accepts. If M” makes the demand in
period t, then M’ rejects, but M"” accepts M"’s demand in the next period.

The mutant automaton M.

Let M be like automaton M’ when it has the positive breakdown utility
x and like automaton M” when its opponent has x. That is, M uses the pre-
play state and shifts to the initial state of M’ if the output is z*, otherwise
it shifts to the initial state of M”. We have my (M, A) = 7y (A, A) and
e (M, A) > 7, (A A), ie. w(M,A) > n (A, A) which contradicts condition
(i) in Definition 2. W

Lemma 3 Ifx > %, then A wuses the pre-play state and its additional output
x* (i.e. ¥ (sg,x) = 2*) if A is a MESS.

Proof. Suppose that z > % and automaton A is a MESS with no pre-play
state. From Lemma 1 we know that A reaches an agreement against itself.
Suppose it is in period ¢, where player I demands 6* which player 11 accepts.
From Lemma 2 we have 6 > z if player I is assigned x and that 0 <1 —x
if player I is assigned x. Since both events are equally likely to happen
and 0" cannot satisfy both conditions for z > %, there is a contradiction.
An analogous argument applies when it is player /I who demands 6* which
player I accepts in period t. W

Lemma 4 If x > % and automaton A is a MESS which does not condition
its play on the player-role (i.e. ¥ (s) # I*), then it reaches an agreement in
the first period when it plays itself.
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Proof. Suppose that A does not reach an agreement in the first period
when it plays itself.

Case 1. A reaches agreement in period ¢ > 1 when the automaton with
the positive breakdown utility x is chosen to be player I and in period 7 > 1
when the automaton with the positive breakdown utility x is chosen to be
player I1.

Let 7—t = k. Finally, let 6, be the share assigned to the automaton with
the positive breakdown utility = in the agreement reached in period ¢ and
let 6, be the share assigned to the automaton with the positive breakdown
utility x in the agreement reached in period 7.

S3 S5
: 07’ : _>
. v v
S
— X* Y
6 < 9, A
0
* [ w3 [
e » 6 » —>
S2 S4 S6

Figure 5: A with delayed agreements.

The beginning of A is described in Figure 5. Notice that no state, e.g.
state s,, can be used both when A is assigned the positive breakdown utility
x and when it is not assigned x. If this is the case, then a mutant without
the positive breakdown utility = can play as A until A occupies state s,, at
which point the mutant plays as would A with the positive breakdown utility
x. By this the mutant gets 0, or 0, instead of 1 — 0, or 1 —0,, and becomes
a better reply to A than A itself.

Let M’ be a mutant that, when it has (the positive breakdown utility)
x and is chosen to be player I, makes the demand that is A’s first demand
as player Il with z, and thereafter continues to play as would A as player
I1 with . When M’ plays against A as player I with x, M"’s first demand
makes A play as it would as player I and responding to player I1’s counter-
demand. Hence, the roles are reversed and agreement is delayed by k£ — 1
periods, i.e. M’ gets 0, in period T — 1.

Let M” be a mutant that, when it has x and is chosen to be player I1,
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makes the demand that is A’s first demand as player [ with x, and thereafter
continues to play as would A as player I with x. When M” plays against A
as player I1 with x, M"’s first demand makes A play as it would as player 11
and responding to player I’s counter-demand. Hence, the roles are reversed
and agreement is accelerated by k& —1 periods, i.e. M"” gets 0, in period ¢+ 1.

Let M" be a mutant that, when it is chosen to be player I and its
opponent has x, makes the demand that is A’s first demand as player 17
without x, and thereafter continues to play as would A as player I1 without
x. When M" plays against A as player I without x, the roles are reversed
and agreement is accelerated by k + 1 periods, i.e. M"" gets 1 — 6, in period
t—1.

Let M be a mutant that, when it is chosen to be player II and its
opponent has x, makes the demand that is A’s first demand as player [
without z, and thereafter continues to play as would A as player I without
x. When M"™ plays against A as player I without x, the roles are reversed
and agreement is delayed by k + 1 periods, i.e. M gets 1 — 6, in period
T+ 1.

If A is to be a MESS, then none of these must be a superior reply to A.
This requires:

O, + (1 =0 >0, + (1 -0z, (11)
510, + (1 — 6z <010, + (1 — 0" Yz, (12)
01— 0,) > 621 - 6,), (13)
07(1—0,) <671 —6,). (14)

Together, (11) and (12) give
0, —x =010, — ), (15)

and (13) and (14) give

1—6,=06"1-8,). (16)

We now construct the following mutant M. Let fM(s* z*) = s& and
M(s*,0) = 38, i.e. M uses the pre-play state and switches to initial state
5§ or sg depending on the output Nature made it produce. Let M use the
additional output /* in its initial states and let f(sg, I*) = s3, fM(st,0 =
0F) = s1, fM(s2,0 # 0%) = s5, fM(sD,I*) = 54, fM(s8,0 = ') = s, and
JM(sE,0 # 0") = s4. The states s1, s3, 2, S4, and so on, and the associated
output and transition functions are identical to those in A (see Figure 5).
Against itself, M switches player-roles but accelerates the agreements by one
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period. When the automaton with z is chosen to be player /, agreement is
reached in period 7 — 1 where it is assigned 6,. When the automaton with
x is chosen to be player I], agreement is reached in period ¢ — 1 where it is

assigned 6,. Hence,

(M, M) =4 (07720, + (1-2)a) +
+1 (6720, + (1-0"%) ) +
+1572 (1 - éx) + 152 (1—9,).

This can be compared to

6+ (1= ) ) +
+1 (070 + (1—0"") 2) +
-1 —9)+ 15=1(1-9,).

When the mutant M plays A, we have

w(M, A) =L (5T 0+ (102 a) +

L (5%, + (1 8)x) +
+167 (1 01,)+ 15t=2(1 _¢,),
. (AM)— (570, + (1= 7)) +

1
4
(5t 29 ( 5t 2) )
+167- 2( —ex) 15t (1—0,).
Using (15) and (16) in these expressions gives

(M, A) = w(A A),
m(A,M) < 7w(M,M).

Hence, A is not a MESS.
An analogous argument can be made for t — 7 = k.

(17)

(18)

(21)

Case 2. A reaches agreement in period 1 when the automaton with z is
chosen to be player I and in period 7 > 1 when the automaton with x is

chosen to be player /1.

Hence, A is constructed as in Figure 5 except for the fact that it accepts
demand 6’ when in state s,. Thus, ¢ is the share assigned to the automaton
with z in the agreement reached in period 1. Let 7, be the share assigned
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to the automaton with = in the agreement reached in period 7. Let 6" be
A’s first demand as player 1 with x. Let 6* be A’s first demand as player [
without = and let ™" be A’s first demand as player 11 without .

We know that f4(sq,0%) and f4(sq,0") embark on the path towards the
agreement in period 7 and that f4(sy,6') = Y. Now, by only changing the
first demand to 6” instead of & when chosen to be player I, a mutant with
x can get m, in period 7 — 1 instead of @ in period 1. Likewise, by only
changing the first demand to # instead of §” when chosen to be player I1,
a mutant with = can get 6’ in period 2 instead of 7, in period 7. (Besides
this the mutants play like A does). If A is to be a MESS, neither can be a
superior reply to A. This requires

0 >0 m, 4 (1 -0 2, (22)
60 + (1 -8z <0 'y + (1 =6 Y. (23)
That is,
0 =6 2,4+ (1 -0 2. (24)
Consider mutant M, with 9" (¥ (s*,2%)) = ¢" and 9" (fM(s*,0)) =1-0.
States ss, S4, Sg, ... are identical to those in A. Let M have transition
functions:
o fM(fM(s*,a%),0%) = fM(s*,2%),
o fM(fM(s* "), 1-0)=Y,
o fM(fM(s%,0),0) =Y,
o fM(fM(s*,0),0") = sq9, f(fM(5*,0),0") = s4, etcetera.
Notice that, when M plays against A as player I without x, M’s first
demand of 1 — #’ makes A to shift to one of its states, i.e. s;, s3, 5, ..., Y.
(It cannot be sy, 84, Sg, ... , nOr can it be some state that is not used by A

when it plays itself.) The following transition rules ensure that if A shifts to
s3 (s5) then M shifts to sy (sg) and thereby secures 1 —m, in period 7 (7 —2).
The payoffs are as follows:

(A A) = %9' + % (67 mp + (1 =07 1)z] (25)
ro(A, A) = %(1 —0) + %57—1(1 — ) (26)
(M, M) = ¢ (27)
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(M, M) =1-4¢" (28)
When M plays against A, the payoffs are:

1 1
(M, A) = 50’ +3 (60" + (1 — 6)x] (29)
=1-¢ if fA(s1,1—60)=Y
(M, A)q =3(1—0)+36(1—6) if fA(s1,1—0")=s; (30)
>1(1-0)+16(1—m,) otherwise
=0 if fA(s1,1-0)=Y
T (A, M) =30+ 1 (60 + (1 —6)x) if fA(s1,1—0")=s;
>40 +1 (071, +(1—0""")2) otherwise
(31)
1 1
mo(A, M) = 5(1—0')+§5(1—9'). (32)
Now we compare the payoffs. First, m,(M, A) = 7,(A, A) because
60 +(1 =8z =0t + (10" Y. (33)
Simplification yields
0 —x=06"2n, — ), (34)

and this equality holds by condition (24). From (34) we conclude that 6" <
and 1 — 60" > 1 — 7. Second, my(A, M) < my(M, M). Third, we have:

(i) mp(M, A) > mp(A, A) if fA(s1,1—-0") =Y, because 1—6' > §" ' (1 — 7).
(ii) mp(M, A) > mp(A, A) if fA(s1,1 —6') = s1, because
§(1—0)>611—m,).
(iiia) mp(M, A) > mg(A, A) if fA(s1,1 —0") # {51, s3, Y}, because
ST —0)>0 (1 —7,)
where n > 3.
(iiib) 7o(M, A) = 7o(A, A) if fA(s1,1— 0) = s,
Finally,

(i) 7mo(A, M) = 7, (M, M) if fA(s1,1—0) =Y.
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(ii) 7. (A, M) < 7 (M, M) if fA(s1,1—8') = 51, because 60’ + (1 — &)z < ¢’
when ¢ > z by Lemma 2.

(iii) 7.(A, M) < m,(M, M) if fA(s;,1 — @) = s3, because 6" ‘7, + (1 —
S Nr <0 =6 2m,+ (1 -6 .

Calculating the payoffs for the different scenarios yields w(M, A) > (A, A)
in (i), (ii) and (iiia), and 7(M,A) = 7w(A, A) and w(A, M) < 7(M, M) in
(ilib), thus A is not a MESS.

Case 3. A reaches agreement in period 1 when the automaton with z is
chosen to be player /I and in period 7 > 1 when the automaton with x is
chosen to be player I. Then an argument analogous to that of the previous
case applies. W

Lemma 5 If automaton A is a MESS, then A does not condition its play
on the player-role and agreement is reached in the first period when it plays
itself.

Proof. First, we show that if ¥ (s) = I* in A, then agreement is reached
in period 1 if A is to be a MESS. Suppose automaton A with ¢ (s) = I* does
not reach agreement in the first period when it plays itself. Notice that A
can have three types of delay and it can use output /* in three different ways,
which are described in Table 1.

Y (s)=1* when z | J(s) =I* when () | ¥ (s) = I* in both
Delay if:
I has x Case A Case D Case G
II has x Case B Case E Case H
Always Case C Case F Case J

Table 1: Different cases of A and types of delay.

For all cases we can construct a simpler mutant M yielding identical play,
by collapsing the initial state(s) and the state to which A shifts and makes
its first demand from if ¥ (s) = I*. Thus, A is not a MESS according to
condition (iii) in Definition 2. We show this for Cases B and J, but the same
argument applies in all cases.

Case B. A conditions its play on whether it is chosen to be player I or
player I1 only when it is assigned the positive breakdown utility x. The
delayed agreement occurs if the automaton without the positive breakdown
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utility « is chosen to be player I (see Figure 6). The remaining transitions
are arbitrary.

S3
I L
/ S5
0’ >
0<0"
A 4
Y

v

Figure 6: Case B automaton.

By collapsing states s; and s3, mutant M is less complex than A but yields
identical play (see Figure 7).

Ss

<
v

Figure 7: Case B mutant.

Thus, A is not a MESS.

Case J. Figures 8 and 9 show that we can construct a simpler automaton
by collapsing states. The remaining transitions are arbitrary. In Figure 9 we
have collapsed states s; and s3, and states s, and s4. As a consequence, the
mutant M has two less states than A and this disqualifies A from being a

MESS.
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Figure 8: Case J automaton.

S7 S9
> —
So
*
—> x Y
A
S2 e < en’
0 * o sfeskeck
0 >0
Sg
S10
0=0’
S6

Figure 9: Case J mutant.
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Finally, we end the proof of Lemma 5 by showing that if agreement is
reached in the first period, then ¢ (s) # I* if A is to be a MESS. Suppose
automaton A is a MESS with 9 (s) = I* that reaches agreement in period
1 against itself. Then we can construct a less complex mutant M yielding
identical play, where M does not use ¥ (s) = I*. This is illustrated in Figures
10 and 11. Automaton A described in Figure 10 achieves immediate agree-
ment against itself. If the automaton with x is chosen to be player I, then
player I demands 6’ which player 11 accepts. If the automaton without z is
chosen to be player I, then player I demands 6* which player 11 accepts.

s3/A>9 >0

6’

s5/4>6 > 9*

I
> en

/

So

S4

o *

y
Y
A s
S2 \ / \‘>6>9”
0>0 o
0
S6<>9>6’

Figure 10: A with ¥ (s) = I* and immediate agreement.

Now, a simpler automaton shifts from s; to s5 if # > 6* and from s, to sg if
6 > ¢, and collapses states s; and s3 and states s, and s4 (see Figure 11).
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SSQG >0
0>0

e”

/

\ 4

So

S4

0 . 0>0 -~

0
S2 \‘>6>9”

Figure 11: M with collapsed states.

D
A 4

However, since states s5 and sg are never used when A or M play themselves
or each other, the simplest automaton M’ does not have these states. This

is illustrated in Figure 12.

*

0>0

So

0>60
Figure 12: The simplest M.

Again, A is not a MESS. The payoffs are identical, but A fails condition
(iii) in Definition 2. Notice that nothing changes if A only conditions its play
on a player-role when it is assigned the positive breakdown utility (or when
it is not assigned the positive breakdown utility). We can still collapse s;
and sz (or so and s4) and thus not use ¥ (s1) = I* (or ¥ (s2) =1*). N

Lemma 6 Ifz > % and automaton A is a MESS, then it has the four states
described in Figure 12, in which §' € (z,1) and 6* € (0,1 — ) satisfy

1-0¢ > 60" (35)
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0 >6(1— 0%+ (1—6)z (36)
0" > 5(1— 0 (37)
1—0* >80+ (1—6)x (38)

Proof. If A is a MESS, then it reaches agreement against itself in period
1. Suppose A has more than four states. Then a mutant that is constructed
as above yields identical play, but is less complex than A. Thus, A is not
a MESS. If A is a MESS it cannot have less than four states. It has to
use the pre-play state (Corollary 3), and thus shift to different initial states
depending on whether it is assigned the positive breakdown utility = or not,
and it must have an acceptance state Y (Lemma 1).

The demands A makes must be of such nature that A is immune to
mutants that delay the agreement in order to get another share, e.g. reject
6" in order to get 1 — 6" in the next period. Condition (35) must be satisfied,
otherwise it is optimal for a mutant to reject #" when it is player I1 without
the positive breakdown utility x and delay the agreement by one period.
Condition (36) must be satisfied, otherwise it is optimal for a mutant to
demand 1 when it is player I with the positive breakdown utility and delay
the agreement by one period. Condition (37) must be satisfied, otherwise it
is optimal for a mutant to demand 1 when it is player I without the positive
breakdown utility and delay the agreement by one period. Condition (38)
must be satisfied, otherwise it is optimal for a mutant to reject 6* when it
is player 11 with the positive breakdown utility and delay the agreement by
one period.

Conditions (35)-(38) define a rhomb in space [0, 1], i.e.
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where e 1w
a. (ﬁ,éllﬁ)
b (i, 1) (39)
c: z,l —x

Any pair of demands (#', 8*) that satisfies conditions (35)-(38) is a point
in the rhomb. However, we have that 6’ € (z,1) and 6* € (0,1 — ) if A is
a MESS. That is, (¢',60%) # (1,0) and (#',6) # (x,1 — ). First, suppose
that (6,0") = (1,0). Then let a mutant have 6* = ¢ > 0 and ' = 1, but
accept the same demands as A. We have 7,(M, A) = 1, my(A, M) = 0 and
mo(A, M) > 0, where the last payoff is positive if and only if A accepts €
when M is player I1. Thus,

monad 23030509 (40)

which both are less than 1. This either makes M a better reply to A than
A itself, or it makes M a best reply to A and a better reply to itself than is
A. Now, if 8 > 0 then ¢’ < 1 by conditions (35)-(38). Second, suppose that
(0',0%) = (x,1—x). Then let a mutant have ' = x+¢ > z and 0" = 1—z, but
accept the same demands as A. We have my(M,A) =1 —z, m,(A, M) ==z
and 7. (M, A) > z, where the last payoff is larger than z if and only if A
accepts « + € when M is player I. Thus,

(l—x)igfgil—x) }, (41)

] =

N [
—~

—

&

N—



which are both less than 1 — x. This either makes M a better reply to A
than A itself, or it makes M a best reply to A and a better reply to itself
than is A. Now, if #’ > x then 6" < 1 — x by conditions (35)-(38). W

This completes the proof of Proposition 2.

4.2 Proof of Proposition 3

When x € (O, %] , no MESS automaton can be constructed less complex than
B in Figure 4. By Lemma 1 we know that a MESS reaches an agreement
when it plays itself. Hence, it must have a state in which a demand is
produced and an acceptance state. Lemma 2 establishes that if B is a MESS
then the agreement it reaches must be contingent on the positive breakdown
utility. But unlike the MESS automaton A in Proposition 2, B does not have
to condition its behavior on whether it has the positive breakdown utility or
not. Suppose B reaches agreement in period ¢, where player I demands 6*
which player I1 accepts. From Lemma 2 we have that 0* > x if player [ is
assigned z and that 0" < 1—z if player I1 is assigned x. There exists 0" that
satisfies both conditions because z < % The demand B makes must be of
such nature that B is immune to mutants that delay the agreement in order
to get another share, i.e. reject 6* in order to get 1 — #* in the next period.
The conditions are:

1. 1—6" > 60", otherwise a mutant without the positive breakdown utility
acting as player 11 would reject B’s demand 6,

2. 0° > 0(1 — 0%), otherwise a mutant without the positive breakdown
utility acting as player I would demand more than 6 and delay the
agreement,

3. 1—60" > 60"+ (1 — §) z, otherwise a mutant with the positive breakdown
utility acting as player I1 would reject B’s demand 6%,

4. 0 > 6(1 —0") + (1 — §) x, otherwise a mutant with the positive break-
down utility acting as player I would demand more than 6* and delay
the agreement.

It follows that
1 1—-6 ) 1-96

_ <O < )
175 1ot s st Tt (42)
We have that
1 1—94 ) 1—
_ > - 4
55 1+5x_a: and1+5+1+5x_x (43)



for z < 1.

Sin(:e2 a mutant only causes a delay (or a breakdown) if it does not accept
0" or demands more than #*, it can only "beat" B by being simpler than B
- but that is impossible.

This completes the proof of Proposition 3.

5 Conclusions and Remarks

We have shown that if one imposes evolutionary stability on the strategies
used in a bargaining game with risk of breakdown and an asymmetric break-
down point, then quite a few partitions remains possible. If the positive
breakdown utility x is greater than half the surplus, we can construct a
MESS automaton to promote any partition where x or more of the pie is
assigned to the player with the positive breakdown utility. In particular,
we can construct a MESS supporting the split-the-difference partition. The
associated demands (HTI, 1;29”) are the middle point in the rhomb, or to be
exact, the intersection of two lines; the first between points a and b and
the second between points ¢ and (1,0) in Figure 13.% Notice that this is the
subgame perfect equilibrium agreement in Proposition 1.

Our finding still implies that only one automaton can be the incumbent
strategy in a population. For example, if half of the population uses an au-
tomaton (A) supporting the split-the-difference partition and the other half
uses an automaton (B) supporting a partition arbitrarily close to the parti-
tion (z,1 — z), then a mutant can be constructed to invade the population.
Since A and B fail to reach agreement whenever they are matched to play
each other, a mutant that reaches agreement against both A and B as well
as against itself, has a higher payoff. The mutant M always needs to accept
both A’s and B’s demands and make A’s demands when it is assigned the
positive breakdown utility x and B’s demands when it is not assigned z. In
the worse case, agreement is delayed one period when M plays against A or
B, while A and B always fail when playing each other.

For games in which the positive breakdown utility z is smaller than half
the surplus, our result shows that almost all partitions can be supported by
a MESS automaton due to the use of the pre-play state.” By not allowing

6Given that § — 1.
"The player with the positive breakdown utility still has to be assigned more than z in
the agreement.
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automata to have a pre-play state, the MESS automaton is most likely au-
tomaton B in Proposition 3.%
0 A

1

1-x 1 0

Figure 13: The MESS demands.

Our result can fail if we have a polymorphic populations with different
attitude towards risk (this corresponds to individual discount factors in Ru-
binstein, 1982).

8One might be able to use the same line of proof as Binmore et al. (1998) to establish
this fact, however, this is just an assessment from our part.
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